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Abstract—Massive multiuser (MU) multiple-input multiple-
output (MIMO) is foreseen to be one of the key technologies in
fifth-generation wireless communication systems. In this paper,
we investigate the problem of downlink precoding for a narrow-
band massive MU-MIMO system with low-resolution digital-to-
analog converters (DACs) at the base station (BS). We analyze
the performance of linear precoders, such as maximal-ratio trans-
mission and zero-forcing, subject to coarse quantization. Using
Bussgang’s theorem, we derive a closed-form approximation on
the rate achievable under such coarse quantization. Our results
reveal that the performance attainable with infinite-resolution
DACs can be approached using DACs having only 3 to 4bits
of resolution, depending on the number of BS antennas and
the number of user equipments (UEs). For the case of 1-bit
DACs, we also propose novel nonlinear precoding algorithms
that significantly outperform linear precoders at the cost of an
increased computational complexity. Specifically, we show that
nonlinear precoding incurs only a 3dB penalty compared to the
infinite-resolution case for an uncoded bit error rate of 10−3, in a
system with 128 BS antennas that uses 1-bit DACs and serves 16
single-antenna UEs. In contrast, the penalty for linear precoders
is about 8dB.

Index Terms—Massive multi-user multiple-input multiple-
output, digital-to-analog converter, Bussgang’s theorem, mini-
mum mean-square error precoding, convex optimization, semidef-
inite relaxation, Douglas-Rachford splitting, sphere precoding.

I. INTRODUCTION

Massive multiuser (MU) multiple-input multiple-output
(MIMO) wireless systems, where the base station (BS) is
equipped with several hundreds of antenna elements, promises
significant improvements in spectral efficiency, energy effi-
ciency, reliability, and coverage compared to traditional cellular
systems [1]–[3]. Increasing the number of radio frequency (RF)
chains at the BS could, however, lead to significant increases
in hardware complexity, system costs, and circuit power
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consumption. Therefore, practical massive MU-MIMO systems
may require low-cost and power-efficient hardware components
at the BS. In this paper, we consider the downlink of massive
MU-MIMO system, where the BS is equipped with low-
resolution digital-to-analog converters (DACs) and transmits
data to multiple, independent user equipments (UEs) in the
same time-frequency resource.

For the quantization-free case (infinite-resolution DACs), the
capacity region of the MU downlink Gaussian channel has been
characterized in [4]–[7]. When channel state information (CSI)
is known noncausally at the BS, dirty-paper coding (DPC) [8] is
known to achieve the sum-rate capacity [6]. Several precoding
algorithms to approach the DPC performance have been
proposed (see, e.g., [9]–[12]). Most of these precoding methods
are, however, computationally demanding, and their complexity
scales unfavorably with the number of BS antennas, preventing
their use in massive MU-MIMO. Linear precoding, on the other
hand, is an attractive low-complexity approach to massive
MU-MIMO downlink precoding, which offers competitive
performance to DPC for large antenna arrays [13], [14].

These results assume that the RF circuitry connected to each
antenna port at the BS is ideal. The impact of RF hardware
impairments at the transmit side has been investigated in,
e.g., [15]–[18]. Some of these results indicate that massive MU-
MIMO exhibits a certain degree of resilience against RF im-
pairments. The crude aggregate models used for characterizing
such hardware impairments, however, are unable to accurately
capture the distortion caused by low-resolution DACs.

A. What are the Benefits of Quantized Massive MU-MIMO?

One of the dominant sources of power consumption in
massive MU-MIMO systems are the data converters at the BS.
In the downlink, the transmit baseband signal at each RF chain
is generated by a pair of DACs. The power consumption of
these DACs increases exponentially with the resolution (in bits)
and linearly with the bandwidth [19], [20]. In traditional multi-
antenna systems, each RF port is connected to a pair of high-
resolution DACs (e.g., 10-bit or more). For massive MU-MIMO
systems with hundreds or even thousands of antenna elements,
this would lead to prohibitively high power consumption due to
the large number of required DACs. Hence, the DAC resolution
must be limited to keep the power budget within tolerable levels.
Furthermore, an often overlooked issue in massive MU-MIMO
is the vast amount of data that must be exchanged between the
baseband-processing unit and the radio unit (where the DACs
are located). To make matters worse, in many deployment
scenarios, these two units are separated by a large distance.
Hence, lowering the DAC resolution is a potential solution to
mitigate the data-rate bottleneck on the fronthaul.
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B. Relevant Prior Art

1) Quantized Receivers: Reducing the fronthaul throughput
at the BS can be achieved by using low-resolution DACs
in the downlink and low-resolution analog-to-digital convert-
ers (ADCs) in the uplink. Several recent contributions have stud-
ied the use of low-resolution ADCs in the massive MU-MIMO
uplink. In particular, there has been a significant interest in the
1-bit ADC case. For frequency-flat channels, the performance
of 1-bit ADCs followed by linear detectors was analyzed in,
e.g., [21]–[24], where it was shown that large achievable sum
rates are supported. Similar conclusions were made in [25] for
the frequency-selective case. Nonlinear detection algorithms
for frequency-selective channels were studied in, e.g., [26].
These results suggest that the number of ADC bits can be
reduced significantly compared to today’s systems.

2) Quantized Precoding: In contrast to the uplink case, there
has only been a small number of contributions that consider
the massive MU-MIMO downlink with low-resolution DACs at
the BS. In [27], the authors design a linear-quantized precoder
based on the minimum mean-square error (MMSE) criterion,
taking into account the distortion caused by the DACs. For
DACs with 4 to 6 bits resolution, the precoder proposed in [27]
is shown to outperform conventional linear-quantized precoders
for small-to-moderate-sized MIMO systems at high signal-to-
noise ratio (SNR). Massive MU-MIMO systems with 1-bit
DACs are investigated in [28], where it is shown that maximal
ratio transmission (MRT) precoding results in manageable
distortion levels. Again for the case of 1-bit DACs, the authors
of [29] analyze the performance of zero-forcing (ZF) precoding
on a Rayleigh-fading channel. Interestingly, it is shown that
the received signal can be made proportional to the transmitted
signal when the number of BS antennas tend to infinity. This
implies that the severe per-antenna distortion caused by the
1-bit DACs averages out when many transmit antennas are
available. A linear precoder where the 1-bit quantized outcomes
are rescaled in the analog domain was presented in [30].
There, the authors use the gradient projection algorithm to
find a precoder that yields improved performance over the one
reported in [27]. In [31], it is shown that, in the presence of
transceiver nonlinearities (e.g., finite-resolution DACs), the
achievable rate can be improved by minimizing the MSE
between the transmitted symbols and the received signal prior
to decoding. This result which, as we shall see, is related to
the approach taken in this paper, relies on the assumptions of
Gaussian inputs and nearest-neighbor decoding.

3) Low-PAR and Constant-Envelope Precoding: Other types
of hardware-aware precoding have previously been considered
for massive MU-MIMO systems, with the goal of reducing the
linearity requirements at the BS. In [32], joint MU precoding
and peak-to-average power ratio (PAR) reduction was achieved
by solving a convex optimization problem. Constant-envelope
precoding, which minimizes the PAR by transmitting constant-
modulus signals only, was studied in [33], [34]. Note that the
1-bit DAC precoding problem can be seen as a special (or
extreme) case of constant-envelope precoding, where the phase
of the transmitted signal is limited to only four different values.

C. Contributions

We consider quantized precoding for the massive MU-
MIMO downlink over frequency-flat channels. Similarly to
[28]–[30], we consider DACs operating at symbol rate sampling
frequency. However, in contrast to [28]–[30], we do not restrict
ourselves to 1-bit DACs and linear precoding. Specifically,
we consider both linear-quantized precoders, where a linear
precoder is followed by a finite-resolution DAC, and nonlinear
precoders, where the data vector together with the CSI is used
to directly generate the DAC outputs. Our contributions can
be summarized as follows.
• We formulate the MMSE-optimal linear-quantized pre-

coding problem and present low complexity, suboptimal
linear-quantized precoders that yield approximate solutions
to this problem. We use Bussgang’s theorem to develop
simple closed-form approximations for the rate achievable
with linear-quantized precoding and low-resolution DACs.
Through numerical simulations, we validate the accuracy
of these approximations, and we show that only a small
number of quantization bits are sufficient to close the
performance gap to the infinite-resolution case. For the
special case of 1-bit DACs, we obtain a firm lower bound
on the achievable rate with linear precoding.

