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CS-Video: Algorithms, Architectures,
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Christoph Studer, Ashok Veeraraghavan, Michael B. Wakin

The design of conventional sensors is based primarily on the Shannon-Nyquist sampling

theorem, which states that a signal of bandwidth W Hz is fully determined by its discrete-time

samples provided the sampling rate exceeds 2W samples per second. For discrete-time signals, the

Shannon-Nyquist theorem has a very simple interpretation: the number of data samples must be

at least as large as the dimensionality of the signal being sampled and recovered. This important

result enables signal processing in the discrete-time domain without any loss of information.

However, in an increasing number of applications, the Shannon-Nyquist sampling theorem dictates

an unnecessary and often prohibitively high sampling rate. (See Box 1 for a derivation of the

Nyquist rate of a time-varying scene.) As a motivating example, the high resolution of the image

sensor hardware in modern cameras reflects the large amount of data sensed to capture an image.

A 10-megapixel camera, in effect, takes 10 million measurements of the scene. Yet, almost

immediately after acquisition, redundancies in the image are exploited to compress the acquired

data significantly, often at compression ratios of 100:1 for visualization and even higher for

detection and classification tasks. This example suggests immense wastage in the overall design

of conventional cameras.

Compressive sensing (CS) (see Box 2 and [6, 14, 16, 24]) is a powerful sensing paradigm that

seeks to alleviate the daunting sampling rate requirements imposed by the Shannon-Nyquist

principle. CS exploits the inherent structure (or redundancy) within the acquired signal to enable

sampling and reconstruction at sub-Nyquist rates. The signal structure most commonly associated

with CS is that of sparsity in a transform basis. This is the same structure exploited by image
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compression algorithms, which transform images into a basis (e.g., using a wavelet or discrete

cosine transform) where they are (approximately) sparse. In a typical scenario, a CS still-image

camera takes a small number of coded, linear measurements of the scene—far fewer measurements

than the number of pixels being reconstructed. Given these measurements, an image is recovered

by searching for the image that is sparsest in some transform basis (wavelets, DCT, or other)

while being consistent with the measurements.

In essence, CS provides a framework to sense signals with far fewer measurements than

their ambient dimensionality (i.e., Nyquist rate), which translates to practical benefits including

decreased sensor cost, bandwidth, and time of acquisition. These benefits are most compelling

for imaging modalities where sensing is expensive; examples include imaging in the non-visible

spectrum (where sensors are costly), imaging at high spatial and temporal resolutions (where

the high-bandwidth of sensed data requires costly electronics), and medical imaging (where the

time of acquisition translates to costs or where existing equipment is too slow to acquire certain

dynamic events). In this context, architectures like the single-pixel camera (SPC) [27] provide

a promising proof-of-concept that still images can be acquired using a small number of coded

measurements with inexpensive sensors.

There are numerous applications where it is desirable to extend the CS imaging framework

beyond still images to incorporate video. After all, motion is ubiquitous in the real world, and

capturing the dynamics of a scene requires us to go beyond static images. A hidden benefit of

video is that it offers tremendous opportunities for more dramatic under-sampling (the ratio of

signal dimensionality to measurement dimensionality). That is, we can exploit the rich temporal

redundancies in a video to reconstruct frames from far fewer measurements than is possible with

still images. Yet, the demands of video CS in terms of the complexity of imaging architectures,

signal models, and reconstruction algorithms are significantly greater than that of compressive

still-frame imaging.

There are three major reasons why the design and implementation of CS video systems is

significantly more difficult than CS still-imaging systems.

Challenge 1. The gap between compression and compressive sensing. State-of-the-art video

models rely on two powerful ideas: first, motion fields enable the accurate prediction of image

frames by propagating intensities across frames; second, motion fields are inherently more

DRAFT



3

compressible than the video itself. This observation has led to today’s state-of-the-art video

compression algorithms (not to be confused with CS of videos) that exploit motion information

in one of many ways, including block-based motion estimation (MPEG-1), per-pixel optical flow

(H.265), and wavelet lifting (LIMAT). Motion fields enable models that can be tuned to the

specific video that is being sensed/processed. This is a powerful premise that typically provides

an order of magnitude improvement in video compression over image compression.

The use of motion fields for video CS raises an important challenge. Unlike the standard video

compression problem, where the frames of the video are explicitly available to perform motion

estimation, in CS, we have access only to coded and under-sampled measurements of the video.

We are thus faced with a chicken-and-egg problem. Given high-quality video frames, we could

precisely estimate the motion fields; but we need precise motion estimates in the first place to

obtain high-quality video frames.

Challenge 2. Laws of causality and imaging architectures. Time waits for no one. A distin-

guishing property of the video sensing problem over still imaging is the fundamental difference

between space and time. The ephemeral nature of time poses significant limitations on the

measurement process—clearly, we cannot obtain additional measurements of an event after it has

occurred. As a consequence, it is entirely possible that a compressive camera does not capture a

sufficient number of measurements to recover the frames of the video. Overcoming this challenge

requires both an understanding of the spatial-temporal resolution tradeoffs associated with video

CS as well as development of novel compressive imaging architectures that can deliver very high

measurement rates or reconstruct at different resolutions depending on the available data.

Challenge 3. Computational complexity. Even moderate resolution videos result in high band-

width streaming measurements. Typical CS video recovery algorithms are highly non-linear and

often involve expensive iterative optimization routines. Fast (or even real-time) reconstruction of

CS video is challenging, because it requires a data measurement system, fast iterative algorithms,

and high-performance hardware that are jointly designed to enable sufficiently high throughout.

The goal of this article is to overview the current approaches to video CS and demonstrate that

significant gains cab be obtained using carefully designed CS video architectures and algorithms.

However, these gains can only be realized when there is cohesive progress across three distinct
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fields: video models, compressive video sensing architectures, and video reconstruction algorithms.

This article reviews progress that has been made in advancing and bringing these fields together.

We discuss some of the landmark results in video CS and highlight their key properties and the

rich interplay among models, architectures, and algorithms that enable them. We also lay out a

research agenda to attack the key open research problems and practical challenges to be resolved

in video CS.

VIDEO SENSING SYSTEMS

In this section, we discuss the current compressive imaging architectures that have been proposed

for CS video. The architectures can be broken down into three categories (see Table I).

