
Analytical Cache Models with Applications
to Cache Partitioning

G. Edward Suh, Srinivas Devadas, and Larry Rudolph
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, MA 02139

{suh,devadas,rudolph}@mit.edu

ABSTRACT
An accurate, tractable, analytic cache model for time-shared
systems is presented, which estimates the overall cache miss-
rate of a multiprocessing system with any cache size and
time quanta. The input to the model consists of the iso-
lated miss-rate curves for each process, the time quanta for
each of the executing processes, and the total cache size.
The output is the overall miss-rate. Trace-driven simula-
tions demonstrate that the estimated miss-rate is very ac-
curate. Since the model provides a fast and accurate way to
estimate the effect of context switching, it is useful for both
understanding the effect of context switching on caches and
optimizing cache performance for time-shared systems. A
cache partitioning mechanism is also presented and is shown
to improve the cache miss-rate up to 25% over the normal
LRU replacement policy.

1. INTRODUCTION
This paper presents an analytical model for the behavior
of a cache in a multiprocessing system that can accurately
estimate overall miss-rate for any cache size and any time
quantum. An evaluation method for miss-rate is essential to
optimize cache performance. Traditional cache performance
evaluation is done by simulations [25, 16, 12], which provide
accurate results, but simulation time is often long. Hard-
ware monitoring can dramatically speed up the process [26],
however, it is limited to the particular cache configuration.
As a result, both simulations and hardware monitoring can
only be used to evaluate the effect of context switches [14,
10]. Moreover, simulations and monitoring rarely provide
intuitive understanding making it difficult to improve cache
performance. To provide both performance prediction and
insight into improving performance, analytical cache models
are required.

We use our model to determine the best cache partitioning
so as to improve performance. Partitioning is needed to mit-

igate the effects of conflicts among concurrently executing
processes, especially for large caches. In the past, caches
were small and it was best to let each process consume the
entire cache space, since process footprints were much larger
than the cache. In modern microprocessors, caches are much
larger; some Level 1 (L1) caches range up to one MB [5], and
L2 caches are up to several MB [2, 13]. Large caches allow
potential performance improvement by partitioning. Since
each process may not need the entire cache space, the effect
of context switches can be mitigated by keeping useful data
in the cache over context switches. It is crucial for mod-
ern microprocessors to minimize inter-process conflicts by
proper cache partitioning [21, 9] or scheduling [17, 23].

Our model requires information that is relatively easy to
acquire. The characteristics for each process are given by
the miss-rate as a function of cache size when the process is
isolated, which can be easily obtained either on-line or off-
line. The time quantum for each process and cache size are
also given as inputs to the model. With this information,
the model estimates the overall miss-rate for a given cache
size when an arbitrary combination of processes is run. The
model provides good estimates for any cache size and any
time quantum, and is easily applied to real problems since
the input miss-rate curves are both intuitive and easy to
obtain in practice. Therefore, we believe that the model is
useful for any study related to the effect of context switches
on cache memory.

After describing related research in Section 2, Section 3 de-
rives an analytical cache model for time-shared systems.
Section 4 discusses cache partitioning based on the model
and evaluates the model-based partitioning method by sim-
ulations. Finally, Section 5 concludes the paper.

2. RELATED WORK
Several early investigations of the effects of context switches
use analytical models. Thiébaut and Stone [20] modeled
the amount of additional misses caused by context switches
for set-associative caches. Agarwal, Horowitz and Hennessy
[1] also included the effect of conflicts between processes in
their analytical cache model and showed that inter-process
conflicts are noticeable for a mid-range of cache sizes that
are large enough to have a considerable number of conflicts
but not large enough to hold all the working sets. However,
these models work only for long enough time quanta, and
require information that is hard to collect on-line.

Mogul and Borg [14] studied the effect of context switches
through trace-driven simulations. Using a timesharing sys-
tem simulator, their research shows that system calls, page
faults, and a scheduler are the main sources of context switches.
They also evaluated the effect of context switches on cycles
per instruction (CPI) as well as the cache miss-rate. De-
pending on cache parameters, the cost of a context switch
appears to be in the thousands of cycles, or tens to hundreds
of microseconds in their simulations.

Stone, Turek and Wolf [18] investigated the optimal allo-
cation of cache memory between two competing processes
that minimizes the overall miss-rate of a cache. Their study
focuses on the partitioning of instruction and data streams,
which can be thought of as multitasking with a very short
time quantum. Their model for this case shows that the op-
timal allocation occurs at a point where the miss-rate deriva-
tives of the competing processes are equal. The LRU re-
placement policy appears to produce cache allocations very
close to optimal for their examples. They also describe a
new replacement policy for longer time quanta that only
increases cache allocation based on time remaining in the
current time quantum and the marginal reduction in miss-
rate due to an increase in cache allocation. However, their
policy simply assumes the probability for a evicted block to
be accessed in the next time quantum as a constant, which
is neither validated nor is it described how this probability
is obtained.

Thiébaut, Stone and Wolf applied their partitioning work
[18] to improve disk cache hit-ratios [21]. The model for
tightly interleaved streams is extended to be applicable for
more than two processes. They also describe the problems
in applying the model in practice, such as approximating the
miss-rate derivative, non-monotonic miss-rate derivatives,
and updating the partition. Trace-driven simulations for
32-MB disk caches show that the partitioning improves the
relative hit-ratios in the range of 1% to 2% over the LRU
policy.

