CS-Video: Algorithms, Architectures, and Applications for Compressive Video Sensing

Richard G. Baraniuk, Tom Goldstein, Aswin C. Sankaranarayanan, Christoph Studer, Ashok Veeraraghavan, Michael B. Wakin

The design of conventional sensors is based primarily on the Shannon-Nyquist sampling theorem, which states that a signal of bandwidth *W* Hz is fully determined by its discrete-time samples provided the sampling rate exceeds 2*W* samples per second. For discrete-time signals, the Shannon-Nyquist theorem has a very simple interpretation: *the number of data samples must be at least as large as the dimensionality of the signal being sampled and recovered.* This important result enables signal processing in the discrete-time domain without any loss of information. However, in an increasing number of applications, the Shannon-Nyquist sampling theorem dictates an unnecessary and often prohibitively high sampling rate. (See Box 1 for a derivation of the Nyquist rate of a time-varying scene.) As a motivating example, the high resolution of the image sensor hardware in modern cameras reflects the large amount of data sensed to capture an image. A 10-megapixel camera, in effect, takes 10 million measurements of the scene. Yet, almost immediately after acquisition, redundancies in the image are exploited to compress the acquired data significantly, often at compression ratios of 100:1 for visualization and even higher for detection and classification tasks. This example suggests immense wastage in the overall design of conventional cameras.

Compressive sensing (CS) (see Box 2 and [6, 14, 16, 24]) is a powerful sensing paradigm that seeks to alleviate the daunting sampling rate requirements imposed by the Shannon-Nyquist principle. CS exploits the inherent structure (or redundancy) within the acquired signal to enable sampling and reconstruction at sub-Nyquist rates. The signal structure most commonly associated with CS is that of *sparsity* in a transform basis. This is the same structure exploited by image

Author ordering is alphabetical. R. G. B. and A. V. are with Rice University. T. G. is with University of Maryland. A. C. S. is with Carnegie Mellon University. C. S. is with Cornell University. M. B. W. is with Colorado School of Mines.

compression algorithms, which transform images into a basis (e.g., using a wavelet or discrete cosine transform) where they are (approximately) sparse. In a typical scenario, a CS still-image camera takes a small number of coded, linear measurements of the scene—far fewer measurements than the number of pixels being reconstructed. Given these measurements, an image is recovered by searching for the image that is sparsest in some transform basis (wavelets, DCT, or other) while being consistent with the measurements.

In essence, CS provides a framework to sense signals with far fewer measurements than their ambient dimensionality (i.e., Nyquist rate), which translates to practical benefits including decreased sensor cost, bandwidth, and time of acquisition. These benefits are most compelling for imaging modalities where sensing is expensive; examples include imaging in the non-visible spectrum (where sensors are costly), imaging at high spatial and temporal resolutions (where the high-bandwidth of sensed data requires costly electronics), and medical imaging (where the time of acquisition translates to costs or where existing equipment is too slow to acquire certain dynamic events). In this context, architectures like the single-pixel camera (SPC) [27] provide a promising proof-of-concept that still images can be acquired using a small number of coded measurements with inexpensive sensors.

There are numerous applications where it is desirable to extend the CS imaging framework beyond still images to incorporate *video*. After all, motion is ubiquitous in the real world, and capturing the dynamics of a scene requires us to go beyond static images. A hidden benefit of video is that it offers tremendous opportunities for more dramatic under-sampling (the ratio of signal dimensionality to measurement dimensionality). That is, we can exploit the rich temporal redundancies in a video to reconstruct frames from far fewer measurements than is possible with still images. Yet, the demands of video CS in terms of the complexity of imaging architectures, signal models, and reconstruction algorithms are significantly greater than that of compressive still-frame imaging.

There are three major reasons why the design and implementation of CS video systems is significantly more difficult than CS still-imaging systems.

Challenge 1. The gap between compression and compressive sensing. State-of-the-art video models rely on two powerful ideas: first, motion fields enable the accurate prediction of image frames by propagating intensities across frames; second, motion fields are inherently more

compressible than the video itself. This observation has led to today's state-of-the-art video compression algorithms (not to be confused with CS of videos) that exploit motion information in one of many ways, including block-based motion estimation (MPEG-1), per-pixel optical flow (H.265), and wavelet lifting (LIMAT). Motion fields enable models that can be tuned to the specific video that is being sensed/processed. This is a powerful premise that typically provides an order of magnitude improvement in video compression over image compression.

The use of motion fields for video CS raises an important challenge. Unlike the standard video compression problem, where the frames of the video are explicitly available to perform motion estimation, in CS, we have access only to coded and under-sampled measurements of the video. We are thus faced with a chicken-and-egg problem. Given high-quality video frames, we could precisely estimate the motion fields; but we need precise motion estimates in the first place to obtain high-quality video frames.

Challenge 2. Laws of causality and imaging architectures. Time waits for no one. A distinguishing property of the video sensing problem over still imaging is the fundamental difference between space and time. The ephemeral nature of time poses significant limitations on the measurement process—clearly, we cannot obtain additional measurements of an event after it has occurred. As a consequence, it is entirely possible that a compressive camera does not capture a sufficient number of measurements to recover the frames of the video. Overcoming this challenge requires both an understanding of the spatial-temporal resolution tradeoffs associated with video CS as well as development of novel compressive imaging architectures that can deliver very high measurement rates or reconstruct at different resolutions depending on the available data.

Challenge 3. Computational complexity. Even moderate resolution videos result in high bandwidth streaming measurements. Typical CS video recovery algorithms are highly non-linear and often involve expensive iterative optimization routines. Fast (or even real-time) reconstruction of CS video is challenging, because it requires a data measurement system, fast iterative algorithms, and high-performance hardware that are jointly designed to enable sufficiently high throughout.

The goal of this article is to overview the current approaches to video CS and demonstrate that significant gains cab be obtained using carefully designed CS video architectures and algorithms. However, these gains can only be realized when there is cohesive progress across three distinct

fields: video models, compressive video sensing architectures, and video reconstruction algorithms. This article reviews progress that has been made in advancing and bringing these fields together. We discuss some of the landmark results in video CS and highlight their key properties and the rich interplay among models, architectures, and algorithms that enable them. We also lay out a research agenda to attack the key open research problems and practical challenges to be resolved in video CS.

VIDEO SENSING SYSTEMS

In this section, we discuss the current compressive imaging architectures that have been proposed for CS video. The architectures can be broken down into three categories (see Table I).

- *Spatial multiplexing cameras (SMCs)* optically super-resolve a low-resolution sensor to boost spatial resolution. SMCs are invaluable in regimes where high-resolution sensors are unavailable, as in THz/mm-wave and magnetic resonance imaging (MRI), or extremely costly, as in short or medium wavelength infrared (SWIR and MWIR) sensing.
- *Temporal multiplexing cameras (TMCs)* optically super-resolve a low frame-rate camera to boost temporal resolution. TMCs are mainly used to overcome the limitations imposed on the measurement rate by the analog-to-digital converter (ADC) and are optimized to produce a high frame-rate video at high spatial resolution with low frame-rate sensors.
- *Spectral and angular multiplexing cameras (SAMCs)* boost resolution in the spectral domain, which can be useful for hyperspectral and light-field video sensing. As with TMCs, the bottleneck of these architectures is also the measurement rate constraint imposed by the ADC.

Each of these flavors of CS system aims to break the Nyquist barrier to obtain either higher spatial, temporal, or spectral resolution. In the following sections we discuss the key design considerations and existing implementations of these three camera types.