• Spatial multiplexing cameras (SMCs) optically super-resolve a low-resolution sensor to boost

spatial resolution. SMCs are invaluable in regimes where high-resolution sensors are unavailable,

as in THz/mm-wave and magnetic resonance imaging (MRI), or extremely costly, as in short

or medium wavelength infrared (SWIR and MWIR) sensing.

• Temporal multiplexing cameras (TMCs) optically super-resolve a low frame-rate camera to

boost temporal resolution. TMCs are mainly used to overcome the limitations imposed on the

measurement rate by the analog-to-digital converter (ADC) and are optimized to produce a

high frame-rate video at high spatial resolution with low frame-rate sensors.

• Spectral and angular multiplexing cameras (SAMCs) boost resolution in the spectral domain,

which can be useful for hyperspectral and light-field video sensing. As with TMCs, the bottleneck

of these architectures is also the measurement rate constraint imposed by the ADC.

Each of these flavors of CS system aims to break the Nyquist barrier to obtain either higher

spatial, temporal, or spectral resolution. In the following sections we discuss the key design

considerations and existing implementations of these three camera types.

Spatial multiplexing cameras (SMCs)

SMCs apply CS multiplexing in space to boost the spatial resolution of images and videos

obtained from sensor arrays with low spatial resolution. The use of a low-resolution sensor enables

SMCs to operate at wavelengths where corresponding full-frame sensors are too expensive, such

as at SWIR, MWIR, THz, and mm wavelengths. SMCs employ a spatial light modulator, such as
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TABLE I
KEY ARCHITECTURES FOR CS VIDEO AND THEIR PROPERTIES.

Type Name Application Modulator Best known 
capabilities Limitations 

Spatial 
multiplexing 

camera 

Single pixel 
camera Infrared imaging DMD 

Spatial res. 128x128 
Time res. 64 fps 

Result [24] 

Operational speed of 
DMD 

LiSens / 
FPA-CS Infrared imaging DMD 

Spatial res. 1024x768 
Time res. 10 fps 
Result [17, 74] 

Need for precise 
optical alignment/

calibration 

Temporal 
multiplexing 

cameras 

Coded 
strobing 

High-speed 
Imaging 

Mechanical/Ferro-
electric shutter 

Spatial res. (Sensor) 
Time res. 2000 fps 

Result [71] 
Periodic scenes 

Flutter 
shutter 

High-speed 
Imaging 

Mechanical/Ferro-
electric shutter 

Spatial res. (Sensor) 
Time res. 4x sensor-fps 

Result [60] 
Locally-linear motion 

P2C2 High-speed 
imaging LCoS 

Spatial res. (Sensor) 
Time res. 16x sensor-fps 

Result [61] 

Dynamic range of 
sensor 

Per-pixel 
shutter 

High-speed 
imaging 

LCoS /  
Electronic shutter 

Spatial res. (Sensor) 
Time res. 16x sensor-fps 

Result [36] 
Light loss 

CACTI High-speed 
imaging Translating mask 

Spatial res. (Sensor) 
Time res. 100x sensor-fps 

Result [48] 
Mechanical motion 

Light field video Dynamic 
refocusing 

LCoS, used as 
programmable coded-

aperture 

Time res. Sensor-fps 
Result [67] 

Loss of spatial 
resolution can be 
severe for high 
spectral/angular 

resolutions 
Hyperspectral 

video CASSI Spectroscopy Static mask Time res. Sensor-fps 
Result [72] 

a digital micromirror device (DMD) or liquid crystal on silicon (LCOS), to optically compute a

series of coded inner products with the rasterized scene s; these linear inner products determine

the rows of the sensing matrix Φ (recall the notation from Box 2). It is worth mentioning that

the SMC approach is equally applicable to modalities outside of the scope of this paper, such as

MRI [52], where the physics of image formation produces a measurement system that can be

interpreted as sub-sampling the Fourier transform of the sensed image.

Single pixel camera (SPC): The SPC [27] acquires images using only a single sensor element

(i.e., a single pixel) and taking significantly fewer multiplexed measurements than the number of

scene pixels. In the SPC, light from the scene is focused onto a programmable DMD, which directs

light from a subset of activated micromirrors onto the single photodetector. The programmable

nature of the DMD’s micromirror orientation enables one to direct light either towards or away

from the photodetector. As a consequence, the voltage measured at the photodetector corresponds

to an inner product of the image focused on the DMD and the micromirrors directed towards the
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Fig. 1. Operation principle of the single-pixel camera (SPC). Each measurement corresponds to an inner-product
between the binary mirror-mirror orientation pattern on the DMD and the scene to be acquired. Image courtesy of [67].

sensor (see Figure 1). Specifically, at time t, if the DMD pattern is represented by φ[t] and the

time-varying scene by V [x, y, t] (where x and y are the two spatial dimensions and t is the temporal

dimension), then the photodetector measures a scalar value y[t] = 〈φ[t], V [·, ·, t]〉+e[t], where 〈·, ·〉

denotes the inner-product between the vectors, and e[t] accounts for the measurement noise. If the

scene is static, i.e., V [x, y, t] = V0[x, y], then the measurement vectors can be stacked as columns

into a measurement matrix, with Φ = [φ1, φ2, . . . , φM ]T . The SPC leverages the relatively high

pattern rate of the DMD, which is defined as the number of unique micromirror configurations that

can be obtained in unit time. This pattern rate, typically 10–20 kHz for commercially available

devices, defines the measurement bandwidth (i.e., the number of measurements per second) and

is one of the key factors that defines the achievable spatial and temporal resolutions. Since SPCs

rely on the DMD to modulate images onto a single sensor, the spatial resolution is limited by the

density of mirrors on the DMD.

Since the proposal of the original SPC in [27], numerous authors have developed alternative

SPC architectures that do not require a DMD for spatial light modulation. In [41], an LCD panel

is used for spatial light modulation; the use of a transmissive light modulator enables a lensless

architecture. Sen and Darabi [70] use a camera-projector system to construct an SPC exploiting a

concept referred to as dual photography [69]; the hallmark of this system is its use of active and

coded illumination that can be beneficial in certain applications, particularly microscopy.