• For the 1-bit case, we develop a variety of low-complexity
nonlinear precoders that achieve near-optimal performance.
We show that the MMSE-optimal downlink precoding
problem can be relaxed to a convex problem that can
be solved in a computationally-efficient manner. We
propose computationally efficient algorithms based on
semidefinite relaxation, squared-`∞ norm relaxation, and
sphere decoding, and discuss advantages and limitations
of each of these methods. Through numerical simulations,
we demonstrate the superiority of nonlinear precoding
over linear-quantized precoding.

• We investigate the sensitivity of the proposed precoders
to channel-estimation errors and demonstrate that the
proposed precoders are robust to imperfect CSI at the BS.

Our results reveal that massive MU-MIMO enables the
use of low-resolution DACs at the BS without a significant
performance loss in terms of error-rate performance and
information-theoretic rates.

D. Notation

Lowercase and uppercase boldface letters designate column
vectors and matrices, respectively. For a matrix A, we denote
its complex conjugate, transpose, and Hermitian transpose by
A∗, AT , and AH , respectively. The entry on the kth row and
on the `th column of the matrix A is denoted as [A]k,`. For
a vector a, the kth entry is denoted as [a]k. We use A � 0
to indicate that the matrix A is positive semidefinite. The
trace and the main diagonal of A are tr(A) and diag(A),
respectively. The M ×M identity matrix and the all-zeros
matrix are denoted by IM and 0M×N , respectively. The real
and imaginary parts of a complex vector a are <{a} and ={a},
respectively. We use ‖a‖2 and ‖a‖∞ to denote the `2-norm
and the `∞-norm of a, respectively. We use sgn(·) to denote
the signum function, which is applied entry-wise to vectors and
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Fig. 1. Overview of the proposed quantized massive MU-MIMO downlink system. Left: B antenna massive MU-MIMO BS that performs quantized precoding
to enable the use of low-resolution DACs; Right: U single-antenna UEs.

defined as sgn(a) = +1 if a ≥ 0 and sgn(a) = −1 if a < 0.
We further use 1A(a) to denote the indicator function, which
is defined as 1A(a) = 1 for a ∈ A and 1A(a) = 0 for a /∈ A.
The multivariate complex-valued circularly-symmetric Gaussian
probability density function (PDF) with covariance matrix K is
denoted by CN (0,K). We use f(·) to denote PDFs and Ex[·]
to denote expectation with respect to the random vector x. The
mutual information between two random vectors x and y is
written as I(x;y).

E. Paper Outline

The rest of the paper is organized as follows. In Section II, we
introduce the system model and formulate the MMSE-optimal
quantized precoding problem. In Section III, we investigate
linear-quantized precoders for massive MU-MIMO systems.
Section IV deals with nonlinear precoding algorithms for the
case of 1-bit DACs. In Section V, we provide numerical
simulation results and we analyze the robustness of the
developed algorithms to channel-estimation errors. We conclude
the paper in Section VI.

II. SYSTEM MODEL AND QUANTIZED PRECODING

A. System Model

We consider the downlink of a single-cell massive MU-
MIMO system as illustrated in Fig. 1. The system consists
of a BS with B antennas that serves U single-antenna UEs
simultaneously and in the same time-frequency resource.
For simplicity, we assume that all RF hardware (e.g., local
oscillators, mixers, power amplifiers, etc.) are ideal and that the
ADCs at the UEs have infinite resolution. We also assume that
the sampling rate of the DACs at the BS is equal to the sampling
rate of the ADCs at the UEs and that the system is perfectly
synchronized. Finally, we assume that the reconstruction stage
(see, e.g., [35]) of the DACs consists only of a zero-order hold
circuit (no filtering stage).1 Under these assumptions, the input-
output relation of the downlink channel can be modeled as

y = Hx + n. (1)

1Symbol-rate sampling combined with low-resolution DACs may yield
undesired out-of-band emissions, which may be mitigated by using analog
filters. Such filters, however, may in turn cause inter-symbol-interference. In this
work, we shall ignore the out-of-band emissions caused by the low-resolution
DACs and no filter will be considered.

Here, the vector y = [y1, . . . , yU ]T contains the received
signals at all users, with yu ∈ C denoting the signal
received at the uth UE. The matrix H ∈ CU×B models the
downlink channel, and it is assumed to be perfectly known
to the BS.2 We shall also assume that the entries of H are
independent circularly-symmetric complex Gaussian random
variables with unit variance, i.e., hu,b = [H]u,b ∼ CN (0, 1),
for u = 1, . . . , U , and b = 1, . . . , B. The vector n ∈ CU
in (1) models additive noise. We assume the noise to be i.i.d.
circularly-symmetric complex Gaussian with variance N0 per
complex entry, i.e., nu ∼ CN (0, N0), for u = 1, . . . , U . We
shall also assume that the noise level is known perfectly at
the BS.3

The precoded vector is denoted by x ∈ XB , where the set X
is the transmit alphabet; this set coincides with the set C of
complex numbers in the case of infinite-resolution DACs. In
real-world BS architectures with finite-resolution DACs, the
set X is, however, a finite-cardinality alphabet. Specifically, we
denote the set of possible real-valued DAC outputs (quantization
labels) as L = {`0, . . . , `L−1}. We refer to L = |L| and Q =
log2 L as the number of quantization levels and the number
of quantization bits per real dimension, respectively. For each
BS antenna, we assume the same quantization alphabet for the
real part and the imaginary part. Hence, the set of complex-
valued DAC outputs at each antenna is X = L × L. Under
these assumptions, the bth entry of the precoded vector x is
xb = `R + j`I where `R, `I ∈ L.

B. Precoding
Let su ∈ O for u = 1, . . . , U be the constellation point at

the BS intended for the UE u; here, O is the set of constellation
points (e.g., QPSK). The BS uses the available CSI, namely
the knowledge of the realization of the channel matrix H,
to precode the symbol vector s = [s1, . . . , sU ]T into a B-
dimensional precoded vector x = P(s,H). Here, the function
P(·, ·) : OU × CU×B → XB represents the precoder. The
precoded vector x must satisfy the average power constraint

Es

[
‖x‖22

]
≤ P. (2)

2In Section V-B, we will relax this assumption by investigating the impact
of imperfect CSI to the robustness of the proposed quantized precoding
algorithms.

3Knowledge of N0 at the BS can be obtained by explicit feedback from
the UEs to the BS.
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P(H)

Q(·) x

(a) Linear-quantized precoders: the precoding matrix P is de-
signed based on H. The transmit vector is the quantized version
of Ps, i.e., x = Q(Ps). Here, Q(·) denotes the quantizer.

P(·, ·)s

H
x

(b) Nonlinear precoders: the quantized transmit vector x ∈ XB

is a nonlinear function of s and H, i.e., x = P(s,H).

Fig. 2. Illustration of linear-quantized (a) and nonlinear (b) precoders.

We define ρ = P/N0 as the SNR.
Coherent transmission of data using multiple BS antennas

leads to an array gain, which depends on the realization of
the fading channel. We shall assume that the uth UE is able to
rescale the received signal yu by a factor βu ∈ R to compute an
estimate ŝu ∈ C of the transmitted symbol su ∈ O as follows:

ŝu = βuyu. (3)

The problem of downlink precoding has been studied ex-
tensively in the literature. Broadly speaking, the goal is to
increase the array gain to the intended UE while simultaneously
reducing MU interference (MUI) [36]. There exist multiple
formulations of this optimization problem based on different
performance metrics (e.g., sum-rate throughput, worst-case
throughput, error probability, etc.). We refer the interested
reader to the tutorial [37] for a comprehensive overview.

