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Non-Uniform Wavelet Sampling for
RF Analog-to-Information Conversion

Michaël Pelissier and Christoph Studer

Abstract—Feature extraction, such as spectral occupancy, in-
terferer energy and type, or direction-of-arrival, from wideband
radio-frequency (RF) signals finds use in a growing number of
applications as it enhances RF transceivers with cognitive abilities
and enables parameter tuning of traditional RF chains. In power
and cost limited applications, e.g., for sensor nodes in the Internet
of Things, wideband RF feature extraction with conventional,
Nyquist-rate analog-to-digital converters is infeasible. However,
the structure of many RF features (such as signal sparsity)
enables the use of compressive sensing (CS) techniques that
acquire such signals at sub-Nyquist rates. While such CS-based
analog-to-information (A2I) converters have the potential to
enable low-cost and energy-efficient wideband RF sensing, they
suffer from a variety of real-world limitations, such as noise
folding, low sensitivity, aliasing, and limited flexibility.

This paper proposes a novel CS-based A2I architecture called
non-uniform wavelet sampling (NUWS). Our solution extracts a
carefully-selected subset of wavelet coefficients directly in the
RF domain, which mitigates the main issues of existing A2I
converter architectures. For multi-band RF signals, we propose
a specialized variant called non-uniform wavelet bandpass sam-
pling (NUWBS), which further improves sensitivity and reduces
hardware complexity by leveraging the multi-band signal struc-
ture. We use simulations to demonstrate that NUWBS approaches
the theoretical performance limits of `1-norm-based sparse signal
recovery. We investigate hardware-design aspects and show ASIC
measurement results for the wavelet generation stage, which
highlight the efficacy of NUWBS for a broad range of RF feature
extraction tasks in cost- and power-limited applications.

Index Terms—Analog-to-information (A2I) conversion, cogni-
tive radio, compressive sensing, Internet of Things (IoT), radio-
frequency (RF) signal acquisition, wavelets, spectrum sensing.

I. INTRODUCTION

FOR nearly a century, the cornerstone of digital signal
processing has been the Shannon–Nyquist–Whittaker

sampling theorem [1]. This result states that signals of finite
energy and bandwidth are perfectly represented by a set of
uniformly-spaced samples at a rate higher than twice the
maximal frequency. It is, however, well-known that signals
with certain structure can be sampled well-below the Nyquist
rate. For example, Landau established in 1967 that multi-
band signals occupying N non-contiguous frequency bands of
bandwidth B can be represented using an average sampling rate
no lower than twice the sum of the bandwidths (i.e., 2NB) [2].
In 2006, Landau’s concept has been generalized by Candès,
Donoho, Romberg, and Tao in [3], [4] to sparse signals, i.e.,
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signals that have only a few nonzero entries in a given transform
basis, e.g., the discrete Fourier transform (DFT). These results
are known as compressive sensing (CS) and find potential use
in a broad range of sampling-critical applications [5].

In essence, CS fuses sampling and compression: instead of
sampling signals at the Nyquist rate followed by conventional
data compression, CS acquires “just enough” compressive
measurements that guarantee the recovery of the signal of
interest. Signal recovery then exploits the concept of sparsity, a
structure that is present in most natural and man-made signals.
CS has the potential to acquire signals with sampling rates well-
below the Nyquist frequency, which may lead to significant
reductions in the sampling costs and/or power consumption,
or enable an increase the bandwidth of signal acquisition
beyond the physical limits of analog-to-digital converters
(ADCs) [6]. As a consequence, CS is commonly believed
to be a panacea for wideband radio-frequency (RF) spectrum
awareness applications [7]–[9].

A. Challenges of Wideband Spectrum Awareness

In RF communication, there is a growing need in providing
radio transceivers with cognitive abilities that enable awareness
and adaptability to the spectrum environment [9]. The main
goals of suitable methods are to capture a variety of RF
parameters (or features) to dynamically allocate spectral
resources [10] and/or to tune traditional RF-chain circuitry
with optimal parameter settings in real-time, e.g., to cancel out
strong interferers using a tunable notch filter [11], [12]. The
RF features to be acquired for these tasks are mainly related to
wideband spectrum sensing [8] and include the estimation of
frequency occupancy, signal energy, energy variation, signal-
to-noise-ratio, direction-of-arrival, etc. [7], [13].

For most wideband spectrum sensing tasks, one is typically
interested in acquiring large bandwidths (e.g., several GHz)
with a high dynamic range (e.g., 80 dB or more). However,
achieving such specifications with a single analog-to-digital
converter (ADC) is an elusive goal with current semiconductor
technology [6]. A practicable solution is to scan the entire
bandwidth in sequential manner. From a hardware perspective,
this approach relies on traditional RF receivers as put forward
by Armstrong in 1921 [14]. The idea is to mix the incoming
RF signal with a complex sinusoid (whose frequency can be
tuned) either to a lower (and fixed) frequency or directly to
baseband. The signal is then sampled with an ADC operating
at lower bandwidth. While such an approach enjoys widespread
use—mainly due to its excellent spectral selectivity, sensitivity,
and dynamic range—the associated hardware requirements

 michael.pelissier@cea.fr
studer@cornell.edu
vip.ece.cornell.edu


2 TO APPEAR IN THE IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS

baseband
data

traditional 
RF frontend

DSP

RF features

RF
signal

A2I

0100110

Fig. 1. Overview of a cognitive radio receiver: A traditional RF front-end
is enhanced with an analog-to-information (A2I) converter that extracts RF
features directly from the incoming analog RF signals. The A2I converter
enables parameter tuning to reduce design margins in the RF circuitry and
assists spectrum awareness tasks in the digital signal processing (DSP) stage.

(for wideband tunable oscillators and highly-selective filters)
and sweeping time may not meet real-world application
constraints [11]. This aspect is particularly important for the
Internet of Things (IoT), in which devices must adhere to
stringent power and cost constraints, while operating in a multi-
standard environment (e.g., containing signals from 3GPP NB-
IoT, IEEE 802.15.4g/15.4k/11.ah, SigFox, and LoRa). Hence,
there is a pressing need for RF feature extraction methods that
minimize the power and system costs, while offering flexibility
to a variety of environments and standards.

B. Analog-to-Information (A2I) Conversion

A promising solution for such wideband spectrum sensing
applications is to use CS-based analog-to-information (A2I)
converters that leverage spectrum sparsity [8], [15]–[17].
Indeed, one of the main advantages of CS is that it enables
the acquisition of larger bandwidths with relaxed sampling-
rate requirements, thus enabling less expensive, faster, and
potentially more energy-efficient solutions. While a large
number of CS-based A2I converters have been proposed for
spectrum sensing tasks [8], [11], [15], [16], [18], the generally-
poor noise sensitivity of traditional CS methods [19], [20]
and the excessive complexity of the recovery stage [16], [21]
prevents their straightforward use in low-power, cost-sensitive,
and latency-critical applications, which are typical for the IoT.

Fortunately, for a broad range of RF feature extraction
tasks, recovery of the entire spectrum or signal may not be
necessary. In fact, as it has been noted in [22], only a small
number of measurements may be required if one is interested
in certain signal features and not the signal itself. This key
observation is crucial for a broad range of emerging energy or
cost-constrained applications in the RF domain, such as sensors
or actuators for the IoT, wake-up radio, spectrum sensing, and
radar applications [7], [23]–[25]. In most of these applications,
the information of interest has, informally speaking, a rate
far below the physical bandwidth, which is a perfect fit for
CS-based A2I converters that have the potential to acquire the
relevant features directly in the RF (or analog) domain at low
cost and low power.

Figure 1 illustrates a cognitive radio receiver that is assisted
with an A2I converter specifically designed for RF feature ex-
traction. The A2I converter bypasses conventional RF circuitry
and extracts a small set of features directly from the incoming
RF signals in the analog domain. The acquired features can then
be used by the RF front-end and/or a subsequent digital signal

processing (DSP) stage. Such an A2I-assisted RF front-end
enables one to optimally reconfigure the key parameters of a
traditional RF chain according to the spectral environment. This
capability can also be used to assist traditional RF transceivers
by providing means to eliminate over-design margins through
adaptation to the spectrum environment via radio link-quality
estimation and interferer localization [9], which is relevant in
power- and cost-limited IoT applications.

C. Contributions

This paper proposes a novel CS-based A2I converter archi-
tecture for cognitive RF receivers. Our approach, referred to
as non-uniform wavelet sampling (NUWS), combines wavelet
preprocessing with non-uniform sampling in order to alleviate
the main issues of existing A2I converter solutions, such as
signal noise, aliasing, and stringent clocking constraints, which
enables a broad range of RF feature extraction tasks. For RF
multi-band signals, we propose a specialized variant called non-
uniform wavelet bandpass sampling (NUWBS), which combines
traditional bandpass sampling with NUWS. This solution builds
upon (i) wavelet sample acquisition using highly over-complete
and hardware-friendly Gabor frames or Morlet wavelets and
(ii) a suitable measurement selection strategy that identifies
the relevant wavelets required for RF feature extraction. We
use system simulations to demonstrate the efficacy of NUWBS
and show that it approaches the theoretical phase transition of
`1-norm-based sparse signal recovery in typical multi-band RF
applications. We investigate hardware-implementation aspects
and validate the effective interference rejection capability of
NUWBS. We conclude by showing ASIC measurement results
for the wavelet generation stage in order to highlight the
practical feasibility of the wavelet generator, which is at the
heart of the proposed A2I converter architecture.

D. Paper Outline

The rest of the paper is organized as follows. Section II pro-
vides an introduction to CS and discusses existing A2I converter
architectures for sub-Nyquist RF signal acquisition. Section III
presents our non-uniform wavelet sampling (NUWS) method
and the specialized variant for multi-band signals called non-
uniform wavelet bandpass sampling (NUWBS). Section IV
discusses optimal measurement selection strategies and provides
simulation results. Section V discusses hardware implementa-
tion aspects of NUWBS. We conclude in Section VI.