Beyond SPCs—Multiple pixel detectors: As mentioned above, the measurement rate of an SPC

is limited by the pattern rate of its DMD, which is typically in the tens of kHz. This measurement

rate can be insufficient for scenes with very high spatial and temporal resolutions. This issue can
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be combatted using an SMC with F sensor pixels (photodetectors), each capturing light from

a non-overlapping region of the DMD. The measurement rate of the SMC increases linearly

with the number of photodetectors. Taking into account that the maximum measurement rate is

capped by the sampling rate of the ADC, we can write the measurement rate for an SMC with F

photodetectors as

min {F ×RDMD, RADC} ,

where RDMD is the pattern rate of the DMD and RADC is the sampling rate of the ADC. Hence,

the smallest number of photodetectors for which the measurement rate is maximized is

(minimum number of sensor pixels) Fmin = RADC/RDMD.

In essence, at F = Fmin we can obtain the measurement rate of a full-frame sensor but using a

device with potentially a fraction of the number of photodetectors. This can be invaluable for

sensing in many wavebands, e.g., SWIR.

As a case study, consider an SMC with a DMD pattern rate RDMD = 10 kHz and an ADC with

a sampling rate RADC = 10 MHz. Then, for a sensor with Fmin = 1000 pixels, we can acquire

10 M measurements per second. An SPC, in comparison, would acquire only 10 k measurements

per second. Consequently, multi-pixel SMCs can acquire videos at significantly higher spatial and

temporal resolutions than an SPC.

There have been many multi-pixel extensions to the SPC concept. The simplest approach [46]

maps the DMD to a low-resolution sensor array, as opposed to a single photodetector, such that

each pixel on the sensor observes a non-overlapping “patch” or a block of micromirrors on the

DMD. SMCs based on this design have been proposed for sensing in the visible [78], SWIR [19],

and MWIR [54]. Figure 2 shows an example of the increased measurement rates offered by the

LiSens camera [78], which uses a linear array of 1024 photodetectors. More recently, there have

also emerged multi-pixel multiplexing based cameras that completely get rid of the lens and

replace the lens with a mask and computational reconstruction algorithms [2].

Temporal multiplexing cameras (TMCs)

TMCs apply CS multiplexing in time to boost the temporal resolution of videos obtained from

sensor arrays with low temporal resolution. Again, let V [x, y, t] be a 3D signal representing
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Fig. 2. Multi-pixel SMCs support significantly higher sensing rates than an SPC. (a) The measurement rate as a function
of the number of sensor pixels. An optimized SMC with Fmin pixels delivers the highest possible measurement rate. (b)
Lab prototypes of the SPC and LiSens cameras, each placed on the one arm of a single DMD. The measurement rate
of the LiSens camera is nearly 1 MHz, while that of the SPC is 20 kHz. (c) Comparisons between LiSens, which uses
1024 sensor pixels, and an SPC for a static scene. Each row corresponds to a different capture duration, defined as the
total amount of time that the cameras have for acquiring compressive measurements. The larger measurement rate of
the LiSens camera enables it sense scenes with very high spatial resolution even for small capture durations. Figure
courtesy of [78].

a time-varying scene. Due to the assumed low frame-rate of the sensor, we obtain a scene

measurement once every T seconds, where T is too large. If the SLM has an operational speed

of one pattern every TSLM seconds, then each measurement of a TMC takes the form of a coded

image

y[x, y, t0] =

C−1∑
j=0

φ[x, y, j]V [x, y, t0 + jTSLM],

where φ[x, y, j] is the attenuation pattern on the SLM at spatial location (x, y) and time jTSLM .

Here, each coded image measured by the TMC multiplexes C frames of the high-speed video,

and hence, we obtain one coded image every CTSLM seconds. Our goal is to recover the frames of

the high-speed video V [x, y, kTSLM] from a single or a sequence of coded images/measurements.
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Global shutters: The simplest instance of an TMC uses a global shutter together with a

conventional camera. In a global shutter, the SLM code Φ[x, y, j] = Φ[j] is spatially invariant,

which can be implemented by using a programmable shutter or by using the image sensor’s built-in

electronic shutter. Veeraraghavan et al. [75] showed that periodic scenes can be imaged at very

high temporal resolutions using a global shutter [64]. This idea has been extended to non-periodic

scenes in [40], where a union-of-subspace model was used to temporally super-resolve the captured

scene. However, global shutters are fundamentally limited to providing only spatially invariant

coding of the video; this can be insufficient to provide a rich-enough encoding of a high-speed

video. Hence, in spite of their simplicity, global shutters fail for scenes with complex motion

patterns.

Per-pixel shutters: Reddy et al. [65] proposed hey the per-pixel compressive camera (P2C2)

which extends the global shutter idea with per-pixel shuttering. Here, each pixel has its own

unique code that is typically binary-valued and pseudo-random. The P2C2 architecture uses a

liquid crystal on silicon (LCoS) SLM placed optically at the sensor plane and carefully aligned to

a high-resolution 2D sensor. The P2C2 prototype achieves 16× temporal super-resolution, even

for complex motion patterns. Hitomi et al. [39] extended the P2C2 camera using a per-pixel

coding that is more amenable to implementation in modern image sensors with per-pixel electronic

shutters. Here, Φ[x, y, j] = δ[j − j0(x, y)], i.e., each pixel observes the intensity at one of the

subframes of the high-speed video, and the selection of this subframe varies spatially. Llull et al.

[51] and Koller et al. [47] proposed a TMC that achieves temporal multiplexing via a translating

mask in the sensor plane. This approach avoids the hardware complexity involved with DMD and

LCoS SLMs and enjoys other benefits, including low operational power consumption at the cost

of having a mechanical component (the translating mask).