Our specific goal is to design a precoder that minimizes the
MSE between the received signal and the transmitted symbol
vector s under the power constraint (2). This problem has
been studied extensively for the case of infinite-resolution
DACs (see, e.g., [38]–[40]). If the BS is equipped with finite-
resolution DACs, then the UEs will experience additional
distortion compared to the infinite-resolution case, due to finite
cardinality of the set XB of possible precoder outputs.

Finding the MMSE-optimal precoder for BS architectures
with finite-resolution DACs is a formidable task due to the
finite cardinality of XB . In what follows, we present novel
algorithms that efficiently compute approximate solutions
to the quantized precoding problem. More specifically, we
investigate two approaches: linear-quantized precoding in
Section III and nonlinear-quantized precoding for the special
case of 1-bit DACs in Section IV. As illustrated in Fig. 2,
linear-quantized precoders perform linear processing (matrix-
vector multiplication) followed by quantization; in contrast,
nonlinear precoders use the transmit vector s together with

the available CSI in order to directly compute the precoded
vector x. As it will be shown in Section V, nonlinear precoders
outperform (often significantly) linear-quantized precoders
in terms of error-rate performance at the cost of higher
computational complexity.

III. LINEAR–QUANTIZED PRECODERS

In the infinite-resolution case, linear precoders multiply
the U -dimensional symbol vector s with a precoding matrix
P ∈ CB×U so that x = Ps. This approach is particularly
attractive for massive MU-MIMO systems due to (i) the
relatively low computational complexity and (ii) the fact that
even the simplest linear precoder, namely the MRT precoder,
achieves virtually optimal performance in the large-antenna
limit (see, e.g., [1]). Linear-quantized precoders inherit the first
of these two advantages. Indeed, quantizing the precoded vector
implies no additional computational complexity. For linear-
quantized precoders, the precoded vector x ∈ XB is given by

x = Q(Ps). (4)

Here, Q(·) : CB → XB denotes the quantizer-mapping
function, which is a nonlinear function that describes the joint
operation of the 2B DACs at the BS.

The remainder of this section is organized as follows. We
start by formulating the MMSE quantized precoding problem
for linear-quantized precoders. We then describe the operation
of the DACs and define the quantizer-mapping function. We
then use Bussgang’s theorem [41] to derive a lower bound on
the sum-rate capacity for the case of 1-bit DACs at the BS.
Finally, we derive a simple closed-form approximation of the
rate achievable with Gaussian inputs for the more general case
of Q-bit DACs.

A. The Linear-Quantized Precoding Problem

By restricting ourselves to linear-quantized precoding (LQP),
we can formulate the quantized precoding problem as follows:

(LQP)

 minimize
P∈CB×U,β∈R

Es

[
‖s−βHQ(Ps)‖22

]
+β2UN0

subject to Es

[
‖x‖22

]
≤ P and β > 0.

(5)

The resulting precoding matrix PLQP and the associated
precoding factor βLQP will be referred to as the optimal solution
to the problem (LQP). Here, we have introduced the scalar
β ∈ R to account for the array gain at the UEs (as commonly
done in the MMSE precoding literature; see, e.g., [27], [39]). By
solving (5), we find the precoded vector xLQP that minimizes
the per-channel MSE between the transmitted symbols s and
the vector βy. Indeed, note that

Es

[
‖s− βy‖22

]
= Es

[
‖s− βHx‖22

]
+ β2UN0 (6)

and recall that x = Q(Ps). Next, we provide more insights on
the role of the precoding factor β. We seek a precoded vector x
that makes the received signal proportional to the transmitted
symbol vector s, i.e., s ≈ βy. To lessen the adverse impact of
the noise vector n in (1), we look for a design that maximizes
the received signal power at the UEs. The cost function in (5)
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accomplishes exactly this goal by favoring solutions with a
smaller β. Unfortunately, the introduction of the precoding
factor β (which is not known to the UEs) may complicate
decoding at the UEs.4

Solving (5) in closed form is challenging due to the nonlinear
operation of the DACs, which is captured by the quantizer-
mapping function Q(·). An approximate solution to (5) was
given in [27]. This solution is obtained by approximating
the statistics of the distortion caused by the DACs. We shall
consider here a different approach. Specifically, we design
linear precoders that assume infinite-resolution DACs at the BS,
and then quantize the resulting precoded vector. Such linear-
quantized precoders have the advantage that the precoding
matrix P does not depend on the resolution of the DACs.
Furthermore, as we shall see in Section V-A, the difference in
error-rate performance between the precoders found using our
approach and the precoder presented in [27] is negligible. We
next review a selection of linear precoding algorithms for the
case of infinite-resolution DACs.

1) WF precoding: For the case when the BS is equipped
with infinite-resolution DACs, the solution to (5) is the Wiener
filter (WF) precoder [39]:

PWF =
1

βWF H
H

(
HHH +

UN0

P
IU

)−1

(7)

where

βWF =
1√
P

tr

((
HHH +

UN0

P
IU

)−1

HHH

(
HHH +

UN0

P
IU

)−1
)−1/2

. (8)

We write the resulting precoded vector as xWF = Q
(
PWFs

)
.

2) ZF precoding: With ZF precoding, the BS nulls the MUI
by choosing as precoding matrix the pseudoinverse of the
channel matrix. The ZF precoding matrix is obtained from (7)
by setting the noise variance N0 to zero, which yields PZF =

1
βZF H

†, where H† = HH(HHH)−1 is the pseudoinverse of
the channel matrix H, and βZF = 1√

P

√
tr((HHH)−1). The

resulting precoded vector is xZF = Q
(
PZFs

)
.

3) MRT precoding: The MRT precoder maximizes the
power directed towards each UE, ignoring MUI. The pre-
coding matrix can be obtained from (7) by letting the noise
variance N0 tend to infinity, which yields PMRT = 1

βMRTBHH

and βMRT = 1
B
√
P

√
tr(HHH). The resulting precoded vector

is xMRT = Q
(
PMRTs

)
.

B. Uniform Quantization of a Complex-Valued Vector

For simplicity, we shall model the DACs as symmetric
uniform quantizers with step size ∆. When a signal is quantized,
the average power in the signal is in general not preserved.
Therefore, we further assume that the output of the quantizer
is scaled by a constant α ∈ R, to ensure that the transmit

4We shall elaborate on this point in Section IV-D.

power constraint (2) is satisfied. We start by defining a set of
quantization labels L = {`0, . . . , `L−1} with entries

`i = α∆

(
i− L− 1

2

)
, i = 0, . . . , L− 1. (9)

Furthermore, let T = {τ0, . . . , τL}, where −∞ = τ0 < τ1 <
· · · < τL−1 < τL =∞ specify the set of L+ 1 quantization
thresholds. For uniform quantizers, the quantization thresholds
are given by

τi = ∆

(
i− L

2

)
, i = 1, . . . , L− 1. (10)

The quantizer-mapping functionQ(·) can be uniquely described
by the set of quantization labels L and the set of quantization
thresholds T . The DACs map z ∈ C with entries {zb} into the
quantized output x with entries {xb} in the following way: if
<{zb} ∈ [τk, τk+1) and ={zb} ∈ [τl, τl+1), then xb = `k+j`l.

The step size ∆ of the quantizers should be chosen to mini-
mize the distortion between the quantized and nonquantized
vector. The optimal step size ∆ depends on the distribution
of the input [42], which in our case depends on both the
precoder and the signaling scheme. For simplicity, we set the
step size so as to minimize the distortion under the assumption
that the per-antenna input to the quantizers is CN (0, P/B)-
distributed. This step size can be found numerically (see e.g.,
[43] for details).