Our analytical model and partitioning differ from previous
efforts that tend to focus on some specific cases of context
switches. Our model works for any specific time quanta,
whereas the previous models focus only on long time quanta.
Also, our partitioning works for any time quanta, whereas
Thiébaut’s algorithms only works for very short time quanta.
Moreover, the inputs of our model (miss-rates) are much eas-
ier to obtain compared to footprints or the number of unique
cache blocks that previous models require.

3. ANALYTICAL CACHE MODEL
The analytical cache model estimates the overall cache miss-
rate for a multi-processing system. The cache size and the
time quantum length for each job is known. The cache size
is given by the number of cache blocks, and the time quan-
tum is given by the number of memory references. Both are
assumed to be constants (See Figure 1 (a)). In addition, as-
sociated with each job is its miss-rate curve, i.e., the number
of cache misses as a function of the cache size.

This section explains the development of the model in sev-
eral steps. Heavy use is made of the individual, isolated
miss-rate curve (iimr). This curve is the miss-rate for a pro-

Time

Process 1 Process NProcess 2 ... Process 2Process 1 ...

T1 T2T1TNT2

(b)

miss-rate curves (mi(x))

time quanta (Ti)

cache size (C)

Cache Model overall miss-rate

(a)

Figure 1: (a) The overview of an analytical cache
model. (b) Round-robin schedule.

cess as a function of cache size assuming no other processes
are running. There is much information that can be gleaned
from this equation. For example, we can compute the miss
rate of a process as a function of time (Section 3.2.1) from
the miss-rate of a process as a function of space.

Observe that as a process executes, it either references an
item in the cache, in which case its footprint size remains the
same, or it gets a cache miss thereby increasing its footprint
size. In other words, we know how much cache is allocated
to a process as a function of time: from the iimr curve, we
compute the independent, isolated footprint as a function of
time (iifp) (Section 3.2.2).

If one knows how much cache is allocated to a process when
it begins executing its time quantum and how much more
cache it will need during the execution of that time quantum,
we can compute how much cache will be left for the next
process that is about to begin its time quantum execution.
In other words, from the iifp curves of all the concurrent
processes, we compute the individual, dependent footprint
(dfp) as a function of time (Section 3.2.3).

At each time step, we know how much cache is allocated
to the running process (from dfp(t)) and we know the miss
rate for that size (from iimr(S)) for the executing process
and so we can get the dependent miss rate as a function of
time (dmr(t)) (Section 3.2.1).

Finally, integrating or summing the dmr(t) over time, gives
the overall average miss rate for a given cache size, given
time quantum sizes, and a given set of concurrent processes
(Section 3.2.4).

The following subsection gives an overview of our assump-
tions. The development of the cache model is then pre-
sented, following the outline given above. Finally, this sec-
tion ends with experimental verification of the model.

3.1 Assumptions
The memory reference pattern of each process is assumed
to be represented by a miss-rate curve that is a function of
the cache size. Moreover, this miss-rate curve is assumed
not to change over time. Although real applications do have

The current

process' data

Other process' data

/Empty

The cache at time t
0

x(t
0
)

Cache size

M
is

s-
ra

te

m(x)

for

the current process

P
miss

(t
0
)

(a)

Time

P
ro

b
a
b
ili

ty
 t
o
 m

is
s

T (The length of

 a time quantum)

The number of misses

Integrate

(b)

P
miss

(t)

x(t
0
)

Figure 2: (a) The probability of a miss at time t0. (b) The number of misses from Pmiss(t) curve.

dynamically changing memory reference patterns, our re-
sults show that, in practice, an average miss-rate function
works very well. For abrupt changes in the reference pat-
tern, multiple miss-rate curves can be used to estimate an
overall miss-rate.

There is no shared address space among processes. This
assumption is true for common cases where each process has
its own virtual address space and the shared memory space
is negligible compared to the entire memory space that is
used by a process.

Finally, a round-robin scheduling policy with a fixed time
quantum for each process is assumed (see Figure 1 (b)), an
LRU replacement policy is used, and the cache is fully as-
sociative. Although most real caches are set-associative, a
model for fully-associative caches is very useful for under-
standing the effect of context switches because the model is
simple. Moreover, cache partitioning experiments demon-
strate that the fully-associative model can also be applied
to set-associative caches in practice (Section 4). Elsewhere,
we have extended the model to handle set-associative caches
[19]. A model assuming many other scheduling methods and
replacement policies can be similarly derived.

We make use of the following notations:

t the number of memory references from the beginning of a
time quantum.

x(t) the number of cache blocks that belong to a process
after t memory references.

m(x) the steady-state miss-rate for a process with cache size
x.

T the number of memory references in a time quantum.

3.2 Cache Model
The goal is to predict the average miss-rate for a multipro-
cess machine with a given cache size and set of processes.

3.2.1 Miss rate as function of time
Given the independent, isolated miss-rate of a process as a
function of cache size, we compute its miss-rate as a function

of time. Let time t start at the beginning of a time quantum,
not at the beginning of execution. Since all time quanta for
a process are identical by our assumptions, we consider only
one time quantum for each process.