Spatial multiplexing cameras (SMCs)

SMCs apply CS multiplexing in *space* to boost the spatial resolution of images and videos obtained from sensor arrays with low spatial resolution. The use of a low-resolution sensor enables SMCs to operate at wavelengths where corresponding full-frame sensors are too expensive, such as at SWIR, MWIR, THz, and mm wavelengths. SMCs employ a spatial light modulator, such as

Туре	Name	Application	Modulator	Best known capabilities	Limitations
Spatial multiplexing camera	Single pixel camera	Infrared imaging	DMD	Spatial res. 128x128 Time res. 64 fps Result [24]	Operational speed of DMD
	LiSens / FPA-CS	Infrared imaging	DMD	Spatial res. 1024x768 Time res. 10 fps Result [17, 74]	Need for precise optical alignment/ calibration
Temporal multiplexing cameras	Coded strobing	High-speed Imaging	Mechanical/Ferro- electric shutter	Spatial res. (Sensor) Time res. 2000 fps Result [71]	Periodic scenes
	Flutter shutter	High-speed Imaging	Mechanical/Ferro- electric shutter	Spatial res. (Sensor) Time res. 4x sensor-fps Result [60]	Locally-linear motion
	P2C2	High-speed imaging	LCoS	Spatial res. (Sensor) Time res. 16x sensor-fps Result [61]	Dynamic range of sensor
	Per-pixel shutter	High-speed imaging	LCoS / Electronic shutter	Spatial res. (Sensor) Time res. 16x sensor-fps Result [36]	Light loss
	CACTI	High-speed imaging	Translating mask	Spatial res. (Sensor) Time res. 100x sensor-fps Result [48]	Mechanical motion
Light field video		Dynamic refocusing	LCoS, used as programmable coded- aperture	Time res. Sensor-fps Result [67]	Loss of spatial resolution can be severe for high spectral/angular resolutions
Hyperspectral video	CASSI	Spectroscopy	Static mask	Time res. Sensor-fps Result [72]	

 TABLE I

 Key architectures for CS video and their properties.

a digital micromirror device (DMD) or liquid crystal on silicon (LCOS), to optically compute a series of coded inner products with the rasterized scene s; these linear inner products determine the rows of the sensing matrix Φ (recall the notation from Box 2). It is worth mentioning that the SMC approach is equally applicable to modalities outside of the scope of this paper, such as MRI [52], where the physics of image formation produces a measurement system that can be interpreted as sub-sampling the Fourier transform of the sensed image.

Single pixel camera (SPC): The SPC [27] acquires images using only a single sensor element (i.e., a single pixel) and taking significantly fewer multiplexed measurements than the number of scene pixels. In the SPC, light from the scene is focused onto a programmable DMD, which directs light from a subset of activated micromirrors onto the single photodetector. The programmable nature of the DMD's micromirror orientation enables one to direct light either towards or away from the photodetector. As a consequence, the voltage measured at the photodetector corresponds to an inner product of the image focused on the DMD and the micromirrors directed towards the

Fig. 1. Operation principle of the single-pixel camera (SPC). Each measurement corresponds to an inner-product between the binary mirror-mirror orientation pattern on the DMD and the scene to be acquired. Image courtesy of [67].

sensor (see Figure 1). Specifically, at time t, if the DMD pattern is represented by $\phi[t]$ and the time-varying scene by V[x, y, t] (where x and y are the two spatial dimensions and t is the temporal dimension), then the photodetector measures a scalar value $y[t] = \langle \phi[t], V[\cdot, \cdot, t] \rangle + e[t]$, where $\langle \cdot, \cdot \rangle$ denotes the inner-product between the vectors, and e[t] accounts for the measurement noise. If the scene is static, i.e., $V[x, y, t] = V_0[x, y]$, then the measurement vectors can be stacked as columns into a measurement matrix, with $\Phi = [\phi_1, \phi_2, \dots, \phi_M]^T$. The SPC leverages the relatively high pattern rate of the DMD, which is defined as the number of unique micromirror configurations that can be obtained in unit time. This pattern rate, typically 10–20 kHz for commercially available devices, defines the measurement bandwidth (i.e., the number of measurements per second) and is one of the key factors that defines the achievable spatial and temporal resolutions. Since SPCs rely on the DMD to modulate images onto a single sensor, the spatial resolution is limited by the density of mirrors on the DMD.

Since the proposal of the original SPC in [27], numerous authors have developed alternative SPC architectures that do not require a DMD for spatial light modulation. In [41], an LCD panel is used for spatial light modulation; the use of a transmissive light modulator enables a lensless architecture. Sen and Darabi [70] use a camera-projector system to construct an SPC exploiting a concept referred to as dual photography [69]; the hallmark of this system is its use of active and coded illumination that can be beneficial in certain applications, particularly microscopy.

Beyond SPCs—Multiple pixel detectors: As mentioned above, the measurement rate of an SPC is limited by the pattern rate of its DMD, which is typically in the tens of kHz. This measurement rate can be insufficient for scenes with very high spatial and temporal resolutions. This issue can

be combatted using an SMC with F sensor pixels (photodetectors), each capturing light from a non-overlapping region of the DMD. The measurement rate of the SMC increases linearly with the number of photodetectors. Taking into account that the maximum measurement rate is capped by the sampling rate of the ADC, we can write the measurement rate for an SMC with Fphotodetectors as

$$\min\left\{F \times R_{\text{DMD}}, R_{\text{ADC}}\right\},\,$$

where R_{DMD} is the pattern rate of the DMD and R_{ADC} is the sampling rate of the ADC. Hence, the smallest number of photodetectors for which the measurement rate is maximized is

(minimum number of sensor pixels) $F_{\min} = R_{ADC}/R_{DMD}$.

In essence, at $F = F_{\min}$ we can obtain the measurement rate of a full-frame sensor but using a device with potentially a fraction of the number of photodetectors. This can be invaluable for sensing in many wavebands, e.g., SWIR.

As a case study, consider an SMC with a DMD pattern rate $R_{\text{DMD}} = 10$ kHz and an ADC with a sampling rate $R_{\text{ADC}} = 10$ MHz. Then, for a sensor with $F_{\text{min}} = 1000$ pixels, we can acquire 10 M measurements per second. An SPC, in comparison, would acquire only 10 k measurements per second. Consequently, multi-pixel SMCs can acquire videos at significantly higher spatial and temporal resolutions than an SPC.

There have been many multi-pixel extensions to the SPC concept. The simplest approach [46] maps the DMD to a low-resolution sensor array, as opposed to a single photodetector, such that each pixel on the sensor observes a non-overlapping "patch" or a block of micromirrors on the DMD. SMCs based on this design have been proposed for sensing in the visible [78], SWIR [19], and MWIR [54]. Figure 2 shows an example of the increased measurement rates offered by the LiSens camera [78], which uses a linear array of 1024 photodetectors. More recently, there have also emerged multi-pixel multiplexing based cameras that completely get rid of the lens and replace the lens with a mask and computational reconstruction algorithms [2].

Temporal multiplexing cameras (TMCs)

TMCs apply CS multiplexing in *time* to boost the temporal resolution of videos obtained from sensor arrays with low temporal resolution. Again, let V[x, y, t] be a 3D signal representing

(c) Comparison of reconstructions obtained from LiSens and SPC for the same capture duration

Fig. 2. Multi-pixel SMCs support significantly higher sensing rates than an SPC. (a) The measurement rate as a function of the number of sensor pixels. An optimized SMC with F_{min} pixels delivers the highest possible measurement rate. (b) Lab prototypes of the SPC and LiSens cameras, each placed on the one arm of a single DMD. The measurement rate of the LiSens camera is nearly 1 MHz, while that of the SPC is 20 kHz. (c) Comparisons between LiSens, which uses 1024 sensor pixels, and an SPC for a static scene. Each row corresponds to a different capture duration, defined as the total amount of time that the cameras have for acquiring compressive measurements. The larger measurement rate of the LiSens camera enables it sense scenes with very high spatial resolution even for small capture durations. Figure courtesy of [78].

a time-varying scene. Due to the assumed low frame-rate of the sensor, we obtain a scene measurement once every T seconds, where T is too large. If the SLM has an operational speed of one pattern every T_{SLM} seconds, then each measurement of a TMC takes the form of a coded image

$$y[x, y, t_0] = \sum_{j=0}^{C-1} \phi[x, y, j] V[x, y, t_0 + jT_{\text{SLM}}],$$

where $\phi[x, y, j]$ is the attenuation pattern on the SLM at spatial location (x, y) and time jT_{SLM} . Here, each coded image measured by the TMC multiplexes C frames of the high-speed video, and hence, we obtain one coded image every CT_{SLM} seconds. Our goal is to recover the frames of the high-speed video $V[x, y, kT_{SLM}]$ from a single or a sequence of coded images/measurements. Global shutters: The simplest instance of an TMC uses a global shutter together with a conventional camera. In a global shutter, the SLM code $\Phi[x, y, j] = \Phi[j]$ is spatially invariant, which can be implemented by using a programmable shutter or by using the image sensor's built-in electronic shutter. Veeraraghavan et al. [75] showed that periodic scenes can be imaged at very high temporal resolutions using a global shutter [64]. This idea has been extended to non-periodic scenes in [40], where a union-of-subspace model was used to temporally super-resolve the captured scene. However, global shutters are fundamentally limited to providing only spatially invariant coding of the video; this can be insufficient to provide a rich-enough encoding of a high-speed video. Hence, in spite of their simplicity, global shutters fail for scenes with complex motion patterns.