In the extreme case of 1-bit DACs, the quantizer-mapping
function reduces to

Q(z) =

√
P

2B

(
sgn(<{z}) + j sgn(={z})

)
. (11)

Here, we have chosen the set of possible complex-valued quanti-
zation outcomes per antenna to be X = {

√
P/(2B) (±1± j)},

which ensures that the power constraint in (2) is satisfied
with equality.

C. Signal Decomposition using Bussgang’s Theorem

Quantizing the precoded signal causes a distortion Q(Ps)−
Ps that is correlated with the input Ps to the DACs. For Gaus-
sian inputs, Bussgang’s theorem [41] allows us to decompose
the quantized signal into a linear function of the input to the
quantizers and a distortion term that is uncorrelated with the
input to the quantizers [31], [44]. This allows us to characterize
the rates achievable with Gaussian inputs. We start by stating
Bussgang’s theorem [41], [44].

Theorem 1: Consider two zero-mean jointly complex Gaus-
sian random variables x and y. Assume that x is passed through
a nonlinear function g(·) : C→ C that acts independently on
the real and the imaginary components of x. The covariance
between g(x) and y is given by

E[g(x)y∗] =
E[g(x)x∗]
E[xx∗]

E[xy∗] . (12)

Bussgang’s theorem has recently been used to analyze the
massive MU-MIMO uplink with 1-bit ADCs (see, e.g., [24],
[25]). It has also been used in [28] to approximate the distortion
levels caused by MRT precoding and 1-bit quantization in
the massive MIMO downlink. We shall use Theorem 1 to
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characterize the performance of linear-quantized precoders for
the case of Q-bit uniform DACs. As a first step, we establish
the following result, whose proof is given in Appendix A.

Theorem 2: Let x = Q(Ps) denote the output from a set of
uniform quantizers described by the quantizer-mapping function
Q : CB → XB . Assume that P ∈ CB×U and that s ∼
CN (0, IU ). The quantized vector x can be decomposed as

x = GPs + d (13)

where the distortion d and the signal s are uncorrelated.
Furthermore, G ∈ RB×B is the following diagonal matrix:

G =
α∆√
π

diag
(
PPH

)−1/2

L−1∑
i=1

exp

(
−∆2

(
i− L

2

)2

diag
(
PPH

)−1

)
. (14)

Here, L and ∆ denote the number of levels and the step size
of the DACs, respectively.

The following corollary provides a well-known result for
the case of 1-bit quantization (see, e.g., [24], [25]). Its proof
follows by setting L = 2 and α∆ =

√
2P/B in (14) to satisfy

the power constraint (2) with equality.
Corollary 3: For the case of 1-bit DACs, the matrix G

in (14) reduces to

G =

√
2P

πB
diag

(
PPH

)−1/2
. (15)

Let now hTu denote the uth row of the channel matrix H,
let pu be the uth column of the precoding matrix P, and nu
be the uth entry of the noise vector n. Using (13), we can
express the received signal yu at UE u as follows:

yu = hTuGPs + nu (16)

= hTuGpusu +
∑
v 6=u

hTuGpvsv + hTud + nu (17)

= hTuGpusu + eu + nu. (18)

Here, the error term eu =
∑
v 6=u h

T
uGpvsv + hTud captures

both the MUI and the distortion caused by the finite-resolution
DACs. Note that eu and su are uncorrelated. Indeed,

Es[eus
∗
u] =

∑
v 6=u h

T
uGpv Es[svs

∗
u] + hTu Es[ds

∗
u] = 0. (19)

We shall next use the decomposition in (16) to analyze the
performance of linear-quantized precoders.

D. Achievable Rate Lower Bound for 1-bit DACs

We assume that each UE scales its received signal yu by
the scalar βu = (hTuGpu)−1 (which is assumed to be known
at the uth UE) to obtain the following estimate:

ŝu = βuyu = su + βu(eu + nu). (20)

The nonlinearity introduced by the DACs prevents one to
characterize the probability distribution of the error term eu in
closed form, which makes it difficult to compute the achievable
rates. One can, however, lower-bound the achievable rate using
the so-called “auxiliary-channel lower bound” [45, p. 3503],

which gives the rates achievable with a mismatched decoder
(see [46, ch. 1] for a recent review on the subject). As auxiliary
channel, we take the one with output

s̃u = su + βu(ẽu + nu), (21)

where ẽu ∼ CN
(
0,Es

[
|eu|2

])
has the same variance as the

actual error term eu but is Gaussian distributed. Assuming
Gaussian inputs, by standard manipulations of the mutual
information, we can bound the achievable rate Ru for UE
u = 1, 2, . . . , U as follows:

Ru = EH[ I(su; ŝu |H)] (22)

= Esu,ŝu,H
[
log2

(
fŝu|su,H(ŝu|su,H)

fŝu |H(ŝu |H)

)]
(23)

≥ Esu,ŝu,H
[
log2

(
fs̃u|su,H(ŝu|su,H)

fs̃u |H(ŝu |H)

)]
(24)

= EH[log2(1 + γu)] (25)

where

γu =

∣∣hTuGpu
∣∣2∑

v 6=u|hTuGpv|2 + hTuCddh∗u +N0

(26)

is the signal-to-interference-noise-and-distortion ratio (SINDR)
at the uth UE.5 Here, Cdd = Es

[
ddH

]
denotes the covariance

of the distortion d. It is worth pointing out that the choice of
the auxiliary channel (21) corresponds to the use of mismatched
nearest-neighbor decoding at the UEs [48], [49].

Next, we use (13) to write the covariance matrix Cdd

in (26) as

Cdd = Cxx −GPPHGH (27)

where Cxx = Es

[
xxH

]
is the covariance matrix of the

quantized signal x = Q(Ps). In the special case of 1-
bit DACs, Cxx can be written in closed-form as [50], [51]

Cxx =
P

πB

(
sin−1

(
diag(PPH)−

1
2<{PPH} diag(PPH)−

1
2

)
+ j sin−1

(
diag(PPH)−

1
2={PPH} diag(PPH)−

1
2

)
. (28)

Thus, using (27) and (28), we can express the SINDR in (26)
in closed form for the case of 1-bit DACs. Substituting (26)
in (25), one obtains a lower bound on the per-user achiev-
able rate with Gaussian signaling for the 1-bit DAC case.
Unfortunately, no closed-form expression for Cxx is available
for the multi-bit DAC case. We address this problem in the
next section.

E. Achievable Rate Approximation for Multi-Bit DACs

In this section, we provide an approximation of (26) for the
multi-bit DAC case, which is derived under the assumption
that both B and U are large and that the error term eu in (16)

5One can establish (25) also by noting that Gaussian noise is the worst
noise for Gaussian inputs [47].
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is a Gaussian random variable. The approximation relies on
standard random matrix theory arguments. Specifically, let

G = α∆

√
B

πP

L−1∑
i=1

exp

(
−B∆2

P

(
i− L

2

)2
)

(29)

where the normalization by α, given by

α =

(
2B∆2

((
L− 1

2

)2

−2

L−1∑
i=1

(
i− L

2

)
Φ

(√
2B∆2

(
i− L

2

))))−1/2

(30)

ensures that the power constraint (2) is satisfied. In (29),
the function Φ(x) =

∫ x
−∞

1√
2π
e−t

2/2 dt is the cumulative
distribution function of a Gaussian random variable. Let also
ρ̄ be defined as follows:

ρ̄ =
G2ρ

(1−G2)ρ+ 1
. (31)

Following the same approach as in [52]–[54], one can show
that, for the three linear-quantized precoders (WF, ZF, and
MRT) introduced in Section III-A, the SINDR γu in (26) can
be approximated for large B and U by

γ̄WF =
ρ̄

2

(
B

U
− 1

)
− 1

2

+
1

2

√
ρ̄2

(
B

U
− 1

)2

+ 2ρ̄

(
B

U
+ 1

)
+ 1 (32)

γ̄ZF = ρ̄

(
B

U
− 1

)
(33)

γ̄MRT =
ρ̄B

ρ̄(U − 1) + U
. (34)

Substituting (32)–(34) into (25), one gets an approximation
of the achievable rate with Gaussian signaling and nearest-
neighbor decoding that is valid for large B and U . In Section V,
we verify through numerical simulations that this approxima-
tions is accurate already for realistic values of B and U .