Although the cache size is C, at certain times, it is possible
that only part of the cache is filled with the current process’
data (Figure 2 (a) shows a snapshot of a cache at time t0).
Therefore, the effective cache size at time t0 can be thought
of as the amount of the current process’ data x(t0) in the
cache at that time. The probability of a cache miss in the
next memory reference is given by

Pmiss(t0) = m(x(t0)). (1)

Once we have Pmiss(t0), it is easy to estimate the miss-
rate over time during that time quantum. The number of
misses for the process over a time quantum can be expressed
as a simple integral, Figure 2 (b), where the miss-rate is
expressed as the number of misses divided by the number of
memory references.

miss-rate =
1

T

Z T

0

Pmiss(t)dt =
1

T

Z T

0

m(x(t))dt (2)

3.2.2 Footprint as a function of time
We now estimate x(t), the amount of a process’ data, i.e. its
footprint, in a cache as a function of time. Let us begin with
the assumption that a process starts executing during a time
quantum with an empty cache in order to estimate cache
performance for cases when a cache gets flushed for every
context switch. Virtual address caches without process ID
are good examples of such a case. We show later how to
estimate x(t) when the cache is not empty at the start of a
time quantum.

Consider x∞(t) as the amount of the current process’ data
at time t for an infinite size cache. We assume that the
process starts with an empty cache at time 0. There are
two possibilities for x∞(t) at time t + 1. If the (t + 1)th

memory reference results in a cache miss, a new cache block
is brought into the cache. As a result, the amount of the
process’s cache data increases by one block. Otherwise, the
amount of data remains the same. Therefore, the amount

of the process’ data in the cache at time t + 1 is given by

x∞(t + 1) =

(

x∞(t) + 1 (t + 1)th reference misses

x∞(t) otherwise.
(3)

Since the probability for the (t + 1)th memory reference to
miss is m(x∞(t)) from Equation 1, the expected value of
x(t + 1) can be written by

E[x∞(t + 1)] = E[x∞(t) · (1 − m(x∞(t)))

+ (x∞(t) + 1) · m(x∞(t))]

= E[x∞(t) + 1 · m(x∞(t))]

= E[x∞(t)] + E[m(x∞(t))].

(4)

Assuming that m(x) is convex1, we can use Jensen’s inequal-
ity [3] and rewrite the equation as a function of E[x∞(t)].

E[x∞(t + 1)] ≥ E[x∞(t)] + m(E[x∞(t)]). (5)

Usually, a miss-rate changes slowly. As a result, for a short
interval such as from x to x + 1, m(x) can be approximated
as a straight line. Since the equality in Jensen’s inequality
holds if the function is a straight line, we can approximate
the amount of data at time t + 1 as

E[x∞(t + 1)] ' E[x∞(t)] + m(E[x∞(t)]). (6)

We can calculate the expectation of x∞(t) more accurately
by calculating the probability for every possible value at
time t [19]. However, calculating a set of probabilities is
computationally expensive. Also, our experiments show that
the above approximation closely matches simulation results.

If we further approximate the amount of data x∞(t) to be
the expected value E[x∞(t)], x∞(t) can be expressed with
a differential equation:

x∞(t + 1) − x∞(t) = m(x∞(t)), (7)

which can be easily calculated in a recursive manner.

To obtain a closed form solution, we can rewrite the discrete
form of the differential equation 7 to a continuous form:

dx∞

dt
= m(x∞). (8)

Solving the differential equation by separating variables, the
differential equation becomes

t =

Z x∞(t)

x∞(0)

1

m(x′)
dx′. (9)

We define a function M(x) as an integral of 1/m(x), which
means that dM(x)/dx = 1/m(x), and then x∞(t) can be
written as a function of t:

x∞(t) = M−1(t + M(x∞(0))) (10)

where M−1(x) represents the inverse function of M(x).

Finally, for a finite size cache, the amount of data in the
cache is limited by the size of the cache C. Therefore, xφ(t),

1If a replacement policy is smart enough, the marginal gain
of having one more cache block monotonically decreases as
we increase the cache size.

Pi,1 Pi,3Pi+1,2...Pi-1,2Pi,2Pi+1,1...Pi-1,1

MRU data LRU data
The snapshot of a cache

0
0

Time

C

A
m

o
u

n
t

o
f

D
a

ta
 i
n

 a
 C

a
c
h

e

t t+Ti

x0i(t)

Figure 3: The snapshot of a cache after running
Process i for time t.

the amount of a process’ data starting from an empty cache,
is written by

xφ(t) = MIN [x∞(t), C] = MIN [M−1(t + M(0)), C]. (11)

3.2.3 Individual, Dependent Footprint as a function
of time

We now compute the amount of a process’ data at time
t when the cache is not flushed at a context switch, i.e.,
the dependent case. To distinguish between the processes,
a subscript i is used to represent Process i. For example,
xi(t) represents the amount of Process i’s data at time t.

The estimation of xi(t) is based on round-robin scheduling
(See Figure 1 (b)) and the LRU replacement policy. Pro-
cess i runs for a fixed length time quantum Ti. For sim-
plicity, processes are assumed to be of infinite length so that
there is no change in the scheduling. Also, the initial startup
transient from an empty cache is ignored since it is negligible
compared to the steady state.

To estimate the amount of a process’ data at a given time,
imagine the snapshot of a cache after executing Process i
for time t as shown in Figure 3. Note that time is 0 at the
beginning of the process’ time quantum. In the figure, the
blocks on the left side show recently used data, and blocks
on the right side show old data. Pj,k represents the data
of Process j, and subscript k specifies the most recent time
quantum when the data are referenced. From the figure, we
can obtain xi(t) once we know the size of all Pj,k blocks.