Additional TMC designs: Gu et al. [36] used the rolling shutter of a CMOS sensor to enable

higher temporal resolution. The key idea is to stagger the exposures of each row randomly and

use image/video models to recover a high-frame-rate video. Harmany et al. [37] extended coded

aperture systems by incorporating a global shutter; the resulting TMC provides immense flexibility

in the choice of the measurement matrix Φ.
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Spectral and angular multiplexing cameras (SAMCs)

SAMCs apply CS multiplexing to sense variations of light in a scene beyond the spatial

and temporal dimensions. Two specific examples include hyper-spectral CS video cameras that

sense spatial, spectral, and temporal variations of light in a scene, and light-field video cameras

that sense spatial, angular, and temporal variations. In both cases, imaging at high resolution

across all modalities simultaneously requires that we handle both high measurement rates (this

is typically limited by the ADC sampling rate) and low light levels (due to scene light being

resolved into various modalities). CS techniques, more specifically, signal models, can address

both bottlenecks. Examples of compressive cameras include the CASSI architecture [76] and

compressive hyperspectral imaging using spectrometers [50] for spectral multiplexing and the

work of Marwah et al. [58] and Tambe et al. [71] for angular multiplexing.

MODELS FOR VIDEO STRUCTURE

Recovering a video from compressive linear measurements requires one to extract the video

signal s from the measurements y = Φs (recall Box 2). Here, s might represent a certain block of

pixels, an entire video frame, or an ensemble of frames, depending on the sensing architecture and

the specific recovery algorithm employed. All of these are functions of the underlying time-varying

scene V [x, y, t]. Since the number of measurements M is less than the video signal’s ambient

dimensionality N , infinitely many vectors s′ may satisfy y = Φs′. Hence, in order to recover s

from y, a model that captures the scene structure (or a priori information) of s with a small number

of degrees of freedom is required; the model can then be included in the recovery algorithm. This

section surveys several popular models for characterizing low-dimensional structure in videos.

Single-frame structure

The structure of a single video frame can be characterized using standard models for conventional

two-dimensional (2D) images. Natural images have been shown to exhibit sparse representations

in the 2D DCT, 2D wavelet, and curvelet domains [15, 56]. Images have also been shown to have

sparse gradients. The total variation (TV) semi-norm promotes such gradient sparsity simply by

minimizing the `1-norm of an image’s 2D gradient [52]. To fully exploit the structure in a 3D

video, one needs to characterize the spatial and temporal dimensions simultaneously, rather than
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reconstructing each frame independently and only accounting for spatial structure. Hence, the

spatial 2D regularizers described above often appear as building blocks of more sophisticated 3D

video models.

Sparse innovation models

One of the simplest possible models accounting for multi-frame structure assumes that a

video can be reduced into a static and a dynamic component. This model—while restrictive—is

applicable, for example, in surveillance applications, where a scene is observed from a distant

static camera. We can decompose each frame of such a video into a static background frame and

a number of small (sparse) foreground objects that may change location from frame to frame. A

natural way of modeling such structure is to assume that the differences between consecutive

frames have a sparse representation in some transform basis. That is, for two consecutive video

frames V [x, y, t1] and V [x, y, t2], one may assume that the difference frame V [x, y, t2]−V [x, y, t1]

has a sparse representation in a basis such as a 2D wavelet basis. Such models have been explored

in detail in the context of CS [17, 57, 74] and can be viewed as special cases of the more advanced

motion-compensation techniques described below.

Low-rank matrix models

An alternative approach to scene modeling involves reorganizing a 3D video signal into a 2D

matrix, where each column of the matrix contains a rasterized ordering of the pixels of one video

frame. A variety of popular concise models for matrix structure can then be interpreted as models

for video structure. One of the most prominent models asserts that the matrix is low rank; this is

equivalent to assuming that the columns of the data matrix live in a common, low-dimensional

subspace. In the context of video modeling, a seminal result by Basri and Jacobs [9] showed

that collections of images of a Lambertian object under varying lighting often cluster close to a

9-dimensional subspace. This property can be useful for modeling videos of stationary scenes

where the illumination conditions change over time.

In order to account for both variations in background illumination and for sparse foreground

objects that move with time, one can extend the low-rank matrix model to a low-rank-plus-sparse

model [79, 80]. A sparse matrix, added to the original low-rank matrix, accounts for sparse
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foreground innovations, such as small moving objects. Again, such models are particularly suitable

for surveillance applications.

TV minimization and sparse dictionaries

Sparsifying transforms such as wavelets, curvelets, and the DCT, have natural extensions to

3D [56, 77, 82] and can be employed for jointly reconstructing an ensemble of video frames. TV

minimization can also be extended to 3D [35, 49]; minimizing the 3D-TV semi-norm of a video

promotes frames with sparse gradients across spatial and temporal dimensions.

It is also possible to learn specialized (possibly overcomplete) bases that enable sparse

representations of patches, frames, and videos from training data. A variety of so-called dictionary

learning algorithms have been proposed that learn sparsifying frames Ψ (see, e.g., [1] and Box 2).

Dictionary learning algorithms can be used not only to generate dictionaries that sparsify images,

but also to sparsify videos in both the spatial and temporal dimensions. This approach has been

successfully employed for CS video reconstruction in [39].

Linear dynamical systems

Linear dynamical systems (LDSs) model the dynamics in a video using linear subspace

models. Such models have been used extensively in the context of activity analysis and dynamic

textures. Video CS using LDS reduces to the estimation of the LDS parameters, including the

observation matrix and the state transition matrix, from compressive measurements. Approaches for

parameter estimation have included recursive [73] as well as batch methods [66]. Furthermore, [66]

demonstrates the use of the recovered LDS parameters for activity classification.

Motion compensation

While regularizers such as 3D wavelets and 3D TV minimization can be used for CS video

reconstruction, it is worth noting that conventional video compression algorithms (such as H.264)

do not employ such simple techniques. Rather, because objects in a video may move (or translate)

several pixels between adjacent frames, it is typical to employ block-based motion compensation

and prediction, where each video frame is partitioned into blocks, the location of each block is

predicted in the next frame, and only the residual of this prediction is encoded.
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Some CS video architectures may require reconstructions of video sequences with high temporal

frame rates. In these cases, there may be relatively little object motion between consecutive frames.

Consequently, motion compensation may not be required, and techniques such as 3D TV may

result in high-quality scene recovery.