IV. NONLINEAR PRECODERS FOR 1-BIT DACS

We now investigate nonlinear precoders that seek approx-
imate solutions to the MMSE-optimal problem detailed in
Section II-B. We shall focus on the extreme case of 1-bit
DACs, for which the problem simplifies and efficient numerical
algorithms can be developed.

We start by noting that, in the 1-bit case, all DAC outcomes
have equal amplitude, and that ‖x‖22 = P if one sets α∆ =√

2P/B in (9). This observation allows us to formulate the
1-bit quantized precoding (QP) problem as follows:

(QP)

{
minimize
x∈XB , β∈R

‖s− βHx‖22 + β2UN0

subject to β > 0.
(35)

Here, X =
{√

P/(2B) (±1± j)
}

. The resulting precoded
vector xQP and the associated precoding factor βQP are referred
to as the optimal solution to the problem (35).

Compared to the problem (LQP) in (5), where we minimize
the MSE averaged over both the symbol vector s and the
noise vector n (for a given H), in (QP) we minimize the MSE
averaged over the noise vector n (for a given s and H). Since
the optimization problem is solved for a given s, the precoding
factor β depends on s; this is in contrast to the linear-quantized
case, where β depends only on H.6

We note that (QP) in (35) resembles an `2-norm regularized
closest-vector problem (CVP), with the unique feature that
the discrete set of vectors is parametrized by the continuous
precoding factor β. This prevents the straightforward use of
conventional algorithms to approximate CVPs [55], [56]. Since
the objective function in (35) is a quadratic function in β, we
can compute the optimal value of β as

β̂(x) =
<{sHHx}
‖Hx‖22 + UN0

=
<{sHHx}

xH
(
HHH + UN0

P IB
)
x

(36)

which depends on x. Inserting (36) into the objective function
in (35), we obtain the following equivalent formulation of the
QP problem:

minimize
x∈XB

∥∥∥s− β̂(x)Hx
∥∥∥2

2
+ β̂(x)2UN0. (37)

To obtain βQP, we can then simply evaluate (36) for the optimal
vector xQP. We emphasize that a straightforward exhaustive
search to solve (QP) requires the evaluation of |X |B = 4B

candidate vectors, a quantity that grows exponentially with
the number of BS antennas B. For a system with B = 128
antennas at the BS, this approach would require us to evaluate
the objective function more than 1077 times (more than 10
quattuorvigintillions times). In fact, for a fixed value of β, the
problem (QP) is a closest vector problem that is NP-hard [57].
This implies that there are no known algorithms to solve such
problems efficiently for large values of B.7 Hence, alternative
algorithms that solve a lower complexity version of the QP
problem are required for massive MU-MIMO systems.

In order to develop such computationally efficient algorithms,
we start by defining the auxiliary vector b = βx and
rewrite (35) in the following equivalent form:

minimize
b∈BB

‖s−Hb‖22 +
UN0

P
‖b‖22 . (38)

Here, B =
{√

P/(2B) (±β ± jβ) , for all β > 0
}

. To obtain
(38), we have used that β2 = ‖b‖22 /P . Let bQP be the solution
to (38). The resulting precoding vector is obtained by scaling
each entry of bQP so that it belongs to the set X . Clearly,
1/βQP is the scaling parameter.

It turns out convenient to transform the complex-valued
problem (38) into an equivalent real-valued problem using the

6We shall discuss how the dependence of β on s effects decoding the
receiver side in Section IV-D.

7As we will show in Section IV-C, we can—in some cases—design branch-
and-bound methods (such as sphere-decoding methods) that allow us to solve
the quantized precoding problem efficiently for moderately-sized problems.
For massive MU-MIMO systems with hundreds of antennas, however, such
methods still exhibit prohibitive computational complexity.
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following definitions:

bR =

[
<{b}
={b}

]
, sR =

[
<{s}
={s}

]
, and HR =

[
<{H} −={H}
={H} <{H}

]
.

These definitions enable us to rewrite (38) as

minimize
bR∈B2B

R

‖sR −HRbR‖22 +
UN0

P
‖bR‖22 (39)

where BR =
{
±
√
P/(2B)β, for all β > 0

}
is the set of

scaled antipodal outputs of each 1-bit DAC. We shall next
develop a variety of nonlinear precoding methods that find
approximate solutions to the problem (39).

A. Semidefinite Relaxation

Semidefinite relaxation (SDR) is a well-established technique
to develop approximate algorithms for a variety of discrete
programming problems [58]. For example, SDR is commonly
used to find near-ML solutions for the MU-MIMO detection
problem (see, e.g., [58], [59]). For the case when the BS is
equipped with infinite-resolution DACs, SDR has been used
for downlink precoding in [60], [61]. We next show how SDR
can be used to find approximate solutions to (35).

In our context, SDR involves relaxing (39) to a semidefinite
program (SDP) as follows. We start by writing the real-valued
problem (39) in the following equivalent form [58]:

minimize
bR∈R2B , ψ∈{±1}

‖ψsR −HRbR‖22 +
UN0

P
‖bR‖22

subject to [bR]21 = [bR]2b , b = 2, . . . , 2B.
(40)

If ψ = 1 then bR is the solution to (40); if ψ = −1, the
solution is −bR. Next, let the (2B+ 1)× (2B+ 1) matrix TR
be defined as follows:

TR =

[
HT

RHR + UN0

P I2B −HT
RsR

−sTRHR ‖sR‖22

]
. (41)

Also, let BR = [bTR ψ]T [bTR ψ]. Following steps similar to
those in [58], we rewrite the objective function in (40) as

‖ψsR −HRbR‖22 +
UN0

P
‖bR‖22 = tr(TRBR) . (42)

The problem (40) can now be reformulated as

minimize
BR∈S2B+1

tr(TRBR)

subject to [BR]1,1 = [BR]b,b for b = 2, . . . , 2B,
[BR]2B+1, 2B+1 = 1, BR � 0,
and rank(BR) = 1.

(43)

Here, S2B+1 denotes the set of real and symmetric (2B+1)×
(2B + 1) matrices. To see why (40) and (43) are equivalent,
remember that BR = [bTR ψ]T [bTR ψ], which implies that
BR has rank 1, and that [BR]b,b = [bR]2b for b = 1, . . . , 2B,
and [BR]2B+1,2B+1 = ψ2 = 1.

Unfortunately, the rank-1 constraint in (43) is nonconvex,
which makes this problem just as hard to solve as the original
QP problem in (35). Nevertheless, we can use SDR to relax
the problem in (43) by omitting the rank-1 constraint, which

results in the following SDP:

(SDR-QP)


minimize
BR∈S2B+1

tr(TRBR)

subject to [BR]1,1 =[BR]b,b, b =2, . . . , 2B,
[BR]2B+1,2B+1 =1, andBR�0.

(44)

This problem can be solved efficiently using standard methods
from convex optimization [62]. If the solution matrix BSDR-QP

R
has rank one, then (SDR-QP) finds the exact solution to the
problem (QP) in (39). If, however, the rank exceeds one, we
have to extract a precoding vector xSDR-QP that belongs to the
discrete set XB . As commonly done, one can obtain such vector
by first performing an eigenvalue-decomposition of BSDR-QP

R
and by then quantizing the first 2B entries of the leading
eigenvector uR. To this end, let xSDR-QP

R denote the real-valued
counterpart of xSDR-QP, whose bth entry (b = 1, . . . , 2B) is
given by[

xSDR-QP
R

]
b

=

√
P

2B
sgn([uR]2B+1) sgn([uR]b) . (45)

The multiplication by sgn([uR]2B+1) takes into account the
potential sign change caused by ψ. The bth entry of the resulting
complex-valued precoded vector xSDR-QP is obtained as follows:[

xSDR-QP]
b

=
[
xSDR-QP
R

]
b

+ j
[
xSDR-QP
R

]
B+b

(46)

for b = 1, . . . , B. We refer to this approach as SDR with a
rank-one approximation (SDR1). Alternatively, we can obtain a
precoding vector in XB using more sophisticated randomized
procedures. See the survey article [58] for more details. We
refer to this approach as SDR with randomization (SDRr).