The size of each block can be estimated using the xφ
i (t)

curve from Equation 11, which is the amount of Process i’s
data when the process starts with an empty cache. Since
xφ

i (t) can also be thought of as the amount of data that are

referenced from time 0 to time t, xφ
i (Ti) is the amount of

data that are referenced over one time quantum. Similarly,
we can estimate the amount of data that are referenced over
k recent time quanta to be xφ

i (k · Ti). As a result, the size

0
0

Time

xi(0)

C

xi(t)

tstart(i,2) tend(i,2)tend(i,3)tstart(i,3)

A
m

o
u
n
t
o
f
D

a
ta

 in
 a

 C
a
ch

e

xi(t)
0

Figure 4: The relation between xφ

i (t) and xi(t). xi(0)
is the amount of Process i’s data in the cache when
a time quantum starts.

of Block Pj,k can be written as

Pj,k =

8

>

>

>

<

>

>

>

:

xφ

j (t + (k − 1) · Tj) − xφ

j (t + (k − 2) · Tj)

if j is executing

xφ
j (k · Tj) − xφ

j ((k − 1) · Tj)

otherwise

(12)

where we assume that xφ
j (t) = 0 if t < 0.

xi(t) is the sum of Pi,k blocks that are inside the cache of
size C in Figure 3. If we define li(t) as the maximum integer
value that satisfies the following inequality, then li(t) + 1
represents how many Pi,k blocks are in the cache.

li(t)
X

k=1

N
X

j=1

Pj,k = xφ
i (t+(li(t)−1)·Ti)+

N
X

j=1,j 6=i

xφ
j (li(t)·Tj) ≤ C

(13)
where N is the number of processes. From li(t) and Figure 3,
the estimated value of xi(t) is

xi(t) =

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

xφ
i (t + li(t) · Ti) if xφ

i (t + li(t) · Ti)+
N

X

j=1,j 6=i

xφ

j (li(t) · Tj) ≤ C

C −
N

X

j=1,j 6=i

xφ
j (li(t) · Tj) otherwise

(14)

Figure 4 illustrates the relation between xφ

i (t) and xi(t).
In the figure li(t) is assumed to be 2. Unlike the cache
flushing case, a process can start with some of its data left
in the cache. The amount of initial data xi(0) is given by
Equation 14. If the least recently used (LRU) data in a
cache does not belong to Process i, xi(t) increases the same

as xφ
i (t). However, if the LRU data belongs to Process i,

xi(t) does not increase on a cache miss since Process i’s
block gets replaced.

Define tstart(j, k) as the time when the kth MRU block of
Process j (Pj,k) becomes the LRU part of a cache, and
tend(j, k) as the time when Pj,k gets completely replaced

from the cache (See Figure 3). tstart(j, k) and tend(j, k)
specify the flat segments in Figure 4 and can be estimated
from the following equations that are based on Equation 12.

xφ
j (tstart(j, k)+(k−1)·Tj)+

N
X

p=1,p6=j

xφ
p((k−1)·Tp) = C. (15)

xφ
j (tend(j, k)+(k−2)·Tj)+

N
X

p=1,p 6=j

xφ
p ((k−1)·Tp) = C. (16)

tstart(j, lj(t) + 1) would be zero if Equation 15 is satisfied
when tstart(j, lj(t) + 1) is negative, which means that the
P (j, lj(t) + 1) block is already the LRU part of the cache at
the beginning of a time quantum.

3.2.4 Overall Miss-rate
This section presents the overall miss-rate calculation. When
a cache uses virtual address tags and gets flushed for every
context switch, each process starts a time quantum with an
empty cache. In this case, the miss-rate of a process can be
estimated from the results of Section 3.2.1 and 3.2.2. From
Equation 2 and 11, the miss-rate for Process i can be written
by

miss-rateφ
i =

1

Ti

Z Ti

0

mi(MIN [M−1
i (t + Mi(0)), C])dt.

(17)

If a cache uses physical address tags or has a process’ ID
with virtual address tags, it does not have to be flushed at
a context switch. In this case, the amount of data xi(t) is
estimated in Section 3.2.3. The miss-rate for Process i can
be written by

miss-ratei =
1

Ti

Z Ti

0

mi(xi(t))dt (18)

where xi(t) is given by Equation 14.

For actual calculation of the miss-rate, tstart(j, k) and tend(j, k)
from Equation 15 and 16 can be used. Since tstart(j, k) and
tend(j, k) specify the flat segments in Figure 4, the miss-rate
of Process i can be rewritten by

miss-ratei =
1

Ti

{

Z T ′

i

0

mi(MIN [M−1
i (t + Mi(xi(0))), C])dt

+

li(t)+1
X

k=di

mi(x
φ
i (tstart(i, k) + (k − 1) · Ti))

· (MIN [tend(i, k), Ti] − tstart(i, k))}

(19)

where di is the minimum integer value that satisfies tstart(i, di) <
Ti. T ′

i is the time that Process i actually grows.

T ′
i = Ti −

li(t)+1
X

k=di

(MIN [tend(i, k), Ti] − tstart(i, k)). (20)

As shown above, calculating a miss-rate could be compli-
cated if we do not flush a cache at a context switch. If we
assume that the executing process’ data left in a cache is all
in the most recently used part of the cache, we can use the

10
3

10
4

10
5

0.04

0.06

0.08

0.1

0.12

0.14

Time Quantum

M
is

s−
ra

te

simulation
model

10
3

10
4

10
5

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Time Quantum
M

is
s−

ra
te

simulation
model

10
3

10
4

10
5

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Time Quantum

M
is

s−
ra

te

simulation
model

10
3

10
4

10
5

0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

Time Quantum

M
is

s−
ra

te

simulation
model

(a) vpr (b) vortex

(c) gcc (d) bzip2

Figure 5: The result of the cache model for cache flushing cases. (a) vpr. (b) vortex. (c) gcc. (d) bzip2.