In other cases, however, it may be necessary to predict and compensate for the motion of

objects between consecutive frames. This presents an interesting chicken-and-egg problem: motion

compensation can help in reconstructing a video, but the motion predictions themselves cannot

be made until (at least part of) the video is reconstructed. One iterative, multiscale technique

has been proposed [62] that alternates between motion estimation and video reconstruction: the

recovered video at coarse scales (low spatial resolution) is used to estimate motion, which is

then used to boost the recovery at finer scales (high spatial resolution). Given the estimated

motion vectors, a motion-compensated 3D wavelet transform can be defined using the LIMAT

technique [68]. Another approach initially reconstructs frames individually, estimates the motion

between the frames, and then attempts to reconstruct any residual not accounted for by the motion

prediction [30]. See also [45] for a related technique. The logistics of block-based video sensing

and reconstruction are discussed in detail in [30].

Optical flow

A more general approach to motion compensation involves the optical flow field. Given two

frames of a video, V [x, y, t1] and V [x, y, t2], optical flow refers to the flow field {u(x, y), v(x, y)}

such that V [x + u(x, y), y + v(x, y), t1] = V [x, y, t2]. Optical flow enables one to represent

the frames of a video using a small collection of “key frames” plus optical flow fields that

synthesize (extrapolate) the video from the keyframes. Optical flow fields are often significantly

more compressible than images. Such an approach is closely related to the block-based motion

compensation models described above but is distinguished by its explicit attempt to model motion

on a per-pixel basis.

A key challenge in the use of optical flow models for video CS is—once again—that, in the

context of sensing, we do not have access to the flow fields nor do we have access to high quality

images from which to estimate the flow fields. Reddy et al. [65] resolve this chicken-and-egg

problem by first recovering a video with simple image-based priors, estimating the optical flow field
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on the initial reconstruction, and subsequently, recovering the video again while simultaneously

enforcing the brightness constancy constraints derived using optical flow. They show that a 30 fps

sensor can be super-resolved to a 240–480 fps sensor by temporal modulation using an LCoS

device. In the context of SMCs, Sankaranarayanan et al. [67] use a specialized dual-scale sensing

(DSS) matrix that provides robust and computationally inexpensive initial scene estimates at a

lower spatial resolution. This enables this approach to robustly estimate optical flow fields on a

low-resolution video. Optical flow-based video CS has also been applied for the dynamic MRI

problem, where carefully selected Fourier measurements provide robust initial scene estimates [3].

The concept of DSS sensing matrices has been improved recently by the Sum-To-One (STOne)

transform [35], which enables the fast recovery of low-resolution scene estimates at multiple

resolutions.

VIDEO RECOVERY TECHNIQUES

While the mathematical formulations of video CS recovery problems resemble other canonical

sparse recovery problems, three important factors set video recovery apart from other types

of sparse coding. First, video recovery problems are extremely large and have high memory

requirements. Methods for high-resolution video recovery must scale to hundreds of millions of

unknowns. Second, sparse representations of videos with complex structures may contain tens of

thousands (or more) of non-zero entries. Consequently, algorithm implementations that require

large dense matrix systems are intractable, and methods must exploit fast transforms. Third,

high-quality video recovery often involves non-invertible sparsity transforms, and so reconstruction

methods that handle co-sparsity models are desirable. Some recovery problems require more

sophisticated (or “unstructured”) models, such as optical flow constraints, that cannot be handled

efficiently by simple algorithms. All of these factors impact algorithm performance on different

reconstruction applications.

This section overviews the range of existing recovery techniques and investigates the trade-offs

between reconstruction quality and computational complexity. For simplicity we focus on two

categories of reconstruction methods; variational and greedy. Note that there are algorithms that

do not fit well into these categories (such as iterative hard thresholding [12], which has features

of both); discussion of such methods is beyond the scope of this paper.
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Variational methods

Variational methods for CS video recovery perform scene reconstruction by solving optimization

problems using iterative algorithms. Most variational methods suitable for high-dimensional

problems can be classified into two categories, as detailed next.

Constrained problems: The first category solves constrained problems of the form

ŝ = arg min
s,z

f(Φs | y) + g(z) subject to z = Ψs. (1)

Here, the function f models the video acquisition process (optics, modulation, and sampling)

and g is a regularizer that promotes sparsity under the transformation defined by Φ. For example,

basic frame-by-frame recovery with 2D wavelet sparsity can be formulated as an unconstrained

problem with f(Φs | y) = ‖y − Φs‖22 and g(z) = γ‖z‖1, where s contains a vectorized image

frame, Φ is the sensing matrix, Ψ is a 2D wavelet transform, and γ > 0 is a regularization

parameter. Under a TV scene model, the matrix Ψ is a discrete gradient operator that computes

differences between adjacent pixels. 3D TV video recovery can be achieved by stacking multiple

vectorized video frames into s and defining Ψ to be the 3D discrete gradient across both spatial

dimensions and time. Optical flow constraints can be included by forming a sparse matrix Ψ that

differences pixels in one frame with pixels that lie along its flow trajectory in other frames.

It can be shown that the solution to (1) corresponds to a saddle point of the so-called augmented

Lagrangian function

L(s, z, λ) = f(Φs | y) + g(z) + β
2 ‖z −Ψs− λ‖22, (2)

where λ is a vector of Lagrange multipliers. Constrained problems of the form (1) for CS video

can be solved efficiently using the alternating direction method of multipliers (ADMM) [13, 28,

31] or the primal-dual hybrid gradient (PDHG) method [18, 29]. The ADMM and PDHG methods

alternate between minimization steps for s and z and maximization steps for λ until convergence

is reached. Such methods have the key advantage that they enable the inclusion of powerful,

non-invertible video models such as 3D TV or optical flow. This advantage, however, comes at

the cost of higher memory requirements and somewhat more complicated iterations. In order to

improve the convergence rates of solvers for constrained problems, accelerated algorithm variants

have been developed [18, 32, 33].
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Unconstrained problems: If the sparsity transform Ψ is invertible, then the constraint in (1) can

be removed by replacing the vector s with Ψ−1z. This leads to the second category of recovery

methods that solve unconstrained problems of the following simpler form:

ẑ = arg min
z

f(Φ̂z | y) + g(z). (3)

Here, the matrix Φ̂ = ΦΨ−1, and z contains the representation of a single frame or the entire

video in the sparsity transform domain. For example, in the case of wavelet sparsity, solving

(3) recovers the video’s wavelet coefficients; the final video is obtained by applying the inverse

wavelet transform to the solution.