E. Notation

Lowercase and uppercase boldface letters denote column
vectors and matrices, respectively. For a matrix A, we repre-
sent its transpose and Hermitian transpose by AT and AH ,
respectively. The M ×M identity matrix is IM . The entry
on the kth row and `th column of A is [A]k,` = Ak,` and
the `th column is [A]:,` = a`; the kth entry of the vector a
is [a]k = ak. We write RΩA = [A]Ω,: and RΩaΩ = [a]Ω to
restrict the rows of a matrix A and the entries of a vector a
to the index set Ω, respectively. Continuous and discrete-time
signals are denoted by x(t) and x[n], respectively.
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II. CS TECHNIQUES FOR RF SIGNAL ACQUISITION

We start by introducing the basics of CS and then review
the most prominent A2I converter architectures for RF signal
acquisition, namely non-uniform sampling (NUS) [15], [16],
[26]–[29], variable rate sub-Nyquist sampling [8], [30]–[32],
and random modulation [33], [34], which includes the modu-
lated wideband converter and Xampling [11], [35]–[37]. For
each of these architectures, we briefly discuss the pros and cons
from a RF spectrum sensing and hardware design standpoint.

A. Compressive Sensing (CS) Basics

Let x ∈ CN be a discrete-time, N -dimensional complex-
valued signal vector that we wish to acquire. We assume that the
signal x has a so-called K-sparse representation s ∈ CN , i.e.,
the vector s has K dominant non-zero entries in a known
(unitary) transform basis Ψ ∈ CN×N with x = Ψs and
ΨHΨ = IN . In spectrum sensing applications, one typically
assumes sparsity in the DFT basis, i.e., Ψ = FH is the N -
dimensional inverse DFT matrix. CS acquires M compressive
measurements as yi = 〈φi, s〉 + ni for i = 1, 2, . . . ,M ,
where φi ∈ CN are the measurement vectors and ni models
measurement noise. The CS measurement process can be
written in compact matrix-vector form as follows:

y = Φx + n = Θs + n. (1)

Here, the vector y ∈ CM contains all M compressive
measurements, the ith row of the sensing matrix ΦM×N

corresponds to the measurement vector φi, the M×N effective
sensing matrix Θ = ΦΨ models the joint effect of CS and the
sparsifying transform, and n ∈ CM models mesurement noise.

The main goal of CS is to acquire far fewer measurements
than the ambient dimension N , i.e., we are interested in the case
M � N ; this implies that the matrix Θ maps K-sparse signals
of dimension N to a small number of measurements M . Given
a sufficient number of measurements, typically scaling as M ∼
K log(N), that satisfy certain incoherence properties between
the measurement matrix Φ and the sparsifying transform Ψ,
one can use sparse signal recovery algorithms that generate
robust estimates of the sparse representation s and hence, enable
the recovery of the signal x = Ψs from the measurements
in y; see [5], [38] for more details on CS.

B. A2I Converter Architectures

While sparse signal recovery is typically carried out in soft-
ware [39] or with dedicated digital circuitry [16], [21], the CS-
based A2I conversion process modeled by (1) is implemented
directly in the analog domain. The next paragraphs summarize
the most prominent A2I converter architectures that perform
CS measurement acquisition with mixed-signal circuitry.

1) Non-Uniform Sampling: Non-uniform sampling (NUS)
is one of the simplest instances of CS. In principle, the NUS
strategy samples the incoming signal at irregularly spaced
time intervals by taking a random subset of the samples of
a conventional Nyquist ADC [15], [16]. For this scheme, the
sensing matrix Φ is given by the M ×N restriction operator
RΩ = [IN ]Ω,: that contains of a subset Ω the rows of the

non-uniform clock
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Fig. 2. High-level architecture of non-uniform sampling (NUS). A sample-
and-hold (S&H) stage acquires a random subset of Nyquist-rate samples of a
wideband signal x(t) and converts each sample x[n] to the digital domain.

identity matrix IN , where |Ω| = M is the cardinality of the
sampling set. The effective sensing matrix Θ = RΩINΨ in (1)
contains the M rows of the sparsifying basis Ψ indexed by Ω.
More specifically, NUS can be modeled as

y = RΩINx + n = ΘNUSs + n (2)

with ΘNUS = RΩINFH , where we assume DFT sparsity. As
shown in [38], randomly-subsampled Fourier matrices enable
faithful signal recovery from M ∼ K log4(N) compressive
measurements. Hence, NUS not only enables sampling rates
close to the Landau rate [2], but is also conceptually simple.

A high-level architecture of NUS, as depicted in Figure 2,
consists of a sample-and-hold (S&H) stage and an ADC
supporting the shortest sampling period used by the NUS [15],
[16]. The main challenge of NUS is in the acquisition of a
wideband analog input signal. While the average sampling rate
can be decreased significantly, the ADC still needs to acquire
samples from wideband signals with frequencies potentially
reaching up the maximal input signal frequency. This key
observation has two consequences: First, NUS requires a
sampling clock operating at the time resolution of the order of
the Nyquist rate, which is typically power expensive. Second,
NUS is sensitive to timing jitter: informally speaking, if the
input signal changes rapidly, a small error in the sampling time
can result in a large error in the acquired sample.

2) Variable Rate Sub-Nyquist Sampling: Variable-rate sub-
Nyquist sampling builds upon the fundamentals of bandpass
sampling [40]. In principle, this A2I conversion strategy
undersamples the input signal with multiple branches (i.e.,
a bank of parallel bandpass sampling stages) with sampling
rates that differ from one branch to the other. There exist two
main instances of this concept, namely multi-rate sampling
(MRS) that uses a fixed set of sampling frequencies for each
branch [8], [31], [32] and the Nyquist-folding receiver (NYFR)
that modulates the sampling frequencies [41]. Both approaches
rely on the fact that the signal of interest is aliased at a
particular frequency when undersampled at a given rate on a
given branch, but the same signal may experience aliasing at a
different frequency when sampled at a different rate on another
branch. Empirical results show that this approach enables signal
recovery for a sufficiently large number of branches [30].

From a hardware perspective, MRS is relatively simple as
it avoids any randomness during the sampling stage and each
branch performs conventional bandpass sampling. Nevertheless,
MRS faces the same issues of traditional bandpass sam-
pling [40]: it suffers from noise folding, i.e., wideband noise in
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the signal of interest is folded (or aliased) into the compressive
measurements, which results in reduced sensitivity [19], [20].

3) Random Modulation: Random modulation (RM) is used
by a broad range of A2I converters. Existing architectures first
multiply the analog input signal by a pseudo-random sequence,
integrate the product over a finite time window, and sample
the integration result. The random-modulation preintegrator
(RMPI) [5], [34] and its single branch counterpart, the random
demodulator (RD) [18], [33], are the most basic instances of this
idea. However, modulating the signal with a (pseudo-)random
sequence is only suitable for very specific signal classes, such as
signals that are well-represented by a union of sub-spaces [37].
In addition, the (pseudo-)random sequence generator must still
run at Nyquist rate. The main advantage of the modulated
wide-band converter (MWC) is to reduce the bandwidth of
the S&H to run at sub-Nyquist rates [35], [37]. Indeed, the
MWC avoids a fast sampling stage and, instead, requires a
high-speed mixing stage which is typically more wideband. A
recent solution that avoids some of the drawbacks of RM is
the quadrature A2I converter (QAIC) [17]. This method relies
on conventional down-conversion before RM, thus focusing
on a small RF band rather than the entire bandwidth.

C. Limitations of Existing A2I Converters

While numerous A2I converter architectures have been
proposed in the literature, their limited practical success is
a result of many factors. From a theoretical perspective, one is
generally interested in acquisition schemes that minimize the
number of measurements while still enabling faithful recovery
of a broad range of signal classes. From a hardware perspective,
the key goals are to minimize the bandwidth requirements,
the number of branches, and the power consumption, while
being tunable to the application at hand. Finally, suitable A2I
converters should exhibit high sensitivity and be robust to
hardware impairments and imperfections. We now summarize
the key limitations of existing A2I converter architectures as
discussed in Section II-B with these desirables in mind.

Most of the discussed A2I converters rely on random mixing
or sampling. Such architectures either require large memories
to store the random sequences or necessitate efficient means for
generating pseudo-random sequences [42]. In addition, such
unstructured sampling schemes prevent the use of fast linear
transforms (such as the fast Fourier transform) in the recovery
algorithm, which results in excessively high signal processing
complexity and power consumption [16], [21]. From a hardware
perspective, large parts of the analog circuitry of many A2I
converters must still support bandwidths up to the Nyquist
rate, even if the average sampling rate is significantly reduced.
For example, NUS [15] and MRS [32] require S&H circuitry
and ADCs designed for the full Nyquist bandwidth. Similarly,
the RD and RMPI require sequence generators that run at
the Nyquist rate. Another drawback of many A2I converters,
especially for MRS or the MWC [11], [35]–[37], is that they
require a large number of branches, which results in large
silicon area and potentially high power consumption.

A more fundamental issue of most CS-based A2I converter
solutions for wideband RF sensing applications is noise

non-uniform clock

low-rate
ADC
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wavelet
transform

Fig. 3. High-level architecture of non-uniform wavelet sampling (NUWS):
Conceptually, NUWS first performs a continuous wavelet transformWx(t) of
the input signal x(t), followed by NUS as shown in Figure 2 to obtain wavelet
samples x[n]. A practical hardware architecture is discussed in Section V.

folding [19], [20], which prevents their use for applications
requiring high sensitivity, such as activity detection of low-
SNR signals. In addition, most A2I converters lack versatility
or adaptability to the application at hand, i.e., most system
parameters are fixed at design time and signal acquisition is non-
adaptive (one cannot select the next-best sample based on the
history of acquired samples). However, adaptive CS schemes
have the potential to significantly reduce the acquisition time
or the complexity of signal recovery [43].