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0.033

0.034

0.035

0.036

0.037

0.038

0.039

0.04

0.041

0.042

Time Quantum

M
is

s−
ra

te

model
simulation
approximation

0 1 2 3 4 5 6

x 10
4

0

100

200

300

400

500

600

700

800

Time Quantum

A
m

ou
nt

 o
f D

at
a

(b
lo

ck
s)

vpr
vortex

(a)

(b)

Figure 6: The result of the cache model when two
processes (vpr, vortex) are sharing a cache (32 KB
fully-associative). (a) the overall miss-rate. (b) the
initial amount of data xi(0).

equation for estimating the amount of data starting with
an empty cache. Therefore, the calculation can be much
simplified as follows,

miss-ratei =
1

Ti

Z Ti

0

mi(MIN [M−1
i (t + Mi(xi(0))), C])dt

(21)
where xi(0) is estimated from Equation 14. The effect of
this approximation is evaluated in the experiment section
(cf. Section 3.3).

Once we calculate the miss-rate of each process, the overall
miss-rate is straightforwardly calculated from those miss-
rates.

Overall miss-rate =

PN

i=1 miss-ratei · Ti
PN

i=1 Ti

(22)

3.3 Experimental Verification
Our cache model can be validated by comparing estimated
miss-rate predictions with simulation results. Several com-
binations of benchmarks are modeled and simulated for vari-
ous time quanta. First, we simulate cases when a cache gets

flushed at every context switch, and compare the results
with the model’s estimation. Cases without cache flushing
are also tested. For the cases without cache flushing, both
the complete model (Equation 19) and the approximation
(Equation 21) are used to estimate the overall miss-rate.
Based on the simulation results, the error caused by the
approximation is discussed.

3.3.1 Cache Flushing Case
The results of the cache model and simulations are shown
in Figure 5 in cases when a process starts its time quan-
tum with an empty cache. Four benchmarks from SPEC
CPU2000 [7], which are vpr, vortex, gcc and bzip2, are
tested. The cache is a 32-KB fully-associative cache with
32-Byte blocks. The miss-rate of a process is plotted as a
function of the length of a time quantum, and shows a good
agreement between the model’s estimation and the simula-
tion result.

As inputs to the cache model, the average miss-rate of each
process has been obtained from simulations. Each process
has been simulated for 25 million memory references, and
the miss-rates of the process for various cache size have been
recorded. The simulation results were also obtained by sim-
ulating benchmarks for 25 million memory references with
flushing a cache every T memory references. As the result
shows, the average miss-rate works very well.

3.3.2 General Case
Figure 6 shows the result of the cache model when two pro-
cesses are sharing a cache. The two benchmarks are vpr

and vortex from SPEC CPU2000, and the cache is a 32-
KB fully-associative cache with 32-Byte blocks. The overall
miss-rates are shown in Figure 6 (a). As shown in the figure,
the miss-rate estimated by the model shows a good agree-
ment with the results of the simulations.

The figure also shows an interesting fact that a certain range
of time quanta could be very problematic for cache perfor-
mance. For short time quanta, the overall miss-rate is rel-
atively small. For very long time quanta, context switches
do not matter since a process spends most of its time in the
steady state. However, medium time quanta could severely
degrade cache miss-rates as shown in the figure. This prob-
lem occurs when a time quantum is long enough to pollute
the cache but not long enough to compensate for the misses
caused by context switches. The problem becomes clear in
Figure 6 (b). The figure shows the amount of data left in
the cache at the beginning of a time quantum. Comparing
Figure 6 (a) and (b), we can see that the problem occurs
when the initial amount of data rapidly decreases.

The error caused by our approximation (Equation 21) method
can be seen in Figure 6. In the approximation, we assume
that the data left in the cache at the beginning of a time
quantum are all in the MRU region of the cache. In reality,
however, the data left in the cache could be the LRU cache
blocks and get replaced before other process’ blocks in the
cache, although the current process’s data are likely to be
accessed in the time quantum. As a result, the approxi-
mated miss-rate is lower than the simulation result when
the initial amount of data is not zero.

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0.045

0.05

0.055

0.06

0.065

0.07

Time Quantum

M
is

s−
ra

te

model
approximation
simulation

Figure 7: The overall miss-rate when four processes
(vpr, vortex, gcc, bzip2) are sharing a cache (32 KB,
fully-associative).

A four-process case is also tested in Figure 7. Two more
benchmarks, gcc and bzip2, from SPEC CPU2000 [7] are
added to vpr and vortex, and the same cache configura-
tion is used as the two process case. The figure also shows
a very close agreement between the miss-rate estimated by
the cache model and the miss-rate from simulations. The
problematic time quanta and the effect of the approxima-
tion have changed. Since there are more processes polluting
the cache as compared to the two process case, a process
experiences an empty cache in shorter time quanta. As a
result, the problematic time quanta become shorter. On the
other hand, the effect of the approximation is less harmful in
this case. This is because the error in one process’ miss-rate
becomes less important as we have more processes.