Unconstrained problems of the form (3) can be solved efficiently using forward–backward

splitting (FBS) [20], fast iterative shrinkage/thresholding (FISTA) [10], fast adaptive shrink-

age/thresholding algorithm (FASTA) [34], sparse reconstruction by separable approximation

(SpaRSA) [81], or approximate message passing (AMP) [25, 55]. FBS is the most basic variant for

solving unconstrained problems and performs the following two steps for the iterations k = 1, 2, . . .

until reaching convergence:

ẑk+1 = zk + τkΦ̂∗∇f(Φ̂zk | y) (4)

zk+1 = arg min
z

g(z) + 1
2‖z − ẑk+1‖22, (5)

where {τk} is some stepsize sequence. FBS finds a global minimum of the objective function (3)

by alternating between the explicit gradient-descent step (4) in the function f and the proximal

(or implicit gradient) step (5) in the function g. The key operations of the gradient step (4) are

matrix–vector multiplications with Φ̂ and Φ̂∗. These multiplications can be carried out efficiently

when Φ̂ is a composition of fast transforms, such as subsampled Hadamard/Fourier matrices

and wavelet or DCT operators. When g is a simple sparsity-promoting regularizer, such as the

`1-norm, the proximal step (5) is easy to compute in closed form using wavelet shrinkage. The

computational complexity of FBS can be reduced significantly using adaptive step-size rules for

selecting {τk}, acceleration schemes, restart rules, momentum (or memory) terms, etc., as is the

case for FISTA, FASTA, SpaRSA, and AMP. See the review article [34] for more details.
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Greedy pursuit algorithms

Greedy pursuit algorithms are generally used for unconstrained problems and iteratively construct

a sparse set of non-zero transform coefficients. Each iteration begins by identifying a candidate

sparsity pattern for the unknown vector z. Then, a least-squares problem is solved to minimize

‖Φ̂z − y‖22, where z is constrained to have the prescribed sparsity pattern.

Existing greedy pursuit algorithms can be classified into sequential greedy pursuit algorithms

and parallel greedy pursuit algorithms. Sequential methods include orthogonal matching pursuit

(OMP), regularized OMP (ROMP), and stagewise OMP (StOMP) [26, 61, 72]. These methods

successively add more and more indices to the support set until a maximum sparsity K is reached.

Parallel methods, such as compressive sampling matching pursuit (CoSaMP) and subspace pursuit

[21, 60], constantly maintain a full support set of K nonzero entries but add strong and replace

weak entries in an iterative fashion. Parallel greedy pursuit algorithms have the advantage that

they can enforce structured models on the support-set, such as a wavelet tree structure [5].

The main drawbacks of greedy algorithms, however, are that (i) they are typically unable

to handle non-invertible sparsity transforms used for video reconstruction such as TV, optical

flow, or over-complete wavelet frames; (ii) accurate solutions are guaranteed only when the

measurement operator satisfies stringent conditions (such as the restricted isometry property or

similar incoherence conditions [60, 72]); and (iii) they require solving large linear systems on

every iteration. For small numbers of unknowns (< 10 k), the factorization of these systems

can be explicitly represented and updated cheaply using rank-1 updates. For the large video

CS problems considered here, iterative (conjugate gradient) methods are recommended. These

methods require only matrix multiplications (which can exploit fast transforms) and have lower

memory requirements, because they do not require the storage of large and dense matrices.

Reconstruction quality vs. computational complexity

There are many choices to make when building a compressive video pipeline, including mea-

surement operators, video models, and reconstruction algorithms. Most reconstruction algorithms

are restricted as to what measurement operators and sparsity models they can support. In order to

achieve the best performance, the reconstruction algorithms, video models, and data acquisition

pipelines must be designed jointly; this implies that there are trade-offs to be made among

DRAFT



18

reconstruction speed, algorithm simplicity, and video quality.

The classical approach to CS video recovery is to search for the video that is compatible

with the observed measurements while being as sparse as possible in the wavelet domain. When

an invertible wavelet transform is used, the reconstruction problem can be transformed into an

unconstrained problem of the form (3), which can be solved efficiently using variational methods

such as FBS. If we further assume that the wavelet transform is orthogonal, then we can use

off-the-shelf greedy pursuit algorithms, such as CoSaMP. Unfortunately, while unconstrained

optimization is simple to implement and highly efficient, wavelet-based scene priors generally

result in lower reconstruction quality than non-invertible/redundant sparsity models like TV. For

this reason, we are often interested in constrained solvers that interface with TV-based video

models and optical flow constraints.

To examine the associated performance/complexity trade-offs, we compare a variety of recon-

struction methods using the same measurement operator. A stream of 65,536 STOne measure-

ments [35] was acquired from a 256 × 256 pixel video. Videos were reconstructed separately

using various models and solvers that were implemented in MATLAB. We consider unconstrained

recovery using CoSaMP and FBS, which are restricted to using invertible regularizers. In the

wavelet case, we consider (i) 2D frame-by-frame recovery that does not exploit correlations

across time, and (ii) 3D wavelet recovery that performs a 3-D wavelet transform across space

and time. We also consider sparsity under the 3D-DCT, which is invertible and enjoys extensive

use in image and video compression. We furthermore consider solvers for constrained problems

that handle more sophisticated sparsity models. In particular, we compare 3D-TV models with

PDHG and optical flow constraints with ADMM (as in CS-MUVI [67]). As a baseline, we

perform CS video recovery without scene priors by simply computing ΦT y, the product of the

adjoint of the measurement operator with the vector of measurements. Because the measurement

operator is a sub-sampled orthogonal matrix, this corresponds to a least-squares recovery using

the pseudo-inverse. All experiments are carried out on an off-the-shelf laptop with 16 GB memory

and a 2.6 GHz i5 CPU with two physical cores (no parallelism was used for reconstruction).

Sample frames from our experiments together with the required runtime are shown in Figure 3.