SDR enables the computation of approximate solutions to
the NP-hard problem (QP) in polynomial time. Specifically, the
worst-case complexity scales with B4.5 [58]. However, SDR
lifts the problem to a higher dimension: from 2B dimensions
to (2B + 1)2 dimensions. Furthermore, implementing the
corresponding numerical solvers entails high hardware com-
plexity [63]. Recently, a hardware-friendly approximate SDR
solver for problems of dimension up to B = 16 was proposed
in [63]. However, the complexity of this solver still prevents its
use for massive MU-MIMO systems with hundreds of antennas.
Hence, we conclude that SDR is a suitable technique only for
small to moderately-sized systems (e.g., 16 BS antennas or less).
For larger antenna arrays, alternative methods are necessary.
One such method is described next.

B. Squared `∞-Norm Relaxation

We next present a novel method to approximately solv-
ing (35), which avoids lifting the problem to a higher dimension
and requires low complexity. We start by rewriting the real-
valued optimization problem (39) as

minimize
bR∈R2B

‖sR −HRbR‖22 +
2BUN0

P
‖bR‖2∞

subject to [bR]21 = [bR]2b , b = 2, , . . . , 2B
(47)

where we used that ‖bR‖22 = 2B‖bR‖2∞ under the constraint
that [bR]21 = [bR]2b for b = 2, . . . , 2B. By dropping the
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nonconvex constraints [bR]21 = [bR]2b for b = 2, . . . , 2B, we
obtain the following convex relaxation of (47):

(`2∞-QP) minimize
bR∈R2B

‖sR −HRbR‖22 +
2BUN0

P
‖bR‖2∞ (48)

which, as we shall see, can be solved efficiently. To extract
a feasible precoding vector x`

2
∞-QP ∈ XB from the solution

b
`2∞-QP
R to the problem (48), we quantize the entries of the

vector to the quaternary set X by computing[
x
`2∞-QP
R

]
b

=

√
P

2B
sgn
([

b
`2∞-QP
R

]
b

)
(49)

for b = 1, . . . , 2B, where x
`2∞-QP
R is the real-valued counterpart

of x`
2
∞-QP. As in (46), we then obtain the complex-valued

precoded vector as follows:[
x`

2
∞-QP

]
b

=
[
x
`2∞-QP
R

]
b

+ j
[
x
`2∞-QP
R

]
B+b

(50)

for b = 1, . . . , B. There exist several numerical optimization
methods that are capable of solving problems of the form
of (`2∞-QP) in (48) in a computationally efficient manner. The
most prominent methods are forward-backward splitting (FBS)
[64], [65] and Douglas-Rachford (DR) splitting [66], [67].
In what follows, we develop a DR splitting method, which
we refer to as squared-infinity norm Douglas-Rachford split-
ting (SQUID). We define the two convex functions g(bR) =
‖sR −HRbR‖22 and f(bR) = 2BUN0

P ‖bR‖2∞, and solve

minimize
bR∈R2B

g(bR) + f(bR). (51)

Let

proxh(w) = arg min
bR∈R2B

h(bR) + 1
2‖bR −w‖22 (52)

define the proximal operator for the function h(·) [64]. By
initializing b

(0)
R = 02B×1 and c

(0)
R = 02B×1, SQUID performs

the following iterative procedure for t = 1, 2, . . . until
convergence or until a maximum number of iterations has
been reached:

a
(t)
R = proxg(2b

(t−1)
R − c

(t−1)
R ) (53)

b
(t)
R = proxf (c

(t−1)
R − a

(t)
R − b

(t−1)
R ) (54)

c
(t)
R = c

(t−1)
R + a

(t)
R − b

(t−1)
R . (55)

The proximal operator proxg(·) in (53) has the following
simple8 expression:

proxg(w) = (HT
RHR + 1

2I2B×2B)−1(HT
RsR + 1

2w). (56)

While the proximal operator for the `∞-norm is well known
in the literature [64], the proximal operator proxf (·) for the
squared `∞-norm, needed in (54), appears to be novel. The
following theorem details an efficient procedure for computing
this proximal operator. The proof is given in Appendix B.

Theorem 4: Let λ > 0. Then, the squared `∞-norm

8One can further accelerate the evaluation of this proximal operator by using
the Woodbury matrix identity (which reduces the dimension of the matrix
inverse), and by precomputing certain constant quantities, such as HT

R sR.

Algorithm 1 Proximal operator for the `2∞-norm

1: inputs: z ∈ RN , λ ∈ (0,∞)
2: a← abs(z)
3: s← sort(a,‘descending’)
4: for k = 1, . . . , N do
5: ck ← 1

2λ+k

∑k
i=1 si

6: end for
7: α← max

{
0,maxk{ck}

}
8: for k = 1, . . . , N do
9: uk ← min{ak, α} sgn(zk)

10: end for
11: return u

proximal operator

u = proxλ`2∞(z) = arg min
u∈RN

λ‖u‖2∞ + 1
2‖z− u‖22 (57)

can be computed using the procedure summarized in Algo-
rithm 1.

In summary, SQUID enables us to solve the relaxed problem
in (48) in a computationally efficient manner. Indeed, each
iteration requires only simple matrix and vector operations,
and the evaluation of the proximal operator in Algorithm 1.
The performance of SQUID is investigated in Section V
where we demonstrate that this low-complexity algorithm
achieves performance comparable to SDR, which is a far more
demanding algorithm in terms of computational complexity.

C. Sphere Precoding

Sphere decoding (SD) is a common method to solve CVPs
exactly but at lower average computational complexity than
a naïve exhaustive search [55], [56], [68]. The idea of SD
is to constrain the search for possible optimal solutions to a
hypersphere of radius r. By transforming the optimal CVP
into a tree-search problem, one can then perform a depth-first
branch-and-bound procedure and prune branches that exceed
the radius constraint to reduce the number of candidate vectors.
While SD reduces (often significantly) the average complexity
compared to an exhaustive search, it was shown to exhibit
exponential complexity in the number of variables for data
detection in multi-antenna wireless systems [69], [70].

To adapt SD to 1-bit quantized precoding (we call this
adaptation sphere precoding (SP)), we proceed as follows.
Assume that the optimal precoding factor β is known. Then,
we can rewrite the objective function in (37) as follows:

‖s− βHx‖22 + β2UN0=‖s−βHx‖22 + β2UN0

P
‖x‖22 (58)

=
∥∥s̄−βHx

∥∥2

2
. (59)

In (58), we used that ‖x‖22 = P in the 1-bit case; in (59) we
set s̄ = [sT 0TB ]T and H = [HT

√
UN0/P IB ]T . Hence, we

can write the precoding problem as

minimize
x∈XB

∥∥s̄− βHx
∥∥

2
(60)

which can be solved using SD. More specifically, by computing
the QR factorization H = QR, where Q ∈ C(U+B)×B
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with QHQ = IB and R ∈ CB×B is upper triangular with
non-negative diagonal entries, we obtain the equivalent problem

(SP) minimize
x∈XB

∥∥QH s̄− βRx
∥∥

2
. (61)

The triangular structure of this problem allows us to deploy
standard SD methods, as the one in [55].