4. CACHE PARTITIONING
This section shows how the analytical cache model can be
used to dynamically partition the cache. A partitioned cache
allocates cache space to particular processes. This space
is dedicated to the process and cannot be used to satisfy
cache misses by other processes. Using trace-driven simula-
tions, we compare partitioning with the normal LRU. The
partitioning is based on the fully-associative cache model.
However, simulation results demonstrate that this imple-
mentation works for both fully-associative caches and set-
associative caches.

4.1 Recording Memory Reference Patterns
The miss-rate curves for each process are generated off-line.
We record the miss-rate curve for each process to represent
its memory reference pattern. For various cache sizes, a sin-
gle process cache simulator is applied to each process. This
information can be reused for any combination of processes
as long as the cache configuration is the same2.

To incorporate the dynamically changing behavior of a pro-
cess, a set of miss-rate curves, one for each time period, are

2Note that for our fully-associative model, only the cache
block size matters

Record Files Scheduler

Partition Module Replacement Unit

 Add/remove a process,

 End of a time quantum,

The Length of a time quantum

Miss-rate

 Curves

{X1,X2,...,XN}

{D1,D2,...,DN}

Figure 8: The implementation of on-line cache par-
titioning.

produced. At run-time, the miss-rate curve is mapped to
the appropriate time quantum.

4.2 The Partitioning Scheme
The overall flow of the partitioning scheme can be viewed
as a set of four modules: off-line recording, scheduler infor-
mation, allocation, and replacement (Figure 8). The sched-
uler provides the partition module with the set of executing
processes and their start/end times. The partition module
uses the miss-rate information for the processes to calculate
cache partitions at the end of each time quantum. Finally,
the replacement unit maps these partitions to the appropri-
ate parts of the cache.

The partition module decides the number of cache blocks
that should be dedicated to a process (Di). The Di most
recently used cache blocks of Process i are kept in the cache
over other process’ time quanta, and Process i starts its time
quantum with those cache blocks in the cache. During its
own time quantum, Process i can use all cache blocks that
are not reserved for other processes (S = C −

PN

j=1,j 6=i
Dj).

In addition to LRU information, our replacement decision
depends on the number of cache blocks that currently belong
to each process (Xi), that is, the number of cache lines in
the cache that currently contain memory of that process.
The LRU cache block of an active process (i) is chosen if its
actually allocation (Xi) is larger than or equal to the desired
one (Di + S ≤ Xi). Otherwise, the LRU cache block of a
dormant overallocated process is chosen. For set-associative
caches, there may be no cache block of the desired process
in the set. In this case, the LRU cache block of the set is
replaced.

For set-associative caches, the fully-associative replacement
policy may result in replacing recently used data to keep use-
less data. Imagine the case when a process starts to heavily
access two or more addresses that happen to be mapped to
the same set. If the process already has many cache blocks
in other sets, our partitioning will allocate only a few cache
blocks in the accessed set for the process, causing lots of
conflict misses. To solve this problem, we can use better
mapping functions [22, 6] or a victim cache [8].

When a Process i first starts, Di is set to zero since there

0 2 4 6 8 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Time (million memory references)

M
is

s−
ra

te

bzip2
swim
gcc
mesa

0 2 4 6 8 10
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Time (million memory references)
M

is
s−

ra
te

vpr
iu
vortex
twolf

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

Cache Size (blocks)

M
is

s−
ra

te

swim
bzip2
mesa
gcc

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Cache Size (blocks)

M
is

s−
ra

te

vpr
iu
vortex
twolf

(a)

(b)

Figure 9: The characteristics of the benchmarks. (a) The change of a miss-rate over time. (b) The miss-rate
as a function of the cache size.

is no cache block that belongs to the process. At the end
of Process i’s time quantum, the partition module updates
the information such as the miss-rate curve(mi(x)) and the
time quantum(Ti). If there is any change, Di is also updated
based on the cache model.

A cache partition specifies the amount of data in the cache at
the beginning of a process’ time quantum (Di), and the max-

imum cache space the process can use (C −
PN

j=1,j 6=i
Dj).

Therefore, the number of misses for a process over one time
quantum can be estimated from Equation 21:

missi =

Z Ti

0

mi(MIN [M−1
i (t + Mi(Di)), C −

N
X

j=1,j 6=i

Dj])dt

(23)

where C is cache size, and N is the number of processes
sharing the cache.

The new value of Di is the integer, in the range [0, Xi], that
minimizes the total number of misses that is given by the
following quantity:

N
X

p=1

Z Tp

0

mp(MIN [M−1
p (t + Mp(Dp)), C −

N
X

q=1,q 6=p

Dq])dt.

(24)

4.3 Experimental Verification
The case of eight processes sharing a 32-KB cache is sim-
ulated to evaluate model-based partitioning. Seven bench-
marks (bzip2, gcc, swim, mesa, vortex, vpr, twolf) are from
SPEC CPU2000 [7], and one (the image understanding pro-
gram (iu)) is from a data intensive systems benchmark suite
[15]. The overall miss-rate with partitioning is compared to
the miss-rate only using the normal LRU replacement policy.

The simulations are carried out for fifty million memory ref-
erences for each time quantum. Processes are scheduled in a
round-robin fashion with the fixed number of memory refer-
ences per time quantum. Also, the number of memory refer-
ences per time quantum is assumed to be the same for the all
eight processes. Finally, two record cycles (P), of ten million
and one hundred thousand memory references, respectively,
are used for the model-based partitioning. The record cycle
represents how often the miss-rate curve is recorded for the
off-line profiling. Therefore, a shorter record cycle implies
more detailed information about a process’ memory refer-
ence pattern.