We observe that TV regularization and optical flow models dramatically outperform wavelet-based

recovery in terms of video quality. Furthermore, 3D models lead to significantly improved image
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original image 2D wavelet (CoSaMP) 2D wavelet (FBS) 3D-DCT (FBS)
752 sec 45 sec 332 sec

adjoint 3D wavelet (FBS) optical flow (SPGL1) 3D-TV (PDHG)
0.001 sec 134 sec 415 sec 29 sec

Fig. 3. CS video recovery comparison with different video models. For each model, we recover a 16-frame video with
256× 256 pixel resolution from 216 STOne transform measurements, corresponding to a 100:16 compression ratio.
Sparsity models include 2D (across space) and 3D (across space and time) wavelet sparsity using the Haar wavelet, the
3D-DCT, optical flow constraints, and 3D-TV. Next to each experiment we also provide the total runtime for recovering
16 frames.

quality with fewer artifacts than 2D models, despite the fact that both reconstructions see the

same amount of data. This demonstrates the efficacy of exploiting correlations across time. The

key advantage of 2D models is that they enable parallel frame-by-frame reconstruction, e.g., by

dispatching different recovery problems on separate CPU cores. Finally, we see that for these types

of large-scale reconstruction problems, variational methods require substantially lower runtimes

than greedy pursuit algorithms. The CoSaMP result in Fig. 3 is for frame-by-frame reconstructions

with a sparsity level of K = 256 non-zero wavelet coefficients per image. CoSaMP’s runtime

increases dramatically for larger K or when 3D regularizers are used. This is because each

iteration requires the solution to a large least-squares problem using multiple iterative (conjugate

gradient) steps. Hence, such greedy pursuit algorithms turn out to be efficient only for highly

sparse signals, and not for general CS video problems.
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Fig. 4. Complexity (in floating-point operations per pixel) vs. resolution (in pixels per second) for greedy algorithms,
variational methods, and optical-flow models for the video scene in Figure 3. Variational methods (including 3D TV
and 3D/2D wavelets) require the lowest complexity and enable real-time CS video recovery with existing hardware
(the diagonal dotted line shows the FLOPS limit of current reprogrammable hardware). Optical flow models exceed
the capabilities of current hardware and require the development of more efficient computational methods and faster
processing architectures.

PERSPECTIVES AND OPEN RESEARCH QUESTIONS

The videos CS problem has spawned a growing body of research that spans signal representations

and models, computational sensing architectures, and efficient optimization techniques. This has

led to vibrant ecosystem of methodologies that have transitioned the theoretical ideas of CS into

concrete application-specific concepts. We conclude by highlighting some of the important open

questions and future research directions.

Real-time CS video recovery with today’s hardware?

High-quality CS video recovery requires complex algorithms that include powerful video models.

While off-line video recovery is always feasible, reconstruction using more sophisticated scene

models (e.g., using optical flow) can easily take several seconds to minutes even for only a few

low-resolution frames. As a consequence, applications that necessitate real-time video recovery

face extreme implementation challenges. From our experiments in Figure 3, we see that even the
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fastest algorithms with basic video models are more than 20×-to-200× below real-time when

executed in MATLAB on off-the-shelf CPUs.

Quite surprisingly, when counting the number of floating-point operations (FLOPs) required

for the main transforms of these methods, we observe that real-time CS video recovery with

variational methods is within reach of existing hardware. In fact, variational-based scene recovery

of a 256×256 pixel scene at 12 frames-per-second (fps) requires only about 20 GFLOPS, which

is well-below that of programmable processing hardware, such as CPUs, GPUs, and FPGAs that

achieve peak throughputs of a few teraflops. Similarly, existing application specific integrated

circuit (ASIC) designs that target CS recovery problems [11, 53] are able to solve variational

problems with more than 200 GOPS (the computations are typically carried out with fixed-point

arithmetic instead of floating point) using low silicon area and low power when implemented in

modern CMOS technology nodes. In Figure 4, we compare the complexity vs. the resolution of

various CS video recovery methods. One can observe that even higher resolutions like 1080p

HD are feasible in real-time with computationally efficient algorithms. Nevertheless, no real-time

CS-video recovery implementation has been proposed in the open literature, which can mainly

be attributed to the lack of highly optimized and massively parallel CS video recovery pipelines

for programmable hardware (CPUs, GPUs, or FPGAs) as well as dedicated integrated circuits

(ASICs). This is definitely a fruitful area for future work.

Compressive inference rather than recovery?

The main results of CS are directed towards providing novel sampling theorems that determine

the feasibility of signal reconstruction from an under-determined set of linear measurements.

However, reconstruction is often not the eventual goal in most applications, which range from

detection and classification to tracking and parameter estimation. While these tasks can all be

performed post-reconstruction (on the output of a reconstruction procedure), there are important

benefits to be gained by performing them directly on the compressive measurements. First, tasks

like detection, classification, and tracking are inherently simpler than reconstruction — and hence,

there is hope that we can perform them with fewer measurements. Second, CS reconstruction

is intrinsically tied to the signal models used for the unknown signal, and these signal models

prioritize features that deal with visual perception, which often is not the most relevant for the
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subsequent processing tasks. Third, as discussed at length above, CS reconstruction algorithms

have high computational complexity, and hence, avoiding a reconstruction step in the overall

processing pipeline can be beneficial.

There has been some limited work on inference from linear compressive measurements.

Davenport et al. [23] perform compressive classification and detection by using a matched filter

in the compressive domain. Their key observation is that random projections preserve distances as

well as inner-products between sparse vectors, and hence inference tasks like hypothesis testing

and certain filtering operations can be performed directly in the compressive domain. Hegde et al.

[38] show the manifold learning (or nonlinear dimensionality reduction) can be performed just

as well on the compressive measurements as on the original data, provided the data arises from

a manifold with certain smoothness properties. Sankaranarayanan et al. [66] demonstrate that

for time-varying systems well-approximated as linear dynamical systems, the parameters of the

dynamical system can be directly estimated given compressive measurements. Recently, Kulkarni

and Turaga [44] proposed a novel method based on recurrence textures for action recognition

from compressive cameras especially for self-similar feature sequences [43]. Apart from these

early attempts, there is very little in the literature exploring high-level inference from compressive

imagers.

A major hurdle to successful compressive inference in the video context is the mismatch between

part-based models, used in computer vision, and global random embeddings, the cornerstone of

the CS theory. Part-based models have had remarkable success over the past decade in object

detection and classification problems. The key enabler of part-based inference is a local feature

description that helps isolate objects from background clutter and provides robustness against

object variations. However, the conventional CS measurements are dense random projections that

are not conducive to local feature extraction without reconstructing the signal first. Hence, there

is an urgent need for CS measurement operator designs that enable local feature extraction.