Per-pixel shutters: Reddy et al. [65] proposed hey the per-pixel compressive camera (P2C2) which extends the global shutter idea with per-pixel shuttering. Here, each pixel has its own unique code that is typically binary-valued and pseudo-random. The P2C2 architecture uses a liquid crystal on silicon (LCoS) SLM placed optically at the sensor plane and carefully aligned to a high-resolution 2D sensor. The P2C2 prototype achieves $16 \times$ temporal super-resolution, even for complex motion patterns. Hitomi et al. [39] extended the P2C2 camera using a per-pixel coding that is more amenable to implementation in modern image sensors with per-pixel electronic shutters. Here, $\Phi[x, y, j] = \delta[j - j_0(x, y)]$, i.e., each pixel observes the intensity at one of the subframes of the high-speed video, and the selection of this subframe varies spatially. Llull et al. [51] and Koller et al. [47] proposed a TMC that achieves temporal multiplexing via a translating mask in the sensor plane. This approach avoids the hardware complexity involved with DMD and LCoS SLMs and enjoys other benefits, including low operational power consumption at the cost of having a mechanical component (the translating mask).

Additional TMC designs: Gu et al. [36] used the rolling shutter of a CMOS sensor to enable higher temporal resolution. The key idea is to stagger the exposures of each row randomly and use image/video models to recover a high-frame-rate video. Harmany et al. [37] extended coded aperture systems by incorporating a global shutter; the resulting TMC provides immense flexibility in the choice of the measurement matrix Φ .

Spectral and angular multiplexing cameras (SAMCs)

SAMCs apply CS multiplexing to sense variations of light in a scene beyond the spatial and temporal dimensions. Two specific examples include hyper-spectral CS video cameras that sense spatial, spectral, and temporal variations of light in a scene, and light-field video cameras that sense spatial, angular, and temporal variations. In both cases, imaging at high resolution across all modalities simultaneously requires that we handle both high measurement rates (this is typically limited by the ADC sampling rate) and low light levels (due to scene light being resolved into various modalities). CS techniques, more specifically, signal models, can address both bottlenecks. Examples of compressive cameras include the CASSI architecture [76] and compressive hyperspectral imaging using spectrometers [50] for spectral multiplexing and the work of Marwah et al. [58] and Tambe et al. [71] for angular multiplexing.

MODELS FOR VIDEO STRUCTURE

Recovering a video from compressive linear measurements requires one to extract the video signal s from the measurements $y = \Phi s$ (recall Box 2). Here, s might represent a certain block of pixels, an entire video frame, or an ensemble of frames, depending on the sensing architecture and the specific recovery algorithm employed. All of these are functions of the underlying time-varying scene V[x, y, t]. Since the number of measurements M is less than the video signal's ambient dimensionality N, infinitely many vectors s' may satisfy $y = \Phi s'$. Hence, in order to recover s from y, a model that captures the scene structure (or a priori information) of s with a small number of degrees of freedom is required; the model can then be included in the recovery algorithm. This section surveys several popular models for characterizing low-dimensional structure in videos.

Single-frame structure

The structure of a single video frame can be characterized using standard models for conventional two-dimensional (2D) images. Natural images have been shown to exhibit sparse representations in the 2D DCT, 2D wavelet, and curvelet domains [15, 56]. Images have also been shown to have sparse gradients. The total variation (TV) semi-norm promotes such gradient sparsity simply by minimizing the ℓ_1 -norm of an image's 2D gradient [52]. To fully exploit the structure in a 3D video, one needs to characterize the spatial and temporal dimensions *simultaneously*, rather than

reconstructing each frame independently and only accounting for spatial structure. Hence, the spatial 2D regularizers described above often appear as building blocks of more sophisticated 3D video models.

Sparse innovation models

One of the simplest possible models accounting for multi-frame structure assumes that a video can be reduced into a static and a dynamic component. This model—while restrictive—is applicable, for example, in surveillance applications, where a scene is observed from a distant static camera. We can decompose each frame of such a video into a static background frame and a number of small (sparse) foreground objects that may change location from frame to frame. A natural way of modeling such structure is to assume that the differences between consecutive frames have a sparse representation in some transform basis. That is, for two consecutive video frames $V[x, y, t_1]$ and $V[x, y, t_2]$, one may assume that the difference frame $V[x, y, t_2] - V[x, y, t_1]$ has a sparse representation in a basis such as a 2D wavelet basis. Such models have been explored in detail in the context of CS [17, 57, 74] and can be viewed as special cases of the more advanced motion-compensation techniques described below.

Low-rank matrix models

An alternative approach to scene modeling involves reorganizing a 3D video signal into a 2D matrix, where each column of the matrix contains a rasterized ordering of the pixels of one video frame. A variety of popular concise models for matrix structure can then be interpreted as models for video structure. One of the most prominent models asserts that the matrix is low rank; this is equivalent to assuming that the columns of the data matrix live in a common, low-dimensional subspace. In the context of video modeling, a seminal result by Basri and Jacobs [9] showed that collections of images of a Lambertian object under varying lighting often cluster close to a 9-dimensional subspace. This property can be useful for modeling videos of stationary scenes where the illumination conditions change over time.

In order to account for both variations in background illumination and for sparse foreground objects that move with time, one can extend the low-rank matrix model to a low-rank-plus-sparse model [79, 80]. A sparse matrix, added to the original low-rank matrix, accounts for sparse

foreground innovations, such as small moving objects. Again, such models are particularly suitable for surveillance applications.

TV minimization and sparse dictionaries

Sparsifying transforms such as wavelets, curvelets, and the DCT, have natural extensions to 3D [56, 77, 82] and can be employed for jointly reconstructing an ensemble of video frames. TV minimization can also be extended to 3D [35, 49]; minimizing the 3D-TV semi-norm of a video promotes frames with sparse gradients across spatial and temporal dimensions.

It is also possible to *learn* specialized (possibly overcomplete) bases that enable sparse representations of patches, frames, and videos from training data. A variety of so-called dictionary learning algorithms have been proposed that learn sparsifying frames Ψ (see, e.g., [1] and Box 2). Dictionary learning algorithms can be used not only to generate dictionaries that sparsify images, but also to sparsify videos in both the spatial and temporal dimensions. This approach has been successfully employed for CS video reconstruction in [39].

Linear dynamical systems

Linear dynamical systems (LDSs) model the dynamics in a video using linear subspace models. Such models have been used extensively in the context of activity analysis and dynamic textures. Video CS using LDS reduces to the estimation of the LDS parameters, including the observation matrix and the state transition matrix, from compressive measurements. Approaches for parameter estimation have included recursive [73] as well as batch methods [66]. Furthermore, [66] demonstrates the use of the recovered LDS parameters for activity classification.

Motion compensation

While regularizers such as 3D wavelets and 3D TV minimization can be used for CS video reconstruction, it is worth noting that conventional video compression algorithms (such as H.264) do not employ such simple techniques. Rather, because objects in a video may move (or translate) several pixels between adjacent frames, it is typical to employ block-based motion compensation and prediction, where each video frame is partitioned into blocks, the location of each block is predicted in the next frame, and only the residual of this prediction is encoded.

Some CS video architectures may require reconstructions of video sequences with high temporal frame rates. In these cases, there may be relatively little object motion between consecutive frames. Consequently, motion compensation may not be required, and techniques such as 3D TV may result in high-quality scene recovery.