The characteristics of the benchmarks are illustrated in Fig-
ure 9. Figure 9 (a) shows the change of a miss-rate over
time. The x-axis represents simulation time. The y-axis
represents the average miss-rate over one million memory
references at a given time. As shown in the figure, bzip2,
gcc, swim and iu show abrupt changes in their miss-rate,
whereas other benchmarks have very uniform miss-rate char-
acteristics over time. Figure 9 (b) illustrates the miss-rate
as a function of the cache size. For a 32-KB fully-associative
cache, benchmarks show miss-rates between 1% and 5%.

4.3.1 Fully-Associative Result
The results of cache partitioning for a fully-associative cache
are shown in Figure 10. In Figure 10 (a), the miss-rates are

10
0

10
1

10
2

10
3

10
4

10
5

10
6

0.02

0.025

0.03

0.035

0.04

0.045

0.05

References per Time Quantum

M
is

s−
ra

te

Normal LRU
Model, P=107

Model, P=105

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
7

0.03

0.035

0.04

0.045

0.05

0.055

Time (million memory references)

M
is

s−
ra

te

Normal LRU
Model, P=107

Model, P=105

(a)

(b)

Figure 10: The results of the model-based cache
partitioning for a fully-associative cache when eight
processes (bzip2, gcc, swim, mesa, vortex, vpr, twolf,
iu) are sharing the cache (32 KB, fully associative).
(a) the average miss-rate for various time quanta.
(b) the change of the miss-rate over time with ten
memory references per time quantum.

averaged over 50 million memory references and shown for
various time quanta. As discussed in the cache model, the
normal LRU replacement policy is problematic for a certain
range of time quanta. In this case, the overall miss-rate
increases dramatically for time quanta between one thou-
sand and ten thousand memory references. For this prob-
lematic region, the model-based partitioning improves the
cache miss-rate by lowering it from 4.6% to 3.4%, which is
about a 25% improvement. For short time quanta, the rel-
ative improvement is about 7%. For very long time quanta,
the model-based partitioning shows the exact same result
as the normal LRU replacement policy. In general, it is
shown by the figure that the model-based partitioning al-
ways performs at least as well as or better than the normal
LRU replacement policy. Also, the partitioning with a short
record cycle performs better than the partitioning with a
long record cycle.

In our example of a 32-KB cache with eight processes (Fig-

10
0

10
1

10
2

10
3

10
4

10
5

10
6

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Reference per Time Quantum

M
is

s−
ra

te
Normal LRU
Model, P=105

Figure 11: The results of the model-based cache par-
titioning for a set-associative cache when eight pro-
cesses (bzip2, gcc, swim, mesa, vortex, vpr, twolf, iu)
are sharing the cache (32 KB, 8-way associative).

ure 10), the problematic time quanta are in the order of a
thousand memory references, which is very short for mod-
ern microprocessors. As a result, only systems with very fast
context switching, such as simultaneous multi-threading ma-
chines [24, 11, 4], can be improved for this cache size and
workload. However, longer time quanta become problematic
if a cache is larger. Therefore, conventional time-shared sys-
tems with very high clock frequency can also be improved
by the same technique if a cache is large.

Figure 10 (b) shows the change of a miss-rate over time
rather than an average miss-rate over the entire simulation.
It is clear from the figure how the short record cycle helps
partitioning. In the figure, the model-based partitioning
with the long record cycle (P = 107) performs worse than
LRU at the beginning of a simulation, even though it outper-
forms the normal LRU replacement policy overall. This is
because the model-based partitioning has only one average
miss-rate curve for a process. As shown in Figure 9, some
benchmarks such as bzip2 and gcc have a very different
miss-rate at the beginning. Therefore, the average miss-rate
curves for those benchmarks do not work at the beginning
of the simulation, which results in worse performance than
the normal LRU replacement policy. The model-based par-
titioning with the short record cycle (P = 105), on the other
hand, always outperforms the normal LRU replacement pol-
icy. In this case, the model has correct miss-rate curves for
all the time quanta, and partitions the cache properly even
for the beginning of processes.

4.3.2 Set-Associative Result
The result of cache partitioning for a set-associative cache
is shown in Figure 11. The same set of benchmarks are sim-
ulated with a 32-KB 8-way set-associative cache, and the
same miss-rate curves generated for a 32-KB fully-associative
cache are used. In this case, a 16 entry victim cache is
added. In the figure, the model-based partitioning improves
the miss-rate about 4% for short time quanta and up to 15%
for mid-range time quanta. The figure demonstrates that
the model-based partitioning mechanism works reasonably

well for set-associative caches.

5. CONCLUSION
An analytical cache model to estimate overall miss-rate when
multiple processes are sharing a cache has been presented.
The model obtains the information about each process from
its miss-rate curve, and combines it with parameters that
define the cache configuration and schedule of processes.
Interference among processes under the LRU replacement
policy is quickly estimated for any cache size and any time
quantum, and the estimated miss-rate is very accurate. A
more important result is that the model provides not only
the overall miss-rate but also a very good understanding
of the effect of context switching. For example, the model
clearly shows that the LRU replacement policy is problem-
atic for mid-range time quanta because the policy replaces
the blocks of least recently executed process that are more
likely to be accessed in the near future.