III. NON-UNIFORM WAVELET (BANDPASS) SAMPLING

We now propose a novel CS-based A2I converter that
mitigates some of the drawbacks of existing A2I converter
solutions. Our approach is referred to as non-uniform wavelet
sampling (NUWS) and essentially acquires wavelet coefficients
directly in the analog domain. We first introduce the principle
of NUWS and then adapt the method to multi-band signals,
resulting in non-uniform wavelet bandpass sampling (NUWBS).
We then highlight the advantages of NUWS and NUWBS
compared to existing A2I converters for RF feature extraction.

A. NUWS: Non-Uniform Wavelet Sampling

The operating principle of NUWS is illustrated in Figure 3.
In contrast to NUS (cf. Figure 2), NUWS first transforms the
incoming analog signal x(t) into a wavelet frame Wx(t) (see
Section IV-A for the basics on wavelets) and then performs
NUS to acquire a small set of so-called wavelet samples x[n].
As illustrated in Figure 4(a), NUS is equivalent to multiplying
the input signal x(t) with a Dirac comb followed by the
acquisition of a subset of samples (indicated by black arrows).
In contrast, as shown in Figure 4(b), NUWS multiplies the
input signal x(t) with wavelets, integrates over the support of
each wavelet, and samples the resulting wavelet coefficients.

From a high-level perspective, NUWS has the following ad-
vantages over NUS. First, the continuous wavelet transform W
reduces the bandwidth of the input signal x(t), which relaxes
the bandwidth of the S&H circuit and the ADC (see Section IV
for the details). Second, NUWS enables full control over a
number of parameters, such as the sample time instants, wavelet
bandwidth, and center frequency. In contrast, NUS has only
one degree-of-freedom: the sample time instants.

In discrete time, the sensing matrix Φ for NUWS can be
described by taking a small set Ω of rows of a (possibly over-
complete) wavelet frame WH ∈ CW×N , where WH contains
a specific wavelet on each row and W ≥M corresponds to
the total number of wavelets. Hence, the sensing matrix of
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Fig. 4. Illustration of the sampling patterns of NUS, NUWS, and NUWBS.
NUS multiplies the incoming signals with a punctured Dirac comb; NUWS
multiplies the incoming signals with a series of carefully-selected wavelets;
NUWBS uses a wavelet comb that is sub-sampled in time and with wavelets
of variable central frequency in order to filter the sub-bands of interest.

NUWS is Φ = RΩWH , where M = |Ω| is the number of
wavelet samples. We can describe the NUWS process as

y = RΩWHx + n = ΘNUWSs + n (3)

with the effective sensing matrix ΘNUWS = RΩWHFH where
we, once again, assumed sparsity in the DFT domain.1 The
necessary details on wavelets are provided in Section IV-A.

By comparing (3) with (2), we see that NUS subsamples the
inverse DFT matrix, whereas NUWS subsamples the (possibly
overcomplete) matrix (FW)H , which is the Hermitian of the
Fourier transform of the entire wavelet frame. We can write
the acquisition of the frequency-sparse signal s as

y = RΩ(FW)Hs + n, (4)

which implies that each wavelet sample is equivalent to an inner
product of the Fourier transform of the wavelet, i.e., ŵi = Fwi,
with the sparse representation s as yi = 〈ŵi, s〉+ ni, i ∈ Ω.

As we will discuss in detail in Section IV-A, the considered
wavelets essentially correspond to bandpass signals with a
given center frequency, bandwidth, and phase (given by the
sample time instant). Thus, each wavelet sample corresponds
to pointwise multiplication of the sparse signal spectrum with
the bandpass filter equivalent to the Fourier transform of
the wavelet. Figure 5 illustrates this property and shows the
absolute value of the matrix (FW)H for the complex-valued
Morlet wavelet [44] with six scales. Evidently, each wavelet
captures a different portion of the spectrum with a different
phase (phase differences are not visible) and bandwidth. We
note that for the Morlet wavelet, the bandwidth and center
frequency of each wavelet depends on the scale.

B. NUWBS: Non-Uniform Wavelet Bandpass Sampling

Non-uniform wavelet bandpass sampling (NUWBS) is a
special instance of NUWS optimized for multi-band RF signals.

1Depending on the application, other sparsity bases Ψ than the inverse DFT
matrix FH can be used; an investigation of other bases is ongoing work.
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Fig. 5. Absolute value of the product between the Hermitian of the complex-
valued matrix and inverse DFT matrix |[WHFH ]k,`|. We see that each scale
focuses on a different frequency band, whereas the bandwidth within each
scale is fixed and the phase changes for different wavelets.

The capability of handling such signals is of particular interest
for non-contiguous carrier aggregation, a promising technology
to enhance IoT throughput needs [45]. Figure 6(a) illustrates
a typical multi-band scenario in which RF signals occupy
multiple non-contiguous frequency bands that may be sparsely
populated; in addition, there may be interferers outside the
sub-bands of interest. A standard way to acquire multi-band
signals is to use a filterbank with one dedicated filter and RF
receiver per sub-band. Besides requiring high complexity and
power, and suffering from lack of flexibility, such designs are
typically unable to exploit signal sparsity within the sub-bands.

Traditional bandpass sampling [40] or NUS [26]–[29] for
multi-band signals would result in several issues. First and
foremost, noise and interferers outside the sub-bands of interest
will inevitably fold (or alias) into the measurements—a phe-
nomenon known as noise folding [19], [20], [40]. Furthermore,
for NUS, the a-priori information on the occupied sub-bands
is generally not exploited during the acquisition process.

In stark contrast to these methods, NUWBS exploits the
multi-band structure and sparsity within each sub-band, while
being resilient to interferers or noise outside of the bands of
interest. As illustrated in Figure 4(c), NUWBS multiplies the
incoming signals with a wavelet comb on a regular sampling
grid, sub-sampled in time with respect to the Nyquist rate.
Unlike NUWS, there are no overlaps between wavelets, which
prevents the need for a large number of branches—typically
one branch per sub-band is sufficient. Furthermore, the center
frequencies of the wavelets can be focused on the sub-bands
of interest, which renders this approach resilient to out-of-band
noise and interferers, effectively reducing noise folding and
aliasing without the need for a filter bank. Finally, as shown
in Section IV-C, NUWBS is able to leverage CS and achieves
near-optimal sampling rates, i.e., close to the Landau rate.

The operating principle of NUWBS is illustrated in Figure 6.
Every NUWBS measurement acts like a filter, which removes
out-of-band noise and interference (see Figure 6(b)). Then, as
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Fig. 6. Illustration of a multi-band RF signal (a) consisting of two sparsely-
populated sub-bands and an interferer (red). NUWBS first performs wavelet
bandpass sampling to extract both sub-bands (b); then, NUS is used to minimize
the number of wavelet samples, effectively reducing the sampling rate (c).

shown in Figure 6(c), by taking a subset of wavelet samples
(i.e., wavelet bandpass sampling), NUWBS reduces the average
sampling rate. Traditional recovery methods for CS can then
be used to recover the multi-band signals of interest. From a
mathematical viewpoint, NUWBS can be modeled as in (3)
with the differences that the subset of samples Ω is adapted
to the sub-bands of interest and the wavelet samples are on a
regular sub-sampled grid with non-overlapping wavelets.

C. Advantages of NUWS and NUWBS

Wavelets find broad applicability in wireless communication
systems, including source coding, modulation, interference
mitigation, and signal de-noising [46], [47]. Nevertheless,
CS-based methods that rely on wavelet sampling are rather
unexplored, especially when dealing with RF signals. A notable
exception is the paper [48], in which a multi-channel acquisition
scheme based on Gabor frames is proposed that exploits
the sparsity in the time-frequency domain. In contrast to
NUBS/NUWBS, this approach relies on a parallel set of Gabor
sampling branches, where each Gabor wavelet has a fixed
bandwidth and the sampling rate is reduced using the MWC.

We next summarize the benefits of wavelet sampling and
the advantages of NUWS/NUWBS to RF applications.

1) Tunability and Robust Feature Acquisition: Wavelets
offer a broad range of parameters including time instant, center
frequency, and bandwidth (see Section IV-A for the details).
This flexibility can be exploited to adapt each measurement
to the signal or feature class at hand or to improve robustness
to out-of-band noise and interferers, or aliasing. For NUWBS,
we take advantage of this property by focusing each wavelet
sample on the occupied sub-bands, which yields improved
sensitivity by mitigating noise folding and interference.

2) Adaptive Feature Extraction: The tree structure of
wavelets across scales [49] is a well-exploited property in
data compression [50]. In RF applications, one can exploit
this property to develop adaptive feature extraction schemes

that first identify RF activity on a coarse scale (e.g., in a wide
frequency band) and then, adaptively “zoom in” to sub-bands
that exhibit activity for a more detailed analysis. This approach
avoids traditional frequency scanning and has the potential to
enable faster RF feature extraction than non-adaptive schemes.

3) Structured Sampling: A broad range of CS-based A2I
converter solutions focuses on randomized or unstructured
sampling methods. Such methods typically require large storage
(for the sampling matrices) and high complexity during signal
recovery. In contrast, structured sensing approaches are known
to avoid these drawbacks [51]. Wavelets exhibit a high degree
of structure and their parametrization requires low storage.
Furthermore, recovery algorithms that rely on fast (inverse)
wavelet transforms are computationally efficient [52].

4) Relaxed Hardware Constraints: From a hardware per-
spective, random sequences or clock generation circuitry that
operates at Nyquist rates can—in contrast to NUS and RD—
be avoided due to the sub-Nyquist operation of NUWS and
NUWBS. Hence, the associated clock synthesis and clock-
tree management can be relaxed [53]. In addition, by sub-
sampling the wavelet coefficients, we can further reduce the
ADC sampling rates. Due to the signal correlation with the
wavelet prior to sampling, the bandwidth requirements of the
S&H circuit and the ADC are relaxed as well. In addition,
NUWBS prevents overlapping wavelets, which enables the use
of a small number of parallel sampling branches. This property
reduces the circuit area and power consumption. As we will
show in Section V, widely-tunable wavelets can be generated
efficiently in analog hardware.

IV. WAVELET DESIGN AND VALIDATION OF NUWBS
This section summarizes the basics of wavelets and then,

discusses wavelet selection and design for NUWS/NUWBS.
We finally validate NUWBS for multi-band RF sensing.