From measurements to bits — Towards non-linear sensing architectures?

One of the important distinctions between video CS and video compression is the nature of

representing the compressed data. Compression aims to reduce the number of bits used to represent

the video. In contrast, CS measurements are typically represented in terms of real-values with
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infinite (or arbitrarily large) precision; here, the number of actual measurements is the criterion

to reduce/optimize. The focus on reducing the number of measurements is often misplaced in

many sensing scenarios; for example, in high-speed video CS, the bottleneck is solely due to

the operating speed of the ADC, whose performance is measured in the number of bits acquired

per second. Hence, compressively sensing while respecting the bottlenecks imposed by the ADC

sampling frequency requires us to consider measurements in terms of bits. While there has been

some effort in the area of 1-bit CS [4, 42, 63] and the tradeoff between measurement bits and

measurement rate [48], this aspect is still largely unexplored in literature. In particular, there is a

need for new kinds of nonlinear sensing architectures that optimize system performance in the

context of the practical realities of sensing (quantization, saturation, etc.). Some initial progress

in this direction for CS has been made in [59], but the area remains wide open for research.
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BOXES

Box 1: What is the Nyquist rate of a video signal?

Conventional videos, sampled at 24–60 frames per second, may, in fact, be highly undersampled

in time—objects in the scene can move multiple pixels between adjacent frames. Some CS

architectures, however, measure a video at a much higher temporal rate. For example, the single

pixel camera (SPC) may take tens of thousands of serial measurements per second. In such cases,

the scene may change very little between adjacent measurements. This raises some interesting

questions: what is the Nyquist rate of a video signal, and how does it compare to CS measurement

rates?

One can gain insight into these questions by considering the 3D analog video signal that arrives

at a camera lens; both conventional and CS imaging systems can be viewed as blurring this signal

spatially (due to the optics and the pixelated sensors) and sampling or measuring it digitally. If

a video consists of moving objects with sharp edges, then the analog video will actually have

infinite bandwidth in both the spatial and temporal dimensions. However, it can be argued that the

support of the video’s spectrum will tend to be localized into a certain bowtie shape, as shown

in blue in Figure 5. The salient feature of this shape is that high temporal frequencies coincide

only with high spatial frequencies. Thus, because of the limited spatial resolution of both the

camera optics and the pixel sensors, when the spatial bandwidth of the video is limited, so too is

its temporal bandwidth, as illustrated by the black rectangle in the figure. This suggests that the

video sensed by architectures such as the single-pixel camera (SPC) may in fact have a finite

temporal bandwidth, and this fact can be used to reduce the computational complexity of sensing

and reconstructing the video. In particular, it is not necessary to reconstruct at a rate of thousands

of frames per second. Additional details are provided in [62].

Box 2: Compressive sensing 101

Compressive sensing (CS) exploits the fact that a small and carefully selected set of nonadaptive

linear measurements of a compressible signal, image, or video carry enough information for

reconstruction and processing [16, 24]; for a tutorial treatment see [6, 14].

The traditional digital data acquisition approach uniformly samples the 3D analog signal

corresponding to the time-variations of a scene; the resulting samples V [x, y, t] in space (x, y)
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Fig. 5. The limited spatial resolution of an imaging system may also limit its temporal bandwidth.

and time (t) are sufficient to perfectly recover a bandlimited approximation to the scene at the

Nyquist rate. Let the abstract vector s represent the Nyquist-rate samples of the scene V [x, y, t];

see Box 1 for a discussion of the Nyquist rate of a time-varying scene. Since the number of

samples required for real-world scenes, N , is often very large, e.g., in the billions for today’s

consumer digital video cameras, the raw image data is typically reduced via data compression

methods that typically rely on transform coding.

As an alternative, CS bypasses the Nyquist sampling process and directly acquires a compressed

signal representation using M < N linear measurements between s and a collection of linear codes

{φ[m]}Mm=1 as in y[m] = 〈s, φ[m]〉. Stacking the measurements y[m] into the M -dimensional

vector y and the transpose of the codes φ[m]T as rows into an M ×N sensing matrix Φ, we can

write y = Φs.

The transformation from s to y is a dimensionality reduction and does not, in general, preserve

information. In particular, since M < N , there are infinitely many vectors s′ that satisfy y = Φs′.

The magic of CS is that Φ can be designed such that sparse or compressible signals s can be

recovered exactly or approximately from the measurements y. By sparse we mean that only

K � N of the entries in s are zero, or that there exists a sparsifying transform Ψ such that most

of the coefficients of α := Ψs are zero. By compressible we mean that s or α is approximately

sparse. Let Ψ−1 := [ψ1, ψ2, . . . , ψN ] represent the inverse of the N × N basis matrix; then
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s = Ψ−1α and y = Φs = ΦΨ−1α.

Typically in CS, the sparse signal s or its sparse coefficients α is recovered by solving an

optimization problem of the form (1), where f measures the fidelity of the recovery (e.g., using

the squared error ‖y−ΦΨ−1α‖22) and g is a regularization penalty (e.g., the `1 norm ‖α‖1, which

promotes sparsity of α). In these cases, the resulting problem is convex, which guarantees a single

global minimizer that can be found using a range of algorithms.

While the design of the sensing matrix Φ is beyond the scope of this review, typical CS

approaches employ a random matrix. For example, we can draw the entries of Φ as independent

and identically distributed ±1 random variables from a uniform Bernoulli distribution [8]. Then,

the measurements y are merely M different sign-permuted linear combinations of the elements of

s. Other choices for Φ exist in the literature, such as randomly subsampled Fourier or Hadamard

bases. In this case, multiplication by Φ can be accomplished using fast transform algorithms,

which enables faster reconstruction than is possible with random matrices.

It is important to emphasize that CS is not a panacea for all the world’s sampling problems

[7]. In particular, to apply the concept profitably, it is critical that the signal s possess a lower

inherent dimensionality than its ambient dimensionality (e.g., sparse structure) and that the degree

of undersampling N/M be balanced with respect to the signal’s signal-to-noise ratio [22].
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