The analytical model has been applied to the cache parti-
tioning problem. A model-based partitioning method has
been implemented and verified by simulations. Miss-rate
curves are recorded off-line and partitioning is performed
on-line according to the combination of processes that are
executing. Even though we have used an off-line profiling
method to obtain miss-rate curves, it should not be hard to
approximate the miss-rate curve on-line using a miss-rate
monitoring technique. Therefore, a fully on-line cache par-
titioning method can be developed based on the model.

Only the cache partitioning problem has been studied in
this paper. However, as shown by the study of cache parti-
tioning, our model can be applied to any cache optimization
problem that is related to the problem of context switch-
ing. For example, it can be used to determine the best
combination of processes that can be run on each processor
of a multi-processor system. Also, the model is useful to
identify areas in which further research in improving cache
performance would be fruitful since it can easily provide the
maximum improvement we can expect in the area.

6. ACKNOWLEDGMENTS
Funding for this work is provided in part by the Defense
Advanced Research Projects Agency under the Air Force
Research Lab contract F30602-99-2-0511, titled “Malleable
Caches for Data-Intensive Computing”. Thanks also to E.
Peserico, D. Chiou, and D. Chen for their comments on the
cache model.

7. REFERENCES
[1] A. Agarwal, M. Horowitz, and J. Hennessy. An

analytical cache model. ACM Transactions on

Computer Systems, 7(2), May 1989.

[2] Compaq. Compaq alphastation family.

[3] T. M. Cover and J. A. Thomas. Elements of

Information Theory. Wiley, John & Sons,
Incorporated, Mar. 1991.

[4] S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, R. L.
Stamm, and D. M. Tullsen. Simultaneous
multithreading: A platform for next-generation
processors. IEEE Micro, 17(5), 1997.

[5] C. Freeburn. The hewlett packard PA-RISC 8500
processor. Technical report, Hewlett Packard
Laboratories, Oct. 1998.

[6] A. González, M. Valero, N. Topham, and J. M.
Parcerisa. Eliminating cache conflict misses through
XOR-based placement functions. In the 1997

international conference on Supercomputing, 1997.

[7] J. L. Henning. SPEC CPU2000: Measuring CPU
performance in the new millennium. IEEE Computer,
July 2000.

[8] N. Jouppi. Improving direct-mapped cache
performance by the addition of a small
fully-associative cache and prefetch buffers. In the

17th Annual International Symposium on Computer

Architecture, 1990.

[9] D. B. Kirk. Process dependent static cache
partitioning for real-time systems. In Real-Time

Systems Symposium, 1988.

[10] H. Kwak, B. Lee, A. R. Hurson, S.-H. Yoon, and W.-J.
Hahn. Effects of multithreading on cache performance.
IEEE Transactions on Computers, 48(2), Feb. 1999.

[11] J. L. Lo, J. S. Emer, H. M. Levy, R. L. Stamm, D. M.
Tullsen, and S. J. Eggers. Converting thread-level
parallelism to instruction-level parallelism via
simultaneous multithreading. ACM Transactions on

Computer Systems, 15, 1997.

[12] P. Magnusson and B. Werner. Efficient memory
simulation in SimICS. In 28th Annual Simulation

Symposium, 1995.

[13] MIPS Technologies, Inc. MIPS R10000 Microprocessor

User’s Manual, 1996.

[14] J. C. Mogul and A. Borg. The effect of context
switches on cache performance. In the fourth

international conference on Architectural support for

programming languages and operating systems, 1991.

[15] J. Muoz. Data-Intensive Systems Benchmark Suite

Analysis and Specification.
http://www.aaec.com/projectweb/dis, June 1999.

[16] M. Rosenblum, S. A. Herrod, E. Witchel, and
A. Gupta. Complete computer system simulation: The
SimOS approach. IEEE Parallel & Distributed

Technology, 1995.

[17] M. S. Squillante and E. D. Lazowska. Using
processor-cache affinity information in shared-momory
multiprocessor scheduling. IEEE Transactions on

Parallel and Distributed Systems, 4(2), Feb. 1993.

[18] H. S. Stone, J. Turek, and J. L. Wolf. Optimal
partitioning of cache memory. IEEE Transactions on

Computers, 41(9), Sept. 1992.

[19] G. E. Suh and L. Rudolph. Set-associative cache
models for time-shared systems. Technical Report
CSG Memo 433, Massachusetts Institute of
Technology, 2001.

[20] D. Thiébaut and H. S. Stone. Footprints in the cache.
ACM Transactions on Computer Systems, 5(4), Nov.
1987.

[21] D. Thiébaut, H. S. Stone, and J. L. Wolf. Improving
disk cache hit-ratios through cache partitioning. IEEE

Transactions on Computers, 41(6), June 1992.

[22] N. Topham and A. González. Randomized cache
placement for eleminating conflicts. IEEE

Transactions on Computers, 48(2), Feb. 1999.

[23] J. Torrellas, A. Tucker, and A. Gupta. Benefits of
cache-affinity scheduling in shared-memory
multiprocessors: A summary. In the 1993 ACM

SIGMETRICS conference on Measurement and

modeling of computer systems, 1993.

[24] D. M. Tullsen, S. J. Eggers, and H. M. Levy.
Simultaneous multithreading: Maximizing on-chip
parallelism. In 22nd Annual International Symposium

on Computer Architecture, 1995.

[25] R. A. Uhlig and T. N. Mudge. Trace-driven memory
simulation: A survey. ACM Computing Surveys, 29(2),
June 1997.

[26] M. Zagha, B. Larson, S. Turner, and M. Itzkowitz.
Performance analysis using the MIPS R1000. In
Supercomputing’96, 1996.