A. Wavelet Prerequisites

For the sake of simplicity, we will use both continuous-time
and discrete-time signal representations and often switch in
between without making the discretization step explicit.

1) Wavelet Basics: A wavelet is a continuous waveform that
is effectively limited in time, has an average value of zero,
and bounded L2-norm (often normalized to one). Wavelets for
signal processing were introduced by Morlet [44] who showed
that continuous-time functions x(t) in L2 can be represented by
a so-called wavelet ψs,δ(t) that is obtained by scaling s ∈ R+

and shifting δ ∈ R a so-called mother wavelet ψ(t). The scaling
and shifting operations can be made formal as follows:

ψs,δ(t) =
1√
s
ψ

(
t− δ
s

)
, s ∈ R+, δ ∈ R. (5)

The so-called wavelet coefficient Wxs,δ of a signal x(t) for
a given wavelet ψs,δ(t) at scale s and with time shift δ, is
defined as the following inner product [54], [55]:

Wxs,δ = 〈x, ψs,δ〉 =

∫
R
x(t)

1√
s
ψ∗
(
t− δ
s

)
dt. (6)

In words, each wavelet coefficient Wxs,δ compares the
signal x(t) to a shifted and scaled version ψs,δ(t) of the
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Fig. 7. Real part of the product between the Hermitian of the Gabor and
inverse DFT matrix A = <{WHFH} at a given center frequency and for
various time shifts. Signals far away from the center frequency are attenuated,
which effectively mitigates out-of-band noise, interference, and aliasing.

mother wavelet ψ(t). By comparing the signal to wavelets
for various scales and time shifts, we arrive at the continuous
wavelet transform (CWT) Wxs,δ. The CWT represents one-
dimensional signals in a highly-redundant manner, i.e., by two
continuous parameters (s, δ). All possible scale-time atoms
can be collected in an (overcomplete) frame given by

D =
{
ψs,δ(t)

∣∣ δ ∈ R, s ∈ R+
}
.

In practice, one is often interested in selecting a suitable
subset of scales and shifts that enable an accurate (or exact)
representation of original signal s(t) of interest. In what follows,
we are particularly interested in wavelets that can be generated
efficiently in hardware; such wavelets are discussed next.

2) Gabor Frame: The Gabor transform is a well-known
analysis tool to represent a signal simultaneously in time and
frequency, similarly to the short-time Fourier transform (STFT).
The set of Gabor functions (often called Gabor frame) is, strictly
speaking, not a wavelet basis—the formalism, however, is very
similar [56], [57]. Gabor frames consist of functions (or atoms)

ψfcν ,δk(t) = p(t− δk)ej2πf
c
ν t, (7)

which are parametrized by the center frequencies f cν and time
shifts δk of a windowing function p(t), where ν = 1, 2, . . .
and k = 1, 2, . . . are the indices of discrete frequency and
time shifts, respectively. In practice, one often uses a Gaussian
windowing function p(t) that is characterized by the width (or
duration) parameter τ . Based on [56], the time and frequency
representation of the unit `2-norm Gabor atoms with a Gaussian
window are defined as follows:

ψfcν ,δk(t) =
2

1
4

√
τπ

1
4

ej2πf
c
ν (t−δk)e

−
(
t−δk
τ

)2

(8)

Ψfcν ,δk
(f) = (τ

√
2π)

1
2 e−j2πδkfe−(πτ(f−fcν ))2 . (9)

There exists a trade-off when choosing the width parameter τ :
a large width increases the frequency resolution while lowering
the time resolution, and vice versa. As it can be seen from (9),
the Fourier representations of Gabor atoms decay exponentially
fast, which is the reason for their excellent frequency-rejection
properties, i.e., signals sufficiently far away of the center
frequency f cν are strongly attenuated. This filtering effect of
Gabor atoms is illustrated in Figure 7, which shows the real part
of the matrix (FW)H for one particular center frequency f cν
and various time shifts δk. Clearly, signals that are sufficiently
far apart from the center frequency f cν will be filtered.

3) Complex-Valued Morlet Wavelet (C-Morlet): In contrast
to the Gabor frame, the complex-valued Morlet (C-Morlet)
wavelet uses windowing functions whose width parameter is
linked to the central frequency (cf. Figure 5) [54], [55]. Recall
from (5) that higher scales correspond to the most “stretched”

Fig. 8. Frequency domain amplitude of C-Morlet wavelets for 6 scales as
shown in Figure 5; the bandwidth of the wavelets increases with the central
frequency, which is in contrast to Gabor atoms that have constant bandwidth.

wavelets (in time) and hence, wavelets measure long time
intervals for features containing low-frequency information and
shorter intervals for high-frequency information. In fact, the
width of a C-Morlet is linked to the central frequency so that
there is a constant number of oscillations per effective wavelet
duration. More formally, the C-Morlet shows a constant quality
factor Q across scales. As a result, the C-Morlet wavelets coin-
cide with (8) and satisfy the additional constraint accross scales
that the central frequency f cν and the wavelet bandwidth BWp

satisfy the following condition: Q = f cν/BWp = f cντνπα
√

2.
Here, the parameter α is 0.33 for a −10 dB referred bandwidth.
Figure 8 shows the spectrum amplitude for six scales of the
C-Morlet wavelet family for a given quality factor—clearly
the wavelet bandwidth is linked to the scale.

B. Wavelet Selection for the Design of NUWBS

We are, in principle, free in choosing the width, frequency,
and time instant of each wavelet. In practice, however, we
are interested in wavelets that can be generated efficiently in
hardware, enable the use of a small number of branches, and
extract the RF features of interest. We now outline how to
select suitable wavelet parameters for NUWBS.

1) Parameter Selection: As detailed in Section III-B,
NUWBS first performs a projection of the input signal on a
select set of wavelets (or atoms) and then, subsamples the
wavelet coefficients. Since Gabor frames contain a highly
redundant set of atoms, it may—at first—seem counter-intuitive
to use an overcomplete frame expansion WH ∈ CW×N with
W � N of the signal x as our ultimate goal is to reduce
the number of measurements. It is thus critical to select a
suitable subset Ω of atoms that enables robust signal recovery
or feature extraction with a minimum number of measurements
M = |Ω| � N � W . As we will see, the high redundancy
turns out to be beneficial as it allows us to select a potentially
better subset of measurement, e.g., compared to NUS that can
only select a subset of rows of the Fourier matrix.

If we are interested in optimizing our set Ω of wavelet
samples for sparse signal recovery, which is the original
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motivation of CS, then we can minimize the so-called mutual
coherence [5] between the sub-sampled sensing matrix RΩWH

and the sparsifying basis Ψ = FH , defined as

µm(RΩWH ,FH) = max
i,k
|〈[RΩW]i, [F

H ]k〉|. (10)

The mutual coherence is related to the minimum number of
measurements M that are required to guarantee recovery of
K-sparse signals [5], [58]. Hence, we wish to find an optimal
set Ω of cardinality M that minimizes (10); unfortunately, this
is a combinatorial optimization problem. We therefore resort
to a qualitative analysis and heuristics to identify a suitable
set of wavelets that enables the recovery of sparse signals.

According to the closed-form expression in (8), the Gabor
atoms are characterized by the width parameter τ . Our goal is
to find the optimal width parameter τ̂ , depending on the input
signal (e.g., its bandwidth). Intuitively, the width parameter τ
should be linked to the bandwidth BWRF of the RF signal.
In fact, the effective wavelet width should be designed so
that each wavelet measurement yi, i = 1, 2, . . . ,M , collects
enough information over the bandwidth of interest or, in other
words, the pulse spectrum should be as flat as possible over the
bandwidth of interest. We can make this intuition more formal
by considering the so-called local mutual coherence [3], [59]

µm(WH
s ,F

H
Σ ) = max

i,k
|〈[Ws]i, [F

H
Σ ]k〉| (11)

between the wavelet sampling matrix WH
s at a particular

scale s and the sparsifying basis limited to the subset of
frequencies Σ of interest (e.g., limited to the potentially active
or occupied sub-bands).

From the Gabor frame definition in (8), we can compute
a closed form expression of the mutual coherence between a
Gabor frame having a fixed width parameter τ and the Fourier
basis. Assuming that the atom’s central frequency f cν is centered
to the band of interest and is a multiple value of the frequency
resolution ∆f = fNyq/N , we can compute the local mutual
coherence defined in (10) as follows:

µm(WH
s ,F

H
Σ ) = (τ

√
2π)1/2

Figure 9 shows the evolution of the mutual coherence as well
as the theoretical lower bound (the purple horizontal line) given
by 1/

√
N [42], [60]. The curves in this figure are obtained

by setting the dimension to N = 256 and computing inner
products between the rows of Gabor frame and the rows of the
inverse discrete Fourier restricted to the band of interest FHΣ .
The (local) mutual coherence is then computed according to
(10) (and Eq. 11). The individual points on the curves are
obtained by tuning the wavelet bandwidth BWp divided by
the occupied RF bandwidth BWRF. Note that the shorter the
atom (or wavelet) duration τ , the wider its bandwidth BWp

is. As a result, the energy of the sensing vector is spread in
the frequency domain and hence, captures information of all
frequencies within the sub-band of interest. The limit τ → 0
corresponds to the Dirac comb (the bandwidth tends to infinity)
for which the mutual coherence is known to reach the Welch
lower bound [61]. The limit τ →∞ corresponds to the case in
which the sensing vectors are localized in the frequency domain,
i.e., the measurements are maximally coherent with the Fourier

Dirac Comb Sampling

Wavelet Comb Sampling

Fig. 9. Mutual coherence µm between the Gabor frame WH and the inverse
DFT matrix FH as a function of the wavelet bandwidth (BWp) relative to the
RF signal bandwidth BWp/BWRF.

basis. Hence, for wavelet sampling, we can determine the width
parameter τ to match the signal of interest. In practice, one
can trade-off filtering performance (to mitigate noise folding
and aliasing) versus measurement incoherence (to reduce the
number of required CS measurements).