In practice, the optimal precoding factor β is unknown.
We therefore propose the following alternating optimization
approach. At iteration t = 1, we initialize the algorithm with
the precoding factor obtained from WF precoding. Specifically,
we use (36) and set β1 = β̂(xWF). We then solve (SP) to
obtain xSP

t and compute an improved precoding factor βt+1 =
β̂(xSP

t ) using (36). We repeat this procedure for t = 2, 3, . . .
until convergence or until a maximum number of iterations
is reached. Our simulations have shown that this procedure
usually converges in only 1 to 3 iterations and achieves near-
optimal performance for small to moderately-sized MIMO
systems (in Section V-A, we present numerical results for the
case of B = 8 antennas). We note that a plethora of SD-related
methods can be used to solve SP. However, the exponential
complexity of SD prevents its use for massive MIMO systems
with hundreds of antennas.

D. Decoding at the UEs
As for the case of linear-quantized precoders, we assume that

the uth UE is able to scale the received signal by some scaling
factor βu. Note that the scaling factor βu can not directly be
chosen to be equal to the precoding factor β, since β depends
in the nonlinear case on the instantaneous transmit vector s
and cannot be estimated at the UEs. It is worth noting that for
the special case in which the entries of s are taken from of a
constant-modulus constellation (e.g., M -PSK) and the receiver
employs symbol-wise nearest-neighbor decoding (i.e., each UE
maps its estimate ŝu in (3) to the nearest constellation point,
which implies that both the residual MUI and the quantization
error are treated as Gaussian noise, although they are not
Gaussian), the scaling factor βu chosen by the receiver does
not affect performance because the decision regions are circular
sectors in the complex plane. In the simulation results in
Section V, we shall focus on QPSK modulation for which
no scaling is needed. In a follow-up work [71], we presented
simulation results for the case of higher-order constellations
that do not satisfy the constant-modulus assumption (e.g., 16-
QAM). In this case, it is sufficient to modify the precoding
problem (35) so that a single value of β is chosen for a block
of transmit symbols whose length does not exceed the channel
coherence time. This allows the UEs to estimate β through
pilot transmissions or blind estimation techniques.

V. NUMERICAL RESULTS

We now present numerical simulations for the quantized
precoders introduced in Section III and Section IV. Due to
space constraints, we shall focus on a limited set of system
parameters.9

9Our simulation framework is available for download from GitHub (https:
//github.com/quantizedmassivemimo/1bit_precoding). The purpose is to enable
interested readers to perform their own simulations with different system
parameters and also to test alternative algorithms.
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(b) B = 128 and U = 16.

Fig. 3. Uncoded BER with QPSK signaling for 1-bit DACs as a function
of the SNR, ρ, for the precoders introduced in Section III and in Section IV.
The performance of the WFQ precoder proposed in [27] is also illustrated for
comparison.

A. Error-Rate Performance

We start by comparing the performance of the developed
precoders in terms of uncoded bit error rate (BER). In what
follows, we assume that the UEs perform symbol-wise nearest-
neighbor decoding.

In Fig. 3, we compare the BER with QPSK signaling and
1-bit DACs for the linear precoders presented in Section III
(namely, WF, ZF and, MRT) and the nonlinear precoding algo-
rithms presented in Section IV (namely, SDR1, SDRr, SQUID
and SP). For comparison, we also report the performance of
the WF-quantized (WFQ) precoder proposed in [27], and the
performance of the WF precoder for the infinite-resolution case.

In Fig. 3a, we consider the case B = 8 BS antennas and
U = 2 UEs (moderately-sized MIMO system). For this case,
one can find the optimal solution to (QP) in (35) by exhaustive
search. We find that the gap between the performance of
the optimal nonlinear precoder and the performance of the
infinite-resolution WF precoder is remarkably small: about
4 dB for a target BER of 10−3. Furthermore, the SP algorithm
achieves near-optimal performance, as does SDRr. SQUID

https://github.com/quantizedmassivemimo/1bit_precoding
https://github.com/quantizedmassivemimo/1bit_precoding
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Fig. 4. Uncoded BER with QPSK signaling and WF precoding with multi-bit
DACs; B = 128 and U = 16. Here, L denotes the number of quantization
levels. The markers correspond to simulated values and the solid lines
correspond to closed-form approximations.

and SDR1 follow closely the optimal curve up to a BER
of 10−2 but then their performance degrades. The linear-
quantized precoders, on the other hand, are adversely impacted
by the coarse 1-bit quantization. Indeed, the BER for linear-
quantized precoding saturates at 10−2 or above. Hence, in
contrast to recently reported findings [29], our results suggest
that nonlinear precoding offers significant advantages in terms
of BER compared to linear-quantized precoding.

In Fig. 3b, we consider a massive MIMO system with B =
128 BS antennas and U = 16 UEs. Exhaustive search and SP
are not viable in this setup due to the exponential complexity
in B that these methods entail. We note that the increased
number of antennas yields a performance improvement for the
linear-quantized precoders. Indeed, with ZF, WF, or WFQ one
can now support error probabilities below 10−3. However, the
nonlinear precoders still significantly outperform the linear-
quantized precoders. The gap to the infinite-resolution BER
with SQUID is about 3 dB for a target BER of 10−3. With
WFQ precoding, the gap is about 8 dB for the same BER target.

It is worth pointing out that at low SNR, the error-rate
performance of all precoders is comparable. In this regime,
linear-quantized precoders may offer a better performance-
complexity trade-off. Furthermore, linear-quantized precoders
may yield satisfactory BER performance for a larger range of
SNR values if the number of BS antennas is increased further.

In Fig. 4, we show the uncoded BER for WF precoding as
a function of the SNR and the number of DAC levels L for
a system with U = 16 UEs and B = 128 BS antennas. The
simulated BER values in Fig. 4 are compared with closed-form
approximations obtained by approximating the uncoded BER
by 1 − Φ

(√
γ̄WF

)
where γ̄WF is given in (32). We observe

that this approximation is accurate for the entire range of SNR
values. We further observe that low BER probabilities can be
attained with very coarse DACs. Interestingly, by only adding
a zero-level in the DACs (so that L = 3), the performance
is drastically improved compared to the 1-bit case (L = 2).
Furthermore, with only 3-bit DACs (L = 8) the performance
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Fig. 5. Uncoded BER with QPSK signaling for 1-bit DACs as a function of
the channel-estimation error, ε.

gap to the infinite-resolution case is negligible. This suggests
that it is possible to significantly reduce the number of bits in
the high-resolution DACs used in today’s systems.

B. Robustness to Channel-Estimation Errors

So far, we have assumed that the BS has access to perfect CSI.
In this section we shall relax this assumption to investigate the
robustness of the developed algorithms to channel estimation
errors. More specifically, we shall assume that the BS has
access to a noisy version of H modelled as

Ĥ =
√

1− εH +
√
εZ. (62)

Here, ε ∈ [0, 1] and Z has CN (0, 1) entries. We refer to ε
as the channel-estimation error: ε = 0 corresponds to perfect
CSI and ε = 1 corresponds to no CSI; intermediate values
corresponds to partial CSI.

In Fig. 5, we show, for the 1-bit case, the uncoded BER
with QPSK signaling as a function of the channel-estimation
error ε for a system with B = 128 BS antennas and U =
16 UEs. Interestingly, the nonlinear precoders outperform the
linear-quantized precoders whenever ε ≤ 0.5. This implies that
nonlinear precoders can be used also when only imperfect CSI
is available to the BS.

C. Achievable rate

Next, we validate the analytic results on the achievable
rate with linear-quantized precoders reported in Section III by
numerical simulations.

In Fig. 6, we show the achievable sum-rate with Gaussian
signaling and WF precoding as a function of the SNR and
the number of DAC levels. The rate approximation computed
using (32) is illustrated together with the rate lower bound
(25) for the 1-bit case. We also show the achievable rate
computed numerically using (23) by simulating many noise
and interference realizations for each channel realization and by
mapping the resulting ŝu to a rectangular grid in the complex
plane to estimate the probability density functions required
to compute (23) (see, e.g., [23] for details). We note that the
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Fig. 6. Achievable sum-rate with Gaussian signaling and WF precoding with
multi-bit DACs; B = 128 and U = 16. Here, L denotes the number of
quantization levels. The markers correspond to simulated values and the solid
lines correspond to closed-form approximations. The dashed line corresponds
to the lower bound (25) for 1-bit DACs.

asymptotic approximation matches well the numerical results,
confirming its accuracy. We further note that, analogously to
the uplink scenario [23], [24], high sum-rate throughputs can
be achieved despite having low-resolution DACs at the BS.