In other cases, however, it may be necessary to predict and compensate for the motion of objects between consecutive frames. This presents an interesting chicken-and-egg problem: motion compensation can help in reconstructing a video, but the motion predictions themselves cannot be made until (at least part of) the video is reconstructed. One iterative, multiscale technique has been proposed [62] that alternates between motion estimation and video reconstruction: the recovered video at coarse scales (low spatial resolution) is used to estimate motion, which is then used to boost the recovery at finer scales (high spatial resolution). Given the estimated motion vectors, a motion-compensated 3D wavelet transform can be defined using the LIMAT technique [68]. Another approach initially reconstructs frames individually, estimates the motion between the frames, and then attempts to reconstruct any residual not accounted for by the motion prediction [30]. See also [45] for a related technique. The logistics of block-based video sensing and reconstruction are discussed in detail in [30].

Optical flow

A more general approach to motion compensation involves the optical flow field. Given two frames of a video, $V[x, y, t_1]$ and $V[x, y, t_2]$, optical flow refers to the flow field $\{u(x, y), v(x, y)\}$ such that $V[x + u(x, y), y + v(x, y), t_1] = V[x, y, t_2]$. Optical flow enables one to represent the frames of a video using a small collection of "key frames" plus optical flow fields that synthesize (extrapolate) the video from the keyframes. Optical flow fields are often significantly more compressible than images. Such an approach is closely related to the block-based motion compensation models described above but is distinguished by its explicit attempt to model motion on a per-pixel basis.

A key challenge in the use of optical flow models for video CS is—once again—that, in the context of sensing, we do not have access to the flow fields nor do we have access to high quality images from which to estimate the flow fields. Reddy et al. [65] resolve this chicken-and-egg problem by first recovering a video with simple image-based priors, estimating the optical flow field

on the initial reconstruction, and subsequently, recovering the video again while simultaneously enforcing the brightness constancy constraints derived using optical flow. They show that a 30 fps sensor can be super-resolved to a 240–480 fps sensor by temporal modulation using an LCoS device. In the context of SMCs, Sankaranarayanan et al. [67] use a specialized dual-scale sensing (DSS) matrix that provides robust and computationally inexpensive initial scene estimates at a lower spatial resolution. This enables this approach to robustly estimate optical flow fields on a low-resolution video. Optical flow-based video CS has also been applied for the dynamic MRI problem, where carefully selected Fourier measurements provide robust initial scene estimates [3]. The concept of DSS sensing matrices has been improved recently by the Sum-To-One (STOne) transform [35], which enables the fast recovery of low-resolution scene estimates at multiple resolutions.

VIDEO RECOVERY TECHNIQUES

While the mathematical formulations of video CS recovery problems resemble other canonical sparse recovery problems, three important factors set video recovery apart from other types of sparse coding. First, video recovery problems are extremely large and have high memory requirements. Methods for high-resolution video recovery must scale to hundreds of millions of unknowns. Second, sparse representations of videos with complex structures may contain tens of thousands (or more) of non-zero entries. Consequently, algorithm implementations that require large dense matrix systems are intractable, and methods must exploit fast transforms. Third, high-quality video recovery often involves non-invertible sparsity transforms, and so reconstruction methods that handle co-sparsity models are desirable. Some recovery problems require more sophisticated (or "unstructured") models, such as optical flow constraints, that cannot be handled efficiently by simple algorithms. All of these factors impact algorithm performance on different reconstruction applications.

This section overviews the range of existing recovery techniques and investigates the trade-offs between reconstruction quality and computational complexity. For simplicity we focus on two categories of reconstruction methods; variational and greedy. Note that there are algorithms that do not fit well into these categories (such as iterative hard thresholding [12], which has features of both); discussion of such methods is beyond the scope of this paper.

Variational methods

Variational methods for CS video recovery perform scene reconstruction by solving optimization problems using iterative algorithms. Most variational methods suitable for high-dimensional problems can be classified into two categories, as detailed next.

Constrained problems: The first category solves constrained problems of the form

$$\hat{s} = \underset{s,z}{\operatorname{arg\,min}} f(\Phi s | y) + g(z) \text{ subject to } z = \Psi s.$$
 (1)

Here, the function f models the video acquisition process (optics, modulation, and sampling) and g is a regularizer that promotes sparsity under the transformation defined by Φ . For example, basic frame-by-frame recovery with 2D wavelet sparsity can be formulated as an unconstrained problem with $f(\Phi s | y) = ||y - \Phi s||_2^2$ and $g(z) = \gamma ||z||_1$, where s contains a vectorized image frame, Φ is the sensing matrix, Ψ is a 2D wavelet transform, and $\gamma > 0$ is a regularization parameter. Under a TV scene model, the matrix Ψ is a discrete gradient operator that computes differences between adjacent pixels. 3D TV video recovery can be achieved by stacking multiple vectorized video frames into s and defining Ψ to be the 3D discrete gradient across both spatial dimensions and time. Optical flow constraints can be included by forming a sparse matrix Ψ that differences pixels in one frame with pixels that lie along its flow trajectory in other frames.

It can be shown that the solution to (1) corresponds to a saddle point of the so-called augmented Lagrangian function

$$\mathcal{L}(s, z, \lambda) = f(\Phi s \,|\, y) + g(z) + \frac{\beta}{2} \|z - \Psi s - \lambda\|_2^2, \tag{2}$$

where λ is a vector of Lagrange multipliers. Constrained problems of the form (1) for CS video can be solved efficiently using the alternating direction method of multipliers (ADMM) [13, 28, 31] or the primal-dual hybrid gradient (PDHG) method [18, 29]. The ADMM and PDHG methods alternate between minimization steps for *s* and *z* and maximization steps for λ until convergence is reached. Such methods have the key advantage that they enable the inclusion of powerful, non-invertible video models such as 3D TV or optical flow. This advantage, however, comes at the cost of higher memory requirements and somewhat more complicated iterations. In order to improve the convergence rates of solvers for constrained problems, accelerated algorithm variants have been developed [18, 32, 33].

$$\widehat{z} = \underset{z}{\arg\min} \ f(\widehat{\Phi}z \mid y) + g(z).$$
(3)

Here, the matrix $\widehat{\Phi} = \Phi \Psi^{-1}$, and z contains the representation of a single frame or the entire video in the sparsity transform domain. For example, in the case of wavelet sparsity, solving (3) recovers the video's wavelet coefficients; the final video is obtained by applying the inverse wavelet transform to the solution.

Unconstrained problems of the form (3) can be solved efficiently using forward–backward splitting (FBS) [20], fast iterative shrinkage/thresholding (FISTA) [10], fast adaptive shrinkage/thresholding algorithm (FASTA) [34], sparse reconstruction by separable approximation (SpaRSA) [81], or approximate message passing (AMP) [25, 55]. FBS is the most basic variant for solving unconstrained problems and performs the following two steps for the iterations k = 1, 2, ... until reaching convergence:

$$\hat{z}^{k+1} = z^k + \tau^k \widehat{\Phi}^* \nabla f(\widehat{\Phi} z^k \,|\, y) \tag{4}$$

$$z^{k+1} = \arg\min_{z} g(z) + \frac{1}{2} ||z - \hat{z}^{k+1}||_{2}^{2},$$
(5)

where $\{\tau^k\}$ is some stepsize sequence. FBS finds a global minimum of the objective function (3) by alternating between the explicit gradient-descent step (4) in the function f and the proximal (or implicit gradient) step (5) in the function g. The key operations of the gradient step (4) are matrix-vector multiplications with $\hat{\Phi}$ and $\hat{\Phi}^*$. These multiplications can be carried out efficiently when $\hat{\Phi}$ is a composition of fast transforms, such as subsampled Hadamard/Fourier matrices and wavelet or DCT operators. When g is a simple sparsity-promoting regularizer, such as the ℓ_1 -norm, the proximal step (5) is easy to compute in closed form using wavelet shrinkage. The computational complexity of FBS can be reduced significantly using adaptive step-size rules for selecting $\{\tau^k\}$, acceleration schemes, restart rules, momentum (or memory) terms, etc., as is the case for FISTA, FASTA, SpaRSA, and AMP. See the review article [34] for more details.

Greedy pursuit algorithms are generally used for unconstrained problems and iteratively construct a sparse set of non-zero transform coefficients. Each iteration begins by identifying a candidate sparsity pattern for the unknown vector z. Then, a least-squares problem is solved to minimize $\|\widehat{\Phi}z - y\|_2^2$, where z is constrained to have the prescribed sparsity pattern.

Existing greedy pursuit algorithms can be classified into *sequential* greedy pursuit algorithms and *parallel* greedy pursuit algorithms. Sequential methods include orthogonal matching pursuit (OMP), regularized OMP (ROMP), and stagewise OMP (StOMP) [26, 61, 72]. These methods successively add more and more indices to the support set until a maximum sparsity K is reached. Parallel methods, such as compressive sampling matching pursuit (CoSaMP) and subspace pursuit [21, 60], constantly maintain a full support set of K nonzero entries but add strong and replace weak entries in an iterative fashion. Parallel greedy pursuit algorithms have the advantage that they can enforce structured models on the support-set, such as a wavelet tree structure [5].

The main drawbacks of greedy algorithms, however, are that (i) they are typically unable to handle non-invertible sparsity transforms used for video reconstruction such as TV, optical flow, or over-complete wavelet frames; (ii) accurate solutions are guaranteed only when the measurement operator satisfies stringent conditions (such as the restricted isometry property or similar incoherence conditions [60, 72]); and (iii) they require solving large linear systems on every iteration. For small numbers of unknowns (< 10 k), the factorization of these systems can be explicitly represented and updated cheaply using rank-1 updates. For the large video CS problems considered here, iterative (conjugate gradient) methods are recommended. These methods require only matrix multiplications (which can exploit fast transforms) and have lower memory requirements, because they do not require the storage of large and dense matrices.

Reconstruction quality vs. computational complexity

There are many choices to make when building a compressive video pipeline, including measurement operators, video models, and reconstruction algorithms. Most reconstruction algorithms are restricted as to what measurement operators and sparsity models they can support. In order to achieve the best performance, the reconstruction algorithms, video models, and data acquisition pipelines must be designed *jointly*; this implies that there are trade-offs to be made among reconstruction speed, algorithm simplicity, and video quality.

The classical approach to CS video recovery is to search for the video that is compatible with the observed measurements while being as sparse as possible in the wavelet domain. When an invertible wavelet transform is used, the reconstruction problem can be transformed into an unconstrained problem of the form (3), which can be solved efficiently using variational methods such as FBS. If we further assume that the wavelet transform is orthogonal, then we can use off-the-shelf greedy pursuit algorithms, such as CoSaMP. Unfortunately, while unconstrained optimization is simple to implement and highly efficient, wavelet-based scene priors generally result in lower reconstruction quality than non-invertible/redundant sparsity models like TV. For this reason, we are often interested in constrained solvers that interface with TV-based video models and optical flow constraints.

To examine the associated performance/complexity trade-offs, we compare a variety of reconstruction methods using the same measurement operator. A stream of 65,536 STOne measurements [35] was acquired from a 256×256 pixel video. Videos were reconstructed separately using various models and solvers that were implemented in MATLAB. We consider unconstrained recovery using CoSaMP and FBS, which are restricted to using invertible regularizers. In the wavelet case, we consider (i) 2D frame-by-frame recovery that does not exploit correlations across time, and (ii) 3D wavelet recovery that performs a 3-D wavelet transform across space and time. We also consider sparsity under the 3D-DCT, which is invertible and enjoys extensive use in image and video compression. We furthermore consider solvers for constrained problems that handle more sophisticated sparsity models. In particular, we compare 3D-TV models with PDHG and optical flow constraints with ADMM (as in CS-MUVI [67]). As a baseline, we perform CS video recovery without scene priors by simply computing $\Phi^T y$, the product of the adjoint of the measurement operator with the vector of measurements. Because the measurement operator is a sub-sampled orthogonal matrix, this corresponds to a least-squares recovery using the pseudo-inverse. All experiments are carried out on an off-the-shelf laptop with 16 GB memory and a 2.6 GHz i5 CPU with two physical cores (no parallelism was used for reconstruction).

Sample frames from our experiments together with the required runtime are shown in Figure 3. We observe that TV regularization and optical flow models dramatically outperform wavelet-based recovery in terms of video quality. Furthermore, 3D models lead to significantly improved image

Fig. 3. CS video recovery comparison with different video models. For each model, we recover a 16-frame video with 256×256 pixel resolution from 2^{16} STOne transform measurements, corresponding to a 100:16 compression ratio. Sparsity models include 2D (across space) and 3D (across space and time) wavelet sparsity using the Haar wavelet, the 3D-DCT, optical flow constraints, and 3D-TV. Next to each experiment we also provide the total runtime for recovering 16 frames.

quality with fewer artifacts than 2D models, despite the fact that both reconstructions see the same amount of data. This demonstrates the efficacy of exploiting correlations across time. The key advantage of 2D models is that they enable *parallel* frame-by-frame reconstruction, e.g., by dispatching different recovery problems on separate CPU cores. Finally, we see that for these types of large-scale reconstruction problems, variational methods require substantially lower runtimes than greedy pursuit algorithms. The CoSaMP result in Fig. 3 is for frame-by-frame reconstructions with a sparsity level of K = 256 non-zero wavelet coefficients per image. CoSaMP's runtime increases dramatically for larger K or when 3D regularizers are used. This is because each iteration requires the solution to a large least-squares problem using multiple iterative (conjugate gradient) steps. Hence, such greedy pursuit algorithms turn out to be efficient only for highly sparse signals, and not for general CS video problems.

Fig. 4. Complexity (in floating-point operations per pixel) vs. resolution (in pixels per second) for greedy algorithms, variational methods, and optical-flow models for the video scene in Figure 3. Variational methods (including 3D TV and 3D/2D wavelets) require the lowest complexity and enable real-time CS video recovery with existing hardware (the diagonal dotted line shows the FLOPS limit of current reprogrammable hardware). Optical flow models exceed the capabilities of current hardware and require the development of more efficient computational methods and faster processing architectures.

PERSPECTIVES AND OPEN RESEARCH QUESTIONS

The videos CS problem has spawned a growing body of research that spans signal representations and models, computational sensing architectures, and efficient optimization techniques. This has led to vibrant ecosystem of methodologies that have transitioned the theoretical ideas of CS into concrete application-specific concepts. We conclude by highlighting some of the important open questions and future research directions.

Real-time CS video recovery with today's hardware?

High-quality CS video recovery requires complex algorithms that include powerful video models. While off-line video recovery is always feasible, reconstruction using more sophisticated scene models (e.g., using optical flow) can easily take several seconds to minutes even for only a few low-resolution frames. As a consequence, applications that necessitate real-time video recovery face extreme implementation challenges. From our experiments in Figure 3, we see that even the

Quite surprisingly, when counting the number of floating-point operations (FLOPs) required for the main transforms of these methods, we observe that real-time CS video recovery with variational methods is within reach of existing hardware. In fact, variational-based scene recovery of a 256×256 pixel scene at 12 frames-per-second (fps) requires only about 20 GFLOPS, which is well-below that of programmable processing hardware, such as CPUs, GPUs, and FPGAs that achieve peak throughputs of a few teraflops. Similarly, existing application specific integrated circuit (ASIC) designs that target CS recovery problems [11,53] are able to solve variational problems with more than 200 GOPS (the computations are typically carried out with fixed-point arithmetic instead of floating point) using low silicon area and low power when implemented in modern CMOS technology nodes. In Figure 4, we compare the complexity vs. the resolution of various CS video recovery methods. One can observe that even higher resolutions like 1080p HD are feasible in real-time with computationally efficient algorithms. Nevertheless, no real-time CS-video recovery implementation has been proposed in the open literature, which can mainly be attributed to the lack of highly optimized and massively parallel CS video recovery pipelines for programmable hardware (CPUs, GPUs, or FPGAs) as well as dedicated integrated circuits (ASICs). This is definitely a fruitful area for future work.

Compressive inference rather than recovery?

The main results of CS are directed towards providing novel sampling theorems that determine the feasibility of signal reconstruction from an under-determined set of linear measurements. However, *reconstruction is often not the eventual goal in most applications*, which range from detection and classification to tracking and parameter estimation. While these tasks can all be performed post-reconstruction (on the output of a reconstruction procedure), there are important benefits to be gained by performing them directly on the compressive measurements. First, tasks like detection, classification, and tracking are inherently simpler than reconstruction — and hence, there is hope that we can perform them with fewer measurements. Second, CS reconstruction is intrinsically tied to the signal models used for the unknown signal, and these signal models prioritize features that deal with visual perception, which often is not the most relevant for the subsequent processing tasks. Third, as discussed at length above, CS reconstruction algorithms have high computational complexity, and hence, avoiding a reconstruction step in the overall processing pipeline can be beneficial.

There has been some limited work on inference from linear compressive measurements. Davenport et al. [23] perform compressive classification and detection by using a matched filter in the compressive domain. Their key observation is that random projections preserve distances as well as inner-products between sparse vectors, and hence inference tasks like hypothesis testing and certain filtering operations can be performed directly in the compressive domain. Hegde et al. [38] show the manifold learning (or nonlinear dimensionality reduction) can be performed just as well on the compressive measurements as on the original data, provided the data arises from a manifold with certain smoothness properties. Sankaranarayanan et al. [66] demonstrate that for time-varying systems well-approximated as linear dynamical systems, the parameters of the dynamical system can be directly estimated given compressive measurements. Recently, Kulkarni and Turaga [44] proposed a novel method based on recurrence textures for action recognition from compressive cameras especially for self-similar feature sequences [43]. Apart from these early attempts, there is very little in the literature exploring high-level inference from compressive imagers.

A major hurdle to successful compressive inference in the video context is the mismatch between part-based models, used in computer vision, and global random embeddings, the cornerstone of the CS theory. Part-based models have had remarkable success over the past decade in object detection and classification problems. The key enabler of part-based inference is a local feature description that helps isolate objects from background clutter and provides robustness against object variations. However, the conventional CS measurements are *dense random projections* that are not conducive to local feature extraction without reconstructing the signal first. Hence, there is an urgent need for CS measurement operator designs that enable local feature extraction.

From measurements to bits — Towards non-linear sensing architectures?

One of the important distinctions between video CS and video compression is the nature of representing the compressed data. Compression aims to reduce the number of *bits* used to represent the video. In contrast, CS measurements are typically represented in terms of real-values with

infinite (or arbitrarily large) precision; here, the number of actual measurements is the criterion to reduce/optimize. The focus on reducing the number of measurements is often misplaced in many sensing scenarios; for example, in high-speed video CS, the bottleneck is solely due to the operating speed of the ADC, whose performance is measured in the number of bits acquired per second. Hence, compressively sensing while respecting the bottlenecks imposed by the ADC sampling frequency requires us to consider measurements in terms of bits. While there has been some effort in the area of 1-bit CS [4, 42, 63] and the tradeoff between measurement bits and measurement rate [48], this aspect is still largely unexplored in literature. In particular, there is a need for new kinds of *nonlinear* sensing architectures that optimize system performance in the context of the practical realities of sensing (quantization, saturation, etc.). Some initial progress in this direction for CS has been made in [59], but the area remains wide open for research.

BOXES

Box 1: What is the Nyquist rate of a video signal?

Conventional videos, sampled at 24–60 frames per second, may, in fact, be highly undersampled in time—objects in the scene can move multiple pixels between adjacent frames. Some CS architectures, however, measure a video at a much higher temporal rate. For example, the single pixel camera (SPC) may take tens of thousands of serial measurements per second. In such cases, the scene may change very little between adjacent measurements. This raises some interesting questions: what is the Nyquist rate of a video signal, and how does it compare to CS measurement rates?

One can gain insight into these questions by considering the 3D analog video signal that arrives at a camera lens; both conventional and CS imaging systems can be viewed as blurring this signal spatially (due to the optics and the pixelated sensors) and sampling or measuring it digitally. If a video consists of moving objects with sharp edges, then the analog video will actually have *infinite bandwidth* in both the spatial and temporal dimensions. However, it can be argued that the support of the video's spectrum will tend to be localized into a certain *bowtie shape*, as shown in blue in Figure 5. The salient feature of this shape is that high temporal frequencies coincide only with high spatial frequencies. Thus, because of the limited spatial resolution of both the camera optics and the pixel sensors, when the spatial bandwidth of the video is limited, so too is its temporal bandwidth, as illustrated by the black rectangle in the figure. This suggests that the video sensed by architectures such as the single-pixel camera (SPC) may in fact have a *finite temporal bandwidth*, and this fact can be used to reduce the computational complexity of sensing and reconstructing the video. In particular, it is not necessary to reconstruct at a rate of thousands of frames per second. Additional details are provided in [62].

Box 2: Compressive sensing 101

Compressive sensing (CS) exploits the fact that a small and carefully selected set of nonadaptive linear measurements of a compressible signal, image, or video carry enough information for reconstruction and processing [16, 24]; for a tutorial treatment see [6, 14].

The traditional digital data acquisition approach uniformly samples the 3D analog signal corresponding to the time-variations of a scene; the resulting samples V[x, y, t] in space (x, y)

Fig. 5. The limited spatial resolution of an imaging system may also limit its temporal bandwidth.

and time (t) are sufficient to perfectly recover a bandlimited approximation to the scene at the Nyquist rate. Let the abstract vector s represent the Nyquist-rate samples of the scene V[x, y, t]; see Box 1 for a discussion of the Nyquist rate of a time-varying scene. Since the number of samples required for real-world scenes, N, is often very large, e.g., in the billions for today's consumer digital video cameras, the raw image data is typically reduced via data compression methods that typically rely on transform coding.

As an alternative, CS bypasses the Nyquist sampling process and directly acquires a compressed signal representation using M < N linear measurements between s and a collection of linear codes $\{\phi[m]\}_{m=1}^{M}$ as in $y[m] = \langle s, \phi[m] \rangle$. Stacking the measurements y[m] into the M-dimensional vector y and the transpose of the codes $\phi[m]^{T}$ as rows into an $M \times N$ sensing matrix Φ , we can write $y = \Phi s$.

The transformation from s to y is a *dimensionality reduction* and does not, in general, preserve information. In particular, since M < N, there are infinitely many vectors s' that satisfy $y = \Phi s'$. The magic of CS is that Φ can be designed such that *sparse* or *compressible* signals s can be recovered exactly or approximately from the measurements y. By sparse we mean that only $K \ll N$ of the entries in s are zero, or that there exists a sparsifying transform Ψ such that most of the coefficients of $\alpha := \Psi s$ are zero. By compressible we mean that s or α is approximately sparse. Let $\Psi^{-1} := [\psi_1, \psi_2, \dots, \psi_N]$ represent the inverse of the $N \times N$ basis matrix; then $s=\Psi^{-1}\alpha \ \text{and} \ y=\Phi s=\Phi \Psi^{-1}\alpha.$

Typically in CS, the sparse signal s or its sparse coefficients α is recovered by solving an optimization problem of the form (1), where f measures the fidelity of the recovery (e.g., using the squared error $||y - \Phi \Psi^{-1} \alpha||_2^2$) and g is a regularization penalty (e.g., the ℓ_1 norm $||\alpha||_1$, which promotes sparsity of α). In these cases, the resulting problem is convex, which guarantees a single global minimizer that can be found using a range of algorithms.

While the design of the sensing matrix Φ is beyond the scope of this review, typical CS approaches employ a random matrix. For example, we can draw the entries of Φ as independent and identically distributed ± 1 random variables from a uniform Bernoulli distribution [8]. Then, the measurements y are merely M different sign-permuted linear combinations of the elements of s. Other choices for Φ exist in the literature, such as randomly subsampled Fourier or Hadamard bases. In this case, multiplication by Φ can be accomplished using fast transform algorithms, which enables faster reconstruction than is possible with random matrices.

It is important to emphasize that CS is not a panacea for all the world's sampling problems [7]. In particular, to apply the concept profitably, it is critical that the signal *s* possess a lower inherent dimensionality than its ambient dimensionality (e.g., sparse structure) and that the degree of undersampling N/M be balanced with respect to the signal's signal-to-noise ratio [22].