2) Gabor Time-Shift Selection: Besides selecting the optimal
width parameter τ of the Gabor atoms, we have to identify suit-
able frequencies f cν and time shifts δk. Consider, for example,
the multi-band signal shown on the left side in Figure 10, where
we assume that we know the coarse locations of the potentially
active sub-bands (e.g., determined by a given standard), but
not the locations of the non-zero frequencies within each sub-
band (e.g., the frequency slots used for transmission). For
simplicity, the axes have been normalized so that the y-axis
stands for the frequency index ν and the x-axis stands for the
time shift index k. We define the following parameters: the
sub-sampling ratio γ = fNyq/BWRF is the ratio between the
Nyquist frequency fNyq and the bandwidth of each sub-band
BWRF; the aggregate bandwidth BWag is the total bandwidth of
all occupied sub-bands, i.e., in our example BWag = 2BWRF.
Equivalently, the aggregate bandwidth can be expressed by
the cardinality of the occupied frequency indices |Σ| so that
BWag = ∆f |Σ|, where ∆f is the bandwidth per frequency bin.

Our proposed Gabor frequency and time shift selection
strategy relies on two principles. First, in order to acquire
information in a given sub-band, we consider a fixed central
frequency centered in the sub-band of interest. Second, in the
time domain we perform bandpass sampling with the goal of
mixing the signal of interest to (or near to) baseband. This
means that instead of sampling at all of the available time shifts
defined by the Nyquist rate (shown by the vertical black dashed
lines in Figure 10), we only acquire a subset defined by the
sub-sampling factor γ (the red circles in Figure 10), effectively
performing wavelet bandpass sampling. As a result two adjacent
Gabor atoms will not overlap in time since, by construction,
the sampling rate is inversely proportional to the pulse duration.
In the case of two sub-bands the aggregate sampling rate is
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Fig. 10. Time-frequency grid of the Gabor atoms to be acquired via NUWBS;
our approach makes use of a-priori knowledge of the occupied frequency
bands; Atom selection relies on constant frequency and bandpass sampling in
time for 2 sub-bands; the used parameters are BWag = 2×BWRF = 2×16∆f ,
γ = 16, and N = 256 samples.

set to 2fNyq/γ equivalent to the aggregate bandwidth equal to
2BWRF. We note that in addition to bandpass sampling, we
can perform NUS on the acquired wavelet samples to further
reduce the sampling rates. As shown next, this is typically
feasible in the case where we know a-priori that the sub-bands
are sparsely populated.

C. Performance Validation of NUWBS
We now demonstrate the efficacy of NUWBS for spectral

activity detection in a multi-band RF application. In particular,
we simulate an empirical phase transition [39], [62] that
characterizes the probability of correct support recovery, i.e.,
the rate of correctly recovering the true active frequency bins
from NUWBS measurements. As a reference, we also include
the theoretical phase transition of `1-norm based sparse signal
recovery for a Gaussian measurement ensemble [62].

We use N = 256 frequency bins and two active sub-bands
with a total number of |Σ| = 32 potentially active frequency
bins. The signals within these bins are assumed to be K ≤ |Σ|
sparse. The NUWBS measurements are selected as discussed
in Section IV-B and illustrated in Figure 10, i.e., we form
the M × N matrix ΘNUWBS = RΩWHFH by fixing the
frequency f cν at the center of each sub-band and use a sub-
sampling ratio per branch of γ = 2N/|Σ| = 16. We generate
measurement-sparsity pairs (M,K), and for each pair, we
generate a synthetic K-sparse signal within the two allowed
sub-bands; the K non-zero coefficients are complex-valued
numbers of unit amplitude and random phases. For support
recovery, we use orthogonal matching pursuit [60], restricted
to the sub-bands of interest, i.e., we assume that the sub-band
support Σ is known a-priori but not the active coefficients
within these sub-bands. We perform support set recovery for
100 Monte–Carlo trials and report the average success rate.

Figure 11 shows the empirical phase transition, where white
areas indicate zero errors for support set recovery. The x-axis

Fig. 11. Empirical phase transition graph of NUWBS for multi-band signal
acquisition compared to the theoretical `1-norm phase transition for a Gaussian
measurement ensemble (shown with the dashed purple line). NUWBS exhibits
similar performance as the theoretical phase transition, which demonstrates
that NUWBS enables near-optimal sample rates.

shows the normalized compression ratio, i.e., the number of
measurements compared to the total sub-band width M/|Σ|;
the y-axis shows the normalized sparsity level, i.e., the fraction
of non-zeros compared to the total sub-band width K/|Σ|.
We see that NUWBS exhibits a similar success-rate profile as
predicted by the theoretical phase transition (i.e., recovery will
fail above and succeed below the dashed purple line), which is
valid in the asymptotic limit for `1-norm based sparse-signal
recovery from Gaussian measurements. This key observation
implies that NUWBS in combination with the atom selection
strategy discussed in Section IV-B exhibits near-optimal sample
complexity in multi-band scenarios. We emphasize that even for
the relatively small dimensionality of the simulated system (i.e.,
N = 256), NUWBS is already in satisfactory agreement with
the theoretical performance limits for sparse signal recovery.

V. IMPLEMENTATION ASPECTS OF NON-UNIFORM
WAVELET (BANDPASS) SAMPLING

This section discusses hardware implementation aspects to
highlight the practical feasibility of NUWS/NUWBS and their
advantages over existing A2I converter solutions.

A. Architecture Considerations of NUWBS

Figure 12 shows the critical architecture details for NUWBS
that uses Gabor frames or C-Morlet wavelets. The continuous-
time input signal x(t) is first multiplied (or mixed) with a
wavelet comb pc(t). The resulting signal is then integrated over
a period Ts (for each wavelet) and subsampled at a rate fs.
The rate fNyq of the input signal x = [x1, . . . , xN ]T reduces
to a uniform sub-sampling rate fs of the measurements y =
[y1, . . . , yM ]T such that NTNyq = MTs. For uniform sub-
sampling at rate fs (i.e., we do not perform NUS of the wavelet
samples), the compression ratio N/M is proportional to the
sub-sampling ratio κ = fNyq/fs. If we randomly select a subset
of samples of the sample stream (in addition to uniform sub-
sampling), then we can further lower the (average) sampling
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Fig. 12. Generic serial NUWBS architecture to acquire Gabor frame or wavelet
samples. NUWBS first multiplies the input signal x(t) with a wavelet comb
pc(t) at rate 1/Ts and integrates the result. One then takes a random set of
wavelet samples and quantizes them using an ADC. A wavelet is defined by
its central frequency fc and width parameter τ (the effective pulse duration).

rate, effectively implementing CS. The sampling diversity of
NUWBS comes from the wavelet parameters settings, namely
the width parameter τ and the central frequency f c.

While the architecture depicted in Figure 12 is purely serial,
one can deploy multiple parallel branches to (i) further increase
the diversity of the CS acquisition stage, (ii) reduce the ADC
rate by interleaved processing, or (iii) sense multiple sub-
bands. In addition, a multi-branch architecture can simplify the
circuitry for each branch by fixing the center frequency, pulse
width, delay, or pulse rate per branch. For such an architecture,
each branch performs wavelet bandpass sampling at a given
scale with fixed bandwidth and center frequency.

B. Idealistic CWT Bandpass Sampling versus Realistic Serial
Wavelet Bandpass Sampling

This section discusses the commonalities and differences
between idealistic CWT bandpass sampling and the serial
wavelet bandpass sampling architecture shown in Figure 12.

1) Analysis of CWT Bandpass Sampling: The wavelet
coefficient Wxs,δ of the signal x(t) at a scale s and time
shift δ is defined in (6). Assume that the time-shift parameter δ
is continuous so that CWT is a continuous function in δ. Then,
the scalar product in (12) can be rewritten using the convolution
operator ∗ as follows [54]:

Wxs(δ) = (x ∗ ψ̃s)(δ). (12)

Here, ψ̃s(u) = 1√
s
ψ∗(−us ). We can now compute the Fourier

transform F in the time-shift parameter δ to obtain

F{Wxs(δ)} = X(f)Ψ̃s(f), (13)

where Ψ̃s(f) is the Fourier transform of the wavelet ψ̃s(u)
given by

Ψ̃s(f) = F
{
ψ̃s(u)

}
=
√
sΨ∗(−sf) (14)

and Ψ(f) is the Fourier transform of the mother wavelet ψ(t).
From (13), we see that the CWT Wxs(δ) is equivalent

to filtering the input signal X(f) with the transfer func-
tion HCWT(f) = Ψ̃s(f). We can now analyze the result of
bandpass sampling applied to the function Wxs(δ). To this
end, we assume a sampling rate fs well-below the Nyquist
bandwidth of the input signal x(t) and below the bandwidth
of the mother wavelet, i.e., fs ≤ BWp � fNyq.

We have the following discrete-time output signal

y[t = nTs] =

n=+∞∑
n=−∞

Wxs(nTs)δ(t− nTs)

sampled at fs = 1/Ts. The output signal y[t = nTs]
corresponds to the bandpass sampled version of signal x(t)
after filtering it with the transfer function HCWT(f) = Ψ̃s(f).
In contrast to classical bandpass sampling, the initial CWT
extracts a particular frequency band defined by the center
frequency f c and the bandwidth BWp of the wavelets. In
words, CWT bandpass sampling is an effective combination of
filtering and mixing via bandpass sampling. It is important to
realize that this scheme requires access to the continuous-time
CWT of the signal prior to sub-sampling. In practice, however,
we do not have access to the CWT—instead, we have to make
use of the wavelet sampling architecture shown in Figure 12.

Performing a CWT in hardware is infeasible and would
require an excessively large number of branches, i.e., a dedi-
cated branch per time shift δ or convolution result every TNyq
second as the CWT atoms have infinite support. In contrast, the
architecture proposed in Figure 12 performs a convolution of
the input signal with the atom ψ̃s(δ) every Ts second (instead
of TNyq) in a serial manner. While both approaches are similar,
there are important differences in the filtering capabilities. To
this end, we investigate the out-of-support Σ (out-of-band
interference) rejection performance for serial wavelet bandpass
sampling that can be implemented (cf. Figure 12) and the
idealistic CWT bandpass sampling approach.