VI. CONCLUSIONS

We have presented novel algorithms for the problem of
downlink precoding in massive MIMO systems equipped with
low-resolution DACs at the BS. To handle the challenges
imposed by the finite-cardinality outputs of the DACs, we have
considered two distinct approaches, namely linear-quantized
precoding and nonlinear precoding. We have shown that, with
linear-quantized precoding, the use of DACs with 3 to 4 bits of
resolution is sufficient to close the performance gap (measured
in terms of both BER and achievable rate) to the infinite-
resolution case. Furthermore, we have developed an asymptotic
approximation of the effective SINDR, which can be used
to predict the system performance accurately using simple
closed-form expressions.

Linear-quantized precoders are, however, far from optimal.
For the case of 1-bit DACs, we have shown that the error-rate
performance can be significantly improved by allowing for
nonlinear precoding. For example, we showed that for a BS
with 128 BS antennas serving 16 UEs, the gap to infinite-
resolution performance is about 8 dB for a target BER of
10−3 with linear-quantized precoders, but only 3 dB with
nonlinear precoders. Nonlinear precoding, however, entails
increased signal-processing complexity. For small-to-moderate
sized systems (e.g., 16 BS antennas or less), SDR- and SP-based
precoders offer near-optimal BER-performance at tolerable
complexity. For massive MIMO systems, SQUID is an efficient
and hardware-friendly algorithm to find a near-optimal solution
to the 1-bit quantized precoding problem. In a follow-up
study [72], we recently proposed two additional precoding
algorithms for massive MIMO, and provide both very-large-
scale integration (VLSI) designs and field-programmable gate

array (FPGA) implementations. These designs demonstrate
that nonlinear precoding algorithms can be realized in practice,
with a manageable implementation complexity.

There are many avenues for future work. Extending our anal-
ysis and our algorithms to the frequency-selective case, where
the use of orthogonal-frequency division multiplexing (OFDM)
is assumed, is part of ongoing work. Early results for the case
of OFDM and linear-quantized precoding are reported in [73].
As mentioned in Section I, the use of low-resolution DACs
operating at symbol rate may result in significant out-of-band
emissions and intersymbol interference. A characterization of
both effects is critically required to assess the full potential
of low-resolution DAC architectures in real-world MU-MIMO
systems. Also, a generalization of our analysis to the case of
oversampled DACs, which operate at a sampling frequency
larger than the symbol rate, is of practical interest.

APPENDIX A
PROOF OF THEOREM 2

Let z = Ps ∈ CB and x = Q(z) ∈ XB . It follows from
Theorem 1 that the covariance matrices Cxz = Es

[
xzH

]
and Czz = Es

[
zzH

]
are related as follows:

Cxz = GCzz (63)

where G is a B ×B diagonal matrix with

[G]b,b =
1

σ2
b

E[Q(zb)z
∗
b ] (64)

where zb = [z]b and σ2
b = E

[
|zb|2

]
for b = 1, . . . , B. Note

now that

Czz = Es

[
zzH

]
= PEs

[
ssH

]
PH = PPH . (65)

It follows from (63) that we can write the quantized signal as
x = Gz + d, where the distortion d is uncorrelated with z.
Indeed, note that

Es

[
dzH

]
= Es

[
(x−Gz)zH

]
= Cxz −GCzz = 0B×B (66)

where the last equality follows from (63). We next evaluate (64).
Note that, since the real and imaginary components of the
symbol vector s are independent and identically distributed, so
are the real and imaginary components of the precoded vector
z. Therefore, it holds that

E[Q(zb)z
∗
b ] = 2E[Q(z)z] (67)

where we have introduced the random variable z ∼ N (0, σ2
b/2).

For a uniform DAC, the quantizer-mapping function can be
expressed as

Q(z) =
α∆

2
(1− L) + α∆

L−1∑
i=1

1[∆(i−L
2 ),∞)(z). (68)

Inserting (67) and (68) into (64), we get that

[G]b,b =
2

σ2
b

E[Q(z)z] (69)

=
α∆

σ2
b

(1− L)E[z]
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+
2α∆

σ2
b

L−1∑
i=1

E
[
1[∆(i−L

2 ),∞)(z)z
]

(70)

=
2α∆

σ2
b

L−1∑
i=1

∫ ∞
∆(i−L

2 )

z√
πσ2

b

exp

(
− z

2

σ2
b

)
dz (71)

=
α∆√
πσ2

b

L−1∑
i=1

exp

(
−∆2

σ2
b

(
i− L

2

)2
)
. (72)

Finally, the desired result (14) follows from (72) by using that
σ2
b = [PPH ]b,b.

APPENDIX B
PROOF OF THEOREM 4

We start by rewriting the proximal operator in (57) as

u = arg min
x∈RN , α∈R

λα2 +
1

2
‖x− y‖22 (73)

subject to x2
k ≤ α2, k = 1, . . . , N

and use the Karush-Kuhn-Tucker (KKT) conditions [62] to
compute its solution. The Lagrangian of the optimization
problem in (73) is given by

L(x, α,u) = λα2 +
1

2
‖x− y‖22 +

N∑
k=1

uk(x2
i − α2) (74)

which yields the following two stationarity conditions:

λ−
N∑
k=1

ui = 0 (75)

xk − yk + 2xkuk = 0, k = 1, . . . , N. (76)

The stationarity condition (76) reveals that xk = yk/(1 + 2uk),
which implies that if uk = 0, then xk = yk. Complementary
slackness yields uk(x2

k−α2
k) = 0, which implies that if uk 6= 0,

then x2
k = α2 for a given k. Hence, the values of xk must

either be |xk| = α or xk = yk so that |xk| < α. In words, the
proximal operator in (73) clips to xk = sgn(yk)α the values yk
whose magnitude exceeds α and leaves the remaining values
unaffected. Hence, we only need to determine the optimal
clipping threshold α∗ > 0.

Assume xk 6= 0 without loss of generality (in the case yk =
0, we have xk = 0). Then, the stationarity condition in (76)
reveals that uk = 1

2

(
yk
xk
− 1
)
. Together with the stationarity

condition (75), we have
N∑
k=1

uk =
1

2

N∑
k=1

(
yk
xk
− 1

)
= λ (77)

which implies that
N∑
k=1

yk
xk

= 2λ+N. (78)

We now partition the indices k = 1, . . . , N into two disjoint
sets Ω and Ωc, The set Ω contains the indices of the entries
yk for which |yk| ≥ α; the set Ωc contains the indices of

the entries uk for which |yk| < α. Since xk = sgn(yk)α for
k ∈ Ω and xk = yk for k ∈ Ωc, it follows from (78) that∑

k∈Ω

|yk|
α

+
∑
k∈Ωc

1 = 2λ+N. (79)

Hence, ∑
k∈Ω

|yk|
α

= 2λ+N − |Ωc| = 2λ+ |Ω|. (80)

We see from (80) that the clipping threshold α must satisfy

α =

∑
k∈Ω |yk|

2λ+ |Ω| . (81)

To solve (73), it is convenient to sort the values |yk| in
descending order. Specifically, let us denote these values by
r1 ≥ r2 ≥ · · · ≥ rN . Then one computes α` =

∑`
k=1 rk/(2λ+

`) for ` = 1, 2, . . . , N and chooses α∗ as the only α` that
satisfies r`+1 < α` ≤ r`. Simple algebraic manipulations reveal
that this is equivalent to setting α∗ = max` α`. We then use
α∗ to perform element-wise clipping. Algorithm 1 implements
exactly this procedure in a computationally efficient manner.
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