REFERENCES

- M. Aharon, M. Elad, and A. Bruckstein. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. *EEE Transactions on Signal Processing*, 54(11):4311–4322, 2006.
- [2] M. S. Asif, A. Ayremlou, A. Sankaranarayanan, A. Veeraraghavan, and R. Baraniuk. Flatcam: Thin, lensless cameras using coded aperture and computation. *Transactions on Computational Imaging*, 2016.
- [3] M. S. Asif, L. Hamilton, M. Brummer, and J. Romberg. Motion-adaptive spatio-temporal regularization for accelerated dynamic mri. *Magnetic Resonance in Medicine*, 70(3):800–812, 2013.
- [4] R. Baraniuk, S. Foucart, D. Needell, Y. Plan, and M. Wootters. Exponential decay of reconstruction error from binary measurements of sparse signals. arXiv preprint arXiv:1411.3406, 2014.
- [5] R. G. Baraniuk. Optimal tree approximation with wavelets. In SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, pages 196–207. International Society for Optics and Photonics, 1999.
- [6] R. G. Baraniuk. Compressive sensing. IEEE Signal Process. Mag., 24(4), 2007.
- [7] R. G. Baraniuk. Compressive nonsensing. Norbert Weiner Lecture, University of Maryland, http://www.norbertwiener.umd.edu/FFT/2015/15-TAs/baraniuk.html, 2015.
- [8] R. G. Baraniuk, M. Davenport, R. DeVore, and M. Wakin. A simple proof of the restricted isometry property for random matrices. *Constr. Approx.*, 28(3):253–263, Dec. 2008.

- [9] R. Basri and D. W. Jacobs. Lambertian reflectance and linear subspaces. *IEEE Trans. Pattern Anal. Mach. Intell.*, 25(2):218–233, 2003.
- [10] A. Beck and M. Teboulle. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. *IEEE Trans. Image Processing*, 18(11):2419–2434, 2009.
- [11] D. E. Bellasi, L. Bettini, C. Benkeser, T. Burger, Q. Huang, and C. Studer. VLSI design of a monolithic compressive-sensing wideband analog-to-information converter. *IEEE Journal on Emerging and Selected Topics in Circuits and Systems*, 3(4):552–565, 2013.
- [12] T. Blumensath and M. E. Davies. Iterative hard thresholding for compressed sensing. Applied and Computational Harmonic Analysis, 27(3):265–274, 2009.
- [13] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical learning via the alternating direction method of multipliers. *Foundations and Trends*(**R**) *in Machine Learning*, 3(1):1–122, 2011.
- [14] E. Candès and M. Wakin. An introduction to compressive sampling. *IEEE Signal Processing Magazine*, 25(2):21–30, March 2008.
- [15] E. J. Candès and D. L. Donoho. New tight frames of curvelets and optimal representations of objects with piecewise c^2 singularities. *Comm. Pure Appl. Mathematics*, 57(2):219–266, 2004.
- [16] E. J. Candès, J. Romberg, and T. Tao. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. *IEEE Trans. Inf. Theory*, 52(2):489–509, Feb. 2006.
- [17] V. Cevher, A. C. Sankaranarayanan, M. F. Duarte, D. Reddy, R. G. Baraniuk, and R. Chellappa. Compressive sensing for background subtraction. In *Euro. Conf. Comp. Vision*, Marseille, France, Oct. 2008.
- [18] A. Chambolle and T. Pock. A first-order primal-dual algorithm for convex problems with applications to imaging. *Journal of Mathematical Imaging and Vision*, 40(1):120–145, 2011.
- [19] H. Chen, S. Asif, A. C. Sankaranarayanan, and A. Veeraraghavan. FPA-CS: Focal plane array-based compressive imaging in short-wave infrared. In CVPR, 2015.
- [20] P. L. Combettes and J.-C. Pesquet. Proximal splitting methods in signal processing. In Fixed-point algorithms for inverse problems in science and engineering, pages 185–212. Springer, 2011.
- [21] W. Dai and O. Milenkovic. Subspace pursuit for compressive sensing: Closing the gap between performance and complexity. Technical report, DTIC Document, 2008.
- [22] M. Davenport, J. Laska, J. R. Treichler, and R. G. Baraniuk. The pros and cons of compressive sensing for wideband signal acquisition: Noise folding versus dynamic range. *IEEE Trans. Signal Process.*, 60(9):4628–4642, 2012.
- [23] M. A. Davenport, P. T. Boufounos, M. B. Wakin, and R. G. Baraniuk. Signal processing with compressive measurements. *IEEE J. Selected Topics in Signal Processing*, 4(2):445–460, 2010.
- [24] D. L. Donoho. Compressed sensing. IEEE Trans. Inf. Theory, 52(4):1289-1306, Apr. 2006.
- [25] D. L. Donoho, A. Maleki, and A. Montanari. Message-passing algorithms for compressed sensing. *Proceedings of the National Academy of Sciences*, 106(45):18914–18919, 2009.
- [26] D. L. Donoho, Y. Tsaig, I. Drori, and J.-L. Starck. Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit. *Information Theory, IEEE Transactions on*, 58(2):1094–1121, 2012.

- [27] M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk. Single-pixel imaging via compressive sampling. *IEEE Signal Process. Mag.*, 25(2):83–91, Mar. 2008.
- [28] J. Eckstein and D. P. Bertsekas. On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. *Mathematical Programming*, 55(1-3):293–318, 1992.
- [29] E. Esser, X. Zhang, and T. F. Chan. A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science. *SIAM Journal on Imaging Sciences*, 3(4):1015–1046, 2010.
- [30] J. E. Fowler, S. Mun, E. W. Tramel, M. R. Gupta, Y. Chen, T. Wiegand, and H. Schwarz. Block-based compressed sensing of images and video. *Foundations and Trends in Signal Processing*, 4(4):297–416, 2010.
- [31] R. Glowinski and P. Le Tallec. Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics. Society for Industrial and Applied Mathematics, 1989.
- [32] T. Goldstein, M. Li, and X. Yuan. Adaptive primal-dual splitting methods for statistical learning and image processing. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, R. Garnett, and R. Garnett, editors, *Advances in Neural Information Processing Systems 28*, pages 2080–2088. Curran Associates, Inc., 2015.
- [33] T. Goldstein, B. O'Donoghue, S. Setzer, and R. Baraniuk. Fast alternating direction optimization methods. SIAM Journal on Imaging Sciences, 7(3):1588–1623, 2014.
- [34] T. Goldstein, C. Studer, and R. Baraniuk. A field guide to forward-backward splitting with a fasta implementation. *arXiv preprint arXiv:1411.3406*, 2014.
- [35] T. Goldstein, L. Xu, K. F. Kelly, and R. G. Baraniuk. The STOne Transform: Multi-resolution image enhancement and real-time compressive video. arXiv preprint arXiv:1311.3405, 2013.
- [36] J. Gu, Y. Hitomi, T. Mitsunaga, and S. Nayar. Coded rolling shutter photography: Flexible space-time sampling. In *IEEE Intl. Conf. Computational Photography*, 2010.
- [37] Z. T. Harmany, R. F. Marcia, and R. M. Willett. Compressive coded aperture keyed exposure imaging with optical flow reconstruction. *arXiv preprint arXiv:1306.6281*, 2013.
- [38] C. Hegde, M. Wakin, and R. Baraniuk. Random projections for manifold learning. In Advances in Neural Information Processing Systems (NIPS), pages 641–648, 2008.
- [39] Y. Hitomi, J. Gu, M. Gupta, T. Mitsunaga, and S. K. Nayar. Video from a single coded exposure photograph using a learned over-complete dictionary. In *ICCV*, 2011.
- [40] J. Holloway, A. C. Sankaranarayanan, A. Veeraraghavan, and S. Tambe. Flutter shutter video camera for compressive sensing of videos. In *IEEE Intl. Conf. Computational Photography*, 2012.
- [41] G. Huang, H. Jiang, K. Matthews, and P. Wilford. Lenless imaging by compressive sensing. In ICIP, 2013.
- [42] L. Jacques, J. N. Laska, P. T. Boufounos, and R. G. Baraniuk. Robust 1-bit compressive sensing via binary stable embeddings of sparse vectors. *IEEE Trans. Inf. Theory*, 59(4):2082–2102, 2013.
- [43] I. Junejo, E. Dexter, I. Laptev, and P. Perez. View-independent action recognition from temporal self-similarities. *IEEE Trans. Pattern Anal. Mach. Intell.*, (1):172 –185, 2011.
- [44] K. Kulkarni and P. Turaga. Recurrence textures for activity recognition using compressive cameras. In IEEE Conf. Image Process., 2012.
- [45] L.-W. Kang and C.-S. Lu. Distributed compressive video sensing. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 1169–1172, 2009.