2) Analysis of Serial Wavelet Bandpass Sampling: Consider
the case in which both the wavelet center frequency and
bandwidth remains constant for the entire wavelet comb. This
is the case of the Gabor frame projection reported on a single
branch in Figure 10. We will use Figure 13, which illustrates
the spectrum representation, to assist our discussion. The input
signal x(t) in Figure 13(a) is first multiplied (mixed) with a
wavelet comb pc(t) shown in Figure 13(b). The mixing result
z(t) can be expressed as follows:

z(t) = x(t)pc(t) = x(t)

n=+∞∑
n=−∞

p(t− nTs),

where p(t) is the considered wavelet. The Fourier transform
of the signal z(t) shown in Figure 13(c) is given by

Z(f) = fsX(f) ∗ P (f)

k=+∞∑
k=−∞

δ(f − kfs), (15)

which reveals that the spectrum of the mixed signal Z(f) is the
convolution between the Fourier transform of the input signal
X(f) (cf. Figure 13(a)) and a Dirac comb weighted by the
Fourier transform of the wavelet P (f). According to (9) the
Gaussian envelope of Gabor atoms or C-Morlet wavelets show
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exponentially fast decay, which implies that the infinite sum
can effectively be reduced to a small number of Dirac delta
functions shown in Figure 13(b). Furthermore, we see that
NUWBS effectively reduces noise folding by pre-filtering the
spectrum with the pulse P (f) prior to band-pass sampling; this
is contrast to conventional band-pass sampling in which noise
from the entire Nyquist bandwidth folds into each sample [40].

In order to match this approach with the bandpass CWT
approach discussed in Section V-B1, we can see that p(t)
corresponds to the wavelet atom at the scale s and time shift
δ = 0 with Fourier transform

P (f) = F
{

1√
s

Ψ

(
t

s

)}
=
√
sΨ(sf). (16)

By comparing (14) with (16), we see that one is the complex
conjugate of the other. In the architecture shown in Figure 12,
the mixing product z(t) is low-pass filtered. A typical filter
that can be implemented corresponds to an integration over
a rectangular window of duration Ts. The frequency-domain
representation of this integrator corresponds to the cardinal
sine (sinc) function. Hence, the Fourier transform Y (f) of the
filtered and mixed signal Z(f) shown in Figure 13(d) is

Y (f) = Z(f)Tssinc(Tsf), (17)

where we define sinc(u) = sin(πu)/(πu). In the architecture
shown in Figure 12, the signal y(t) is finally decimated by a
factor κ such that κ = fNyq/fs, i.e., the entire Nyquist band
is folded into the frequency range [−fs/2, fs/2]. Hence, the
sample stream of the decimated signal is

yd[nTs] = y[nκ∆t] with ∆t = 1/fNyq

and the Fourier transform of the discrete signal yd[nTs] shown
in Figure 13(e) is given by

Yd[e
2jπf ] =

1

κ

κ−1∑
r=0

Y
(
e2j f−rκ

)
. (18)

According to this equation, the serial wavelet bandpass sam-
pling method collapses all the sinc-filtered and Gaussian

weighted convolution products into the band [−fs/2, fs/2]. As
illustrated in Figure 13(e), because of the sub-sampling process,
the output frequency location is folded to {fi/fs}fs with
{fi/fs} the fractional part between the interference frequency
fi and the wavelet repetition rate, equal in our case to the
output sampling frequency fs. The equivalent filtering effect
is given by

HWBS(f) =

κ/2−1∑
k=−κ/2

sinc(Ts(f − kfs))P (kfs)

=

κ/2−1∑
k=−κ/2

sinc(Ts(f − kfs))e−(πτkfs)
2

. (19)

The expression in (19) highlights the out-of-band rejection
capabilities of the proposed (realistic) serial wavelet bandpass
sampling approach in comparison with the (idealistic) CWT
bandpass method computed in (13). We emphasize that the
major differences between the serial wavelet bandpass sampling
approach and the CWT baseband sampling comes from the fact
that the equivalent filter transfer function differs from a mixture
of sinc-shaped for the former (see Eq. 19) to a Gaussian shape
(with infinite support) for the latter (see Eq. 14).

3) Simulation Results: We now validate the serial wavelet
bandpass sampling scheme and more specifically evaluate the
out-of-band rejection capabilities. As illustrated in Figure 13(a),
the input signal x(t) is complex-valued and builds upon a useful
signal located at fu within the band of interest (we assume
fs is a sub-multiple of fc) and an out-of-band interference
signal at fi located ∆fi apart from our signal of interest. The
signal x(t) is sub-sampled by a uniform wavelet comb at rate
fs = 1/(4τ). We consider a sampling rate of fs = 1 GHz.
The wavelet parameters, such as width parameter τ and central
frequency f c, remain constant over the frame while the time
shift is adjusting to the sampling position.

As shown in (15) and illustrated in Figure 13(b), serial
wavelet bandpass sampling is, in the frequency domain,
equivalent to a Dirac comb whose amplitude is weighted by the
wavelet (or pulse) envelope P (f). Since fs < BWp (because
1/fs = Ts = 4τ ) temporal overlapping among wavelets is
avoided, several Dirac functions are included within the pulse
envelope centered on carrier frequency fc. As illustrated in
Figure 13(c), each convolution down-converts the useful signal
to the origin and out-of-band interferences into baseband. Then,
the integration over a time period Ts low-pass filters the signals
that are close to baseband (see Figure 13(d)).

Figure 14 summarizes the out-of-band rejection characteris-
tics of the serial wavelet bandpass sampling approach HWBS(f)
and provides a comparison with the idealistic CWT HCWT(f).
This analysis quantifies the out-of-band alias rejection capability
of NUWBS. Our analytical expressions from (19) and (14) are
shown with continuous lines; simulation results are indicated
with plus (+) markers, respectively, in blue for wavelet
bandpass sampling and green for the idealistic CWT method.

Evidently, our simulations coincide with the theoretical
results in (19) and (14). We also observe that the filter
characteristics of serial wavelet bandpass sampling is in-
between the ideal equivalent Gaussian filter and the standard
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Fig. 14. Comparison between out-of-band interference rejection between the
CWT and wavelet bandpass sampling in the case of wavelet sampling rate
equal to four times the wavelet bandwidth (i.e., Ts = 4τ = 1 ns).

sinc filter associated to the Ts rectangular windows integration.
As a result, we achieve a rejection of 50 dBc, which remains
to be lower than the idealistic CWT rejection but (i) with more
than 23 dB improvement with respect to the standard sinc filter
and (ii) can, as shown next, be implemented in hardware.

C. Wavelet Generator Circuit

The key missing piece of the proposed NUWS and NUWBS
approach is the tunable wavelet generator circuit. For RF
applications, wavelet generation in the time domain can be
realized by leveraging extensive prior work in the field of
ultra-wideband (UWB) impulse technology [63]. For instance,
in our previous work [64], we have demonstrated a circuit
for low-power pulse generation at 8 GHz with variable pulse
repetition rate. Here, we suggest to adapt the design in [64],
for tunable and wideband wavelet generation. Figure 15 shows
a corresponding circuit diagram. The core of the oscillator
relies on a cross-coupled NMOS pair loaded by an RLC
resonator highlighted, which is commonly used for voltage
control oscillator (VCO) circuits. Wavelets are generated across
the LC tank at RF frequency as soon as the bias current Ibias
is applied to the cross-coupled pair.

Figure 16 shows a typical chronogram of the proposed
wavelet generation circuit. The bias current duration is ad-
justed by a digital base-band pulse shaper to enable variable
bandwidth. A clock signal running at rate fs is combined
with a pseudo-random bit-sequence (PRBS) running at the low
sub-sampling rate fs in order to switch the biasing source on
and off. As a result a non-uniform pulse pattern is generated
tailored to the NUWBS solution. Finally, a variable voltage
applied to the varactor C0 in Figure 15 enables us to tune the
center frequency to the RF sub-band of interest.

In order to validate the wavelet generator circuitry for
RF applications up to 8 GHz, physical measurements have
been performed on an ASIC fabricated in a 130 nm CMOS
technology. Figure 17 shows the power spectral density (PSD)
of the wavelet depending on the bandwidth or central frequency.
Measurements are provided at 28.125 Mp/s, 56.25 Mp/s, and
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Fig. 15. Circuit schematic of a wavelet pulse generator with variable bandwidth
and central frequency capabilities. The circuit acts as a Voltage Control
Oscillator (VCO) switched on according to a sub-Nyquist PRBS sequence.
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Fig. 16. Signal chronogram involved in the control of the circuit schematic
shown in Figure 15: The frequency control signal, the digital base band pulse
shaper, and the clock and PRBS signals are running at sub-Nyquist rates.

112.5 Mp/s with amplitude up to 160 mV for 50 Ω impedance.
The Tektronix TDS6124C high speed scope is set to 50 Ω
impedance to avoid any reflections with lab equipment that
could alter the wavelet waveform. A high timing resolution
mode with digital interpolation between the 25 ps real samples
is selected to provide a 5 ps timing resolution. The −10 dB
wavelet bandwidth is tunable from 300 MHz to 1 GHz and the
central frequency range from 7.3 GHz to 8.5 GHz. In addition
to being flexible, the wavelet generation is power efficient, i.e.,
only requires 60 pJ/pulse, and remains switched off in between
two successive wavelet generation phases (i.e., this is duty-
cycled solution). Our ASIC measurements results demonstrate
a feasible wavelet function generator with a broad range of
tuning capabilities in terms of central frequency, bandwidth,
and repetition rate operating in the range of RF frequencies.
These results pave the way for a complete NUWS/NUWBS
integration including signal mixing and sampling stage.

VI. CONCLUSIONS

We have proposed a novel analog-to-information (A2I)
conversion method for compressive-sensing (CS)-based RF
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28 Mp/s

56 Mp/s

112 Mp/s

Fig. 17. ASIC measurement results: Illustration of variable wavelet rate
generation (28/56/112 Mp/s); Zoom in on a single wavelet spectrum illustrating
the wavelet central frequency and bandwidth tuning capabilities.

feature extraction. Our approach, referred to as non-uniform
wavelet sampling (NUWS), combines wavelet preprocessing
with non-uniform sampling (NUS), which mitigates the main
issues of existing analog-to-information (A2I) architectures,
such as out-of-band noise, interference, aliasing, and flexibility.
In addition, NUWS avoids circuitry that must adhere to Nyquist
rate bandwidths. From an RF feature extraction standpoint,
NUWS can be adapted to the signals of interest by tuning
their duration, center frequency, and time instant per acquired
wavelet sample.

For multiband RF signals, we have developed a special-
ized variant of NUWS called non-uniform wavelet bandpass
sampling (NUWBS). For this method, we have discussed a
wavelet selection strategy that enables adaptation to the a-
priori knowledge of the sub-bands of interest. Using simulation
results, we have shown that NUWBS achieves near-optimal
sample complexity already for relatively small dimensions,
i.e., NUWBS approaches the theoretical phase transition of `1-
norm-based sparse signal recovery with Gaussian measurement
ensembles. We have furthermore analyzed the rejection rate
of NUWBS against out-of-band interferers. To demonstrate
the practical feasibility of our A2I feature extractor, we have
proposed a suitable wavelet generation circuit that enables the
generation of tunable wavelet pulses in the GHz regime.

The proposed NUWS and NUWBS methods are promising
strategies for A2I converter architectures that overcome the
traditional limitations of existing solutions in power and cost
limited applications. Our solutions find potential broad use
in a variety of RF receivers targeting spectrum awareness or
assisting conventional RF chains with tuning parameters. Both
of these advantages render our solutions useful for the Internet
of Things, for which power and cost efficiency and RF feature
extraction are of utmost importance.

There are many avenues for future work. The design of a
complete NUWS/NUWBS-based RF feature extractor ASIC is
ongoing work. A theoretical analysis of the recovery properties
for NUWS/ NUWBS is a challenging open research problem.

Finally, a detailed exploration of other applications that may
benefit of NUWS/NUWBS and are in need of low power and
low cost feature extraction is left for future work.

ACKNOWLEDGMENTS

The work of M. Pelissier was supported by the Enhanced
Eurotalents fellowships program & Carnot Institut. The work
of C. Studer was supported by Xilinx, Inc. and by the US Na-
tional Science Foundation under grants CCF-1535897, ECCS-
1408006, and CAREER CCF-1652065. The authors thank
O. Castañeda for his help with the manuscript preparation.

REFERENCES

[1] C. E. Shannon, “Communication in the presence of noise,” Proc. IRE,
vol. 37, no. 1, pp. 10–21, Jan. 1949.

[2] H. J. Landau, “Sampling, data transmission, and the Nyquist rate,” Proc.
IEEE, vol. 55, no. 10, pp. 1701–1706, Oct. 1967.

[3] E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles:
exact signal reconstruction from highly incomplete frequency information,”
IEEE Trans. Inf. Theory, vol. 52, no. 2, pp. 489–509, Feb. 2006.

[4] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52,
no. 4, pp. 1289–1306, Apr. 2006.

[5] E. J. Candès and M. B. Wakin, “An introduction to compressive sampling,”
IEEE Signal Process. Mag., vol. 25, no. 2, pp. 21–30, Mar. 2008.

[6] B. Murmann, “ADC performance survey 1997–2016,” Jul. 2016.
[Online]. Available: http://web.stanford.edu/~murmann/adcsurvey.html

[7] S. K. Sharma, E. Lagunas, S. Chatzinotas, and B. Ottersten, “Application
of compressive sensing in cognitive radio communications: a survey,”
IEEE Commun. Surveys Tutorials, vol. 18, no. 3, pp. 1838–1860, Aug.
2016.

[8] H. Sun, A. Nallanathan, C.-X. Wang, and Y. Chen, “Wideband spectrum
sensing for cognitive radio networks: a survey,” IEEE Wireless Commun.,
vol. 20, no. 2, pp. 74–81, Apr. 2013.

[9] N. Baccour, A. Koubâa, L. Mottola, M. A. Zúñiga, H. Youssef, C. A.
Boano, and M. Alves, “Radio link quality estimation in wireless sensor
networks: a survey,” ACM Trans. Sensor Netw. (TOSN), vol. 8, no. 4,
pp. 34:1–34:33, Sep. 2012.

[10] A. A. Khan, M. H. Rehmani, and M. Reisslein, “Cognitive radio for
smart grids: survey of architectures, spectrum sensing mechanisms, and
networking protocols,” IEEE Commun. Surveys Tutorials, vol. 18, no. 1,
pp. 860–898, First quarter 2015.

[11] R. T. Yazicigil, T. Haque, M. R. Whalen, J. Yuan, J. Wright, and
P. R. Kinget, “19.4 A 2.7-to-3.7 GHz rapid interferer detector exploiting
compressed sampling with a quadrature analog-to-information converter,”
in Dig. Tech. Papers IEEE Int. Solid-State Circuits Conf. (ISSCC), Feb.
2015, pp. 348–350.

[12] D. Adams, Y. Eldar, and B. Murmann, “A mixer frontend for a four-
channel modulated wideband converter with 62 dB blocker rejection,” in
Proc. IEEE Radio Freq. Integr. Circuits Symp. (RFIC), May 2016, pp.
286–289.

[13] K. Hayashi, M. Nagahara, and T. Tanaka, “A user’s guide to compressed
sensing for communications systems,” IEICE Trans. Commun., vol. E96-
B, no. 3, pp. 685–712, Mar. 2013.

[14] E. H. Armstrong, “A new system of short wave amplification,” Proc.
Inst. of Radio Eng., vol. 9, no. 1, pp. 3–11, Feb. 1921.

[15] M. Wakin, S. Becker, E. Nakamura, M. Grant, E. Sovero, D. Ching, J. Yoo,
J. Romberg, A. Emami-Neyestanak, and E. Candès, “A nonuniform
sampler for wideband spectrally-sparse environments,” IEEE J. Emerging
Sel. Topics Circuits Syst., vol. 2, no. 3, pp. 516–529, Sep. 2012.

[16] D. E. Bellasi, L. Bettini, C. Benkeser, T. Burger, Q. Huang, and C. Studer,
“VLSI design of a monolithic compressive-sensing wideband analog-to-
information converter,” IEEE J. Emerging Sel. Topics Circuits Syst.,
vol. 3, no. 4, pp. 552–565, Dec. 2013.

[17] R. T. Yazicigil, T. Haque, M. R. Whalen, J. Yuan, J. Wright, and
P. R. Kinget, “Wideband rapid interferer detector exploiting compressed
sampling with a quadrature analog-to-information converter,” IEEE J.
Solid-State Circuits, vol. 50, no. 12, pp. 3047–3064, Dec. 2015.

[18] X. Chen, Z. Yu, S. Hoyos, B. M. Sadler, and J. Silva-Martinez, “A sub-
Nyquist rate sampling receiver exploiting compressive sensing,” IEEE
Trans. Circuits Syst. I, vol. 58, no. 3, pp. 507–520, Mar. 2011.

http://web.stanford.edu/~murmann/adcsurvey.html


14 TO APPEAR IN THE IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS

[19] M. A. Davenport, J. N. Laska, J. R. Treichler, and R. G. Baraniuk, “The
pros and cons of compressive sensing for wideband signal acquisition:
noise folding versus dynamic range,” IEEE Trans. Signal Process., vol. 60,
no. 9, pp. 4628–4642, Sep. 2012.

[20] E. Arias-Castro and Y. C. Eldar, “Noise folding in compressed sensing,”
IEEE Signal Process. Lett., vol. 18, no. 8, pp. 478–481, Aug. 2011.

[21] P. Maechler, C. Studer, D. E. Bellasi, A. Maleki, A. Burg, N. Felber,
H. Kaeslin, and R. G. Baraniuk, “VLSI design of approximate message
passing for signal restoration and compressive sensing,” IEEE J. Emerging
Sel. Topics Circuits Syst., vol. 2, no. 3, pp. 579–590, Sep. 2012.

[22] M. Verhelst and A. Bahai, “Where analog meets digital: analog-to-
information conversion and beyond,” IEEE Solid-State Circuits Mag.,
vol. 7, no. 3, pp. 67–80, Summer 2015.

[23] J. Yoo, C. Turnes, E. B. Nakamura, C. K. Le, S. Becker, E. A. Sovero,
M. B. Wakin, M. C. Grant, J. Romberg, A. Emami-Neyestanak, and
E. Candès, “A compressed sensing parameter extraction platform for
radar pulse signal acquisition,” IEEE J. Emerging Sel. Topics Circuits
Syst., vol. 2, no. 3, pp. 626–638, Sep. 2012.

[24] Z. Tian, Y. Tafesse, and B. M. Sadler, “Cyclic feature detection with
sub-Nyquist sampling for wideband spectrum sensing,” IEEE J. Sel.
Topics Signal Process., vol. 6, no. 1, pp. 58–69, Feb. 2012.

[25] M. Magno, S. Marinkovic, B. Srbinovski, and E. Popovici, “Wake-up
radio receiver based power minimization techniques for wireless sensor
networks: a review,” Springer Microelectron. J., vol. 45, no. 12, pp.
1627–1633, Dec. 2014.

[26] R. Venkataramani and Y. Bresler, “Perfect reconstruction formulas
and bounds on aliasing error in sub-Nyquist nonuniform sampling of
multiband signals,” IEEE Trans. Inf. Theory, vol. 46, no. 6, pp. 2173–
2183, Sep. 2000.

[27] ——, “Optimal sub-Nyquist nonuniform sampling and reconstruction
for multiband signals,” IEEE Trans. Signal Process., vol. 49, no. 10, pp.
2301–2313, Aug. 2001.

[28] A. A. Lazar and L. T. Tóth, “Perfect recovery and sensitivity analysis of
time encoded bandlimited signals,” IEEE Trans. Circuits Syst. I, vol. 51,
no. 10, pp. 2060–2073, Oct. 2004.