- [46] K. Kelly, R. Baraniuk, L. McMackin, R. Bridge, S. Chatterjee, and T. Weston. Decreasing image acquisition time for compressive imaging devices, Oct. 14 2014. US Patent 8,860,835.
- [47] R. Koller, L. Schmid, N. Matsuda, T. Niederberger, L. Spinoulas, O. Cossairt, G. Schuster, and A. K. Katsaggelos. High spatio-temporal resolution video with compressed sensing. *Optics express*, 23(12):15992–16007, 2015.
- [48] J. Laska and R. G. Baraniuk. Regime change: Bit-depth versus measurement-rate in compressive sensing. IEEE Trans. Signal Process., 60(7):3496–3505, 2012.
- [49] Y. Le Montagner, E. Angelini, and J.-C. Olivo-Marin. Video reconstruction using compressed sensing measurements and 3d total variation regularization for bio-imaging applications. In *IEEE Conf. Image Process.*, pages 917–920, 2012.
- [50] C. Li, T. Sun, K. F. Kelly, and Y. Zhang. A compressive sensing and unmixing scheme for hyperspectral data processing. *IEEE Trans. Image Process.*, 21(3):1200–1210, 2012.
- [51] P. Llull, X. Liao, X. Yuan, J. Yang, D. Kittle, L. Carin, G. Sapiro, and D. J. Brady. Coded aperture compressive temporal imaging. *Opt. exp.*, 21(9):10526–10545, 2013.
- [52] M. Lustig, D. L. Donoho, J. M. Santos, and J. M. Pauly. Compressed sensing MRI. *IEEE Signal Process. Mag.*, 25(2):72–82, 2008.
- [53] P. Maechler, C. Studer, D. E. Bellasi, A. Maleki, A. Burg, N. Felber, H. Kaeslin, and R. G. Baraniuk. VLSI design of approximate message passing for signal restoration and compressive sensing. *IEEE Journal on Emerging and Selected Topics in Circuits and Systems*, 2(3):579–590, 2012.
- [54] A. Mahalanobis, R. Shilling, R. Murphy, and R. Muise. Recent results of medium wave infrared compressive sensing. *App. optics*, 53(34):8060–8070, 2014.
- [55] M. A. Maleki. Approximate message passing algorithms for compressed sensing. Stanford University, 2010.
- [56] S. Mallat. A Wavelet Tour of Signal Processing, Third Edition: The Sparse Way. Academic Press, 2008.
- [57] R. Marcia and R. M. Willett. Compressive coded aperture video reconstruction. In Proc. European Signal Processing Conf.(EUSIPCO), 2008.
- [58] K. Marwah, G. Wetzstein, Y. Bando, and R. Raskar. Compressive light field photography using overcomplete dictionaries and optimized projections. ACM Trans. Graphics (TOG), 32(4):46, 2013.
- [59] A. Mousavi, A. Patel, and R. G. Baraniuk. A deep learning approach to structured signal recovery. In Allerton Conf. Comm., Control, and Computing, 2015.
- [60] D. Needell and J. A. Tropp. CoSaMP: iterative signal recovery from incomplete and inaccurate samples. *Appl. Comp. Harm. Anal.*, 26(3):301–321, Aug. 2009.
- [61] D. Needell and R. Vershynin. Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit. *Foundations of computational mathematics*, 9(3):317–334, 2009.
- [62] J. Y. Park and M. B. Wakin. Multiscale algorithm for reconstructing videos from streaming compressive measurements. J. Electronic Imaging, 22(2), 2013.
- [63] S. R., W. R., and Y. O. From compressed sensing to compressed bit-streams: Practical encoders, tractable decoders. *arXiv preprint arXiv:1604.00700*, 2016.
- [64] R. Raskar, A. Agrawal, and J. Tumblin. Coded exposure photography: motion deblurring using fluttered shutter. ACM Transactions on Graphics (TOG), 25(3):795–804, 2006.

- [65] D. Reddy, A. Veeraraghavan, and R. Chellappa. P2C2: Programmable pixel compressive camera for high speed imaging. In *CVPR*, June 2011.
- [66] A. C. Sankaranarayanan, P. K. Turaga, R. Chellappa, and R. G. Baraniuk. Compressive acquisition of linear dynamical systems. SIAM Journal on Imaging Sciences, 6(4):2109–2133, 2013.
- [67] A. C. Sankaranarayanan, L. Xu, C. Studer, Y. Li, K. F. Kelly, and R. G. Baraniuk. Video compressive sensing for spatial multiplexing cameras using motion-flow models. *SIAM J. Imaging Sciences*, 8, 2015.
- [68] A. Secker and D. Taubman. Lifting-based invertible motion adaptive transform (LIMAT) framework for highly scalable video compression. *IEEE Trans. Image Process.*, 12(12):1530–1542, 2003.
- [69] P. Sen, B. Chen, G. Garg, S. R. Marschner, M. Horowitz, M. Levoy, and H. Lensch. Dual photography. ACM Trans. Graphics (TOG), 24(3):745–755, 2005.
- [70] P. Sen and S. Darabi. Compressive dual photography. Computer Graphics Forum, 28(2):609-618, 2009.
- [71] S. Tambe, A. Veeraraghavan, and A. Agrawal. Towards motion aware light field video for dynamic scenes. In *ICCV*, 2013.
- [72] J. Tropp et al. Greed is good: Algorithmic results for sparse approximation. *Information Theory, IEEE Transactions* on, 50(10):2231–2242, 2004.
- [73] N. Vaswani. Kalman filtered compressed sensing. In IEEE Conf. Image Process., San Diego, CA, USA, Oct. 2008.
- [74] N. Vaswani and W. Lu. Modified-cs: Modifying compressive sensing for problems with partially known support. *IEEE Trans. Signal Processing*, 58(9):4595–4607, 2010.
- [75] A. Veeraraghavan, D. Reddy, and R. Raskar. Coded strobing photography: Compressive sensing of high speed periodic events. *IEEE Trans. Pattern Anal. Mach. Intell.*, 33(4):671–686, Apr. 2011.
- [76] A. Wagadarikar, R. John, R. Willett, and D. Brady. Single disperser design for coded aperture snapshot spectral imaging. *App. Optics*, 47(10):44–51, 2008.
- [77] M. Wakin, J. Laska, M. Duarte, D. Baron, S. Sarvotham, D. Takhar, K. Kelly, and R. G. Baraniuk. Compressive imaging for video representation and coding. In *Picture Coding Symposium*, volume 1, 2006.
- [78] J. Wang, M. Gupta, and A. C. Sankaranarayanan. LiSens A scalable architecture for video compressive sensing. In *IEEE Intl. Conf. Computational Photography*, 2015.
- [79] A. E. Waters, A. C. Sankaranarayanan, and R. G. Baraniuk. SpaRCS: Recovering low-rank and sparse matrices from compressive measurements. In Adv. Neural Inf. Proc. Sys., Dec. 2011.
- [80] J. Wright, A. Ganesh, K. Min, and Y. Ma. Compressive principal component pursuit. *Information and Inference*, 2(1):32–68, 2013.
- [81] S. J. Wright, R. D. Nowak, and M. A. Figueiredo. Sparse reconstruction by separable approximation. *Signal Processing, IEEE Transactions on*, 57(7):2479–2493, 2009.
- [82] L. Ying, L. Demanet, and E. Candes. 3D discrete curvelet transform. In *Optics & Photonics 2005*, pages 591413–591413. International Society for Optics and Photonics, 2005.

BIOS

Richard G. Baraniuk (richb@rice.edu) is the Victor E. Cameron Professor of Electrical and Computer Engineering at Rice University and the Founder and Director of OpenStax (openstax.org). His research interests lie in new theory, algorithms, and hardware for sensing, signal processing, and machine learning. He is a Fellow of the IEEE and AAAS and has received national young investigator awards from the NSF and ONR; the Rosenbaum Fellowship from the Isaac Newton Institute of Cambridge University; the ECE Young Alumni Achievement Award from the University of Illinois; the IEEE Signal Processing Society Best Paper, Best Column, Education, and Technical Achievement Awards; and the IEEE James H. Mulligan, Jr. Medal.

Tom Goldstein (tomg@cs.umd.edu) received the B.A. from Washington University in St. Louis, in 2006 and the Ph.D. from the University of California, Los Angeles, in 2010. He has been a Visiting Research Scientist with Stanford University