[29] M. Mishali and Y. C. Eldar, “Blind multiband signal reconstruction:
compressed sensing for analog signals,” IEEE Trans. Signal Process.,
vol. 57, no. 3, pp. 993–1009, Mar. 2009.

[30] M. Fleyer, A. Linden, M. Horowitz, and A. Rosenthal, “Multirate
synchronous sampling of sparse multiband signals,” IEEE Trans. Signal
Process., vol. 58, no. 3, pp. 1144–1156, Mar. 2010.

[31] L. Bai and S. Roy, “Compressive spectrum sensing using a bandpass
sampling architecture,” IEEE J. Emerging Sel. Topics Circuits Syst.,
vol. 2, no. 3, pp. 433–442, Sep. 2012.

[32] N. Tzou, D. Bhatta, B. J. Muldrey Jr., T. Moon, X. Wang, H. Choi, and
A. Chatterjee, “Low cost sparse multiband signal characterization using
asynchronous multi-rate sampling: algorithms and hardware,” Springer J.
Electron. Test., vol. 31, no. 1, pp. 85–98, Feb. 2015.

[33] J. A. Tropp, J. N. Laska, M. F. Duarte, J. K. Romberg, and R. G.
Baraniuk, “Beyond Nyquist: Efficient sampling of sparse bandlimited
signals,” IEEE Trans. Inf. Theory, vol. 56, no. 1, pp. 520–544, Jan. 2010.

[34] F. Pareschi, P. Albertini, G. Frattini, M. Mangia, R. Rovatti, and G. Setti,
“Hardware-algorithms co-design and implementation of an analog-to-
information converter for biosignals based on compressed sensing,” IEEE
Trans. Biomed. Circuits Syst., vol. 10, no. 1, pp. 149–162, Feb. 2016.

[35] M. Mishali and Y. C. Eldar, “From theory to practice: sub-Nyquist
sampling of sparse wideband analog signals,” IEEE J. Sel. Topics Signal
Process., vol. 4, no. 2, pp. 375–391, Apr. 2010.

[36] ——, “Sub-Nyquist sampling,” IEEE Signal Process. Mag., vol. 28, no. 6,
pp. 98–124, Nov. 2011.

[37] M. Mishali, Y. C. Eldar, and A. J. Elron, “Xampling: Signal acquisition
and processing in union of subspaces,” IEEE Trans. Signal Process.,
vol. 59, no. 10, pp. 4719–4734, Oct. 2011.

[38] S. Foucart and H. Rauhut, A mathematical introduction to compressive
sensing, 1st ed. Birkhäuser Basel, 2013.

[39] A. Maleki and D. L. Donoho, “Optimally tuned iterative reconstruction
algorithms for compressed sensing,” IEEE J. Sel. Topics Signal Process.,
vol. 4, no. 2, pp. 330–341, Apr. 2010.

[40] R. G. Vaughan, N. L. Scott, and D. R. White, “The theory of bandpass
sampling,” IEEE Trans. Signal Process., vol. 39, no. 9, pp. 1973–1984,
Sep. 1991.

[41] R. Maleh, G. L. Fudge, F. A. Boyle, and P. E. Pace, “Analog-to-
information and the Nyquist folding receiver,” IEEE J. Emerging Sel.
Topics Circuits Syst., vol. 2, no. 3, pp. 564–578, Sep. 2012.

[42] H. Rauhut, “Compressive sensing and structured random matrices,”
Theoretical foundations and numerical methods for sparse recovery,
vol. 9, pp. 1–92, 2010.

[43] M. L. Malloy and R. D. Nowak, “Near-optimal adaptive compressed
sensing,” IEEE Trans. Inf. Theory, vol. 60, no. 7, pp. 4001–4012, Jul
2014.

[44] J. Morlet, G. Arens, E. Fourgeau, and D. Glard, “Wave propagation and
sampling theory-part I: complex signal and scattering in multilayered
media,” Geophysics, vol. 47, no. 2, pp. 203–221, Feb. 1982.

[45] G. Wunder, P. Jung, M. Kasparick, T. Wild, F. Schaich, Y. Chen, S. T.
Brink, I. Gaspar, N. Michailow, A. Festag, L. Mendes, N. Cassiau,
D. Ktenas, M. Dryjanski, S. Pietrzyk, B. Eged, P. Vago, and F. Wiedmann,
“5GNOW: non-orthogonal, asynchronous waveforms for future mobile
applications,” IEEE Commun. Mag., vol. 52, no. 2, pp. 97–105, Feb.
2014.

[46] M. K. Lakshmanan and H. Nikookar, “A review of wavelets for digital
wireless communication,” Springer Wireless Personal Commun., vol. 37,
no. 3, pp. 387–420, May 2006.

[47] H. Nikookar, Wavelet radio: adaptive and reconfigurable wireless systems
based on wavelets, 1st ed. Cambridge University Press, 2013.

[48] E. Matusiak and Y. C. Eldar, “Sub-Nyquist sampling of short pulses,”
IEEE Trans. Signal Process., vol. 60, no. 3, pp. 1134–1148, Mar. 2012.

[49] D. D. Ariananda, M. K. Lakshmanan, and H. Nikookar, “A study on
application of wavelets and filter banks for cognitive radio spectrum
estimation,” in Proc. Eur. Wireless Technol. Conf. (EuWIT), Sep. 2009,
pp. 218–221.

[50] M. Boliek, C. Christopoulos, and E. Majani, “15444-1: Information
technology – JPEG 2000 image coding system – Part 1: core coding
system,” ISO/IEC JTC1/SC29 WG1, Tech. Rep., 2001.

[51] M. F. Duarte and Y. C. Eldar, “Structured compressed sensing: from
theory to applications,” IEEE Trans. Signal Process., vol. 59, no. 9, pp.
4053–4085, Sep. 2011.

[52] M. Soma, W. Haileselassie, and J. Yan, “Characterization of radio
frequency (RF) signals using wavelet-based parameter extraction,” US
Patent 7,340,381, Mar. 2008.

[53] C. A. DeVries and R. D. Mason, “Subsampling architecture for low power
receivers,” IEEE Trans. Circuits Syst. II, vol. 55, no. 4, pp. 304–308,
Apr. 2008.

[54] S. Mallat, A wavelet tour of signal processing, 1st ed. Academic press,
1999.

[55] I. Daubechies, Ten lectures on wavelets. SIAM, 1992.
[56] J. J. Benedetto, C. Heil, and D. F. Walnut, “Gabor systems and the

Balian-Low theorem,” in Gabor analysis and algorithms. Birkhäuser
Basel, 1998, pp. 85–122.

[57] O. Christensen, “Pairs of dual Gabor frame generators with compact
support and desired frequency localization,” Appl. Comput. Harmon. A.,
vol. 20, no. 3, pp. 403–410, May 2006.

[58] E. Candès and J. Romberg, “Sparsity and incoherence in compressive
sampling,” Inverse Prob., vol. 23, no. 3, pp. 969–985, Apr. 2007.

[59] F. Krahmer and R. Ward, “Stable and robust sampling strategies for
compressive imaging,” IEEE Trans. Image Process., vol. 23, no. 2, pp.
612–622, Feb. 2014.

[60] J. A. Tropp and A. C. Gilbert, “Signal recovery from random measure-
ments via orthogonal matching pursuit,” IEEE Trans. Inf. Theory, vol. 53,
no. 12, pp. 4655–4666, Dec. 2007.

[61] C. Studer, P. Kuppinger, G. Pope, and H. Bolcskei, “Recovery of sparsely
corrupted signals,” IEEE Trans. Inf. Theory, vol. 58, no. 5, pp. 3115–3130,
May 2012.

[62] D. L. Donoho, A. Maleki, and A. Montanari, “Message-passing algo-
rithms for compressed sensing,” Proc. Natl. Academy Sciences, vol. 106,
no. 45, pp. 18 914–18 919, Oct. 2009.

[63] A. Apsel, X. Wang, and R. Dokania, Design of ultra-low power impulse
radios. Springer Science & Business Media, 2013, vol. 124.

[64] M. Pelissier, J. Jantunen, B. Gomez, J. Arponen, G. Masson, S. Dia,
J. Varteva, and M. Gary, “A 112 Mb/s full duplex remotely-powered
impulse-UWB RFID transceiver for wireless NV-memory applications,”
IEEE J. Solid-State Circuits, vol. 46, no. 4, pp. 916–927, Mar. 2011.


	Introduction
	Challenges of Wideband Spectrum Awareness
	Analog-to-Information (A2I) Conversion
	Contributions
	Paper Outline
	Notation

	CS Techniques for RF Signal Acquisition
	Compressive Sensing (CS) Basics
	A2I Converter Architectures
	Non-Uniform Sampling
	Variable Rate Sub-Nyquist Sampling
	Random Modulation

	Limitations of Existing A2I Converters

	Non-Uniform Wavelet (Bandpass) Sampling
	NUWS: Non-Uniform Wavelet Sampling
	NUWBS: Non-Uniform Wavelet Bandpass Sampling
	Advantages of NUWS and NUWBS
	Tunability and Robust Feature Acquisition
	Adaptive Feature Extraction
	Structured Sampling
	Relaxed Hardware Constraints


	Wavelet Design and Validation of NUWBS
	Wavelet Prerequisites
	Wavelet Basics
	Gabor Frame
	Complex-Valued Morlet Wavelet (C-Morlet)

	Wavelet Selection for the Design of NUWBS
	Parameter Selection
	Gabor Time-Shift Selection

	Performance Validation of NUWBS

	Implementation Aspects of Non-Uniform Wavelet (Bandpass) Sampling
	Architecture Considerations of NUWBS
	Idealistic CWT Bandpass Sampling versus Realistic Serial Wavelet Bandpass Sampling
	Analysis of CWT Bandpass Sampling
	Analysis of Serial Wavelet Bandpass Sampling
	Simulation Results

	Wavelet Generator Circuit

	Conclusions
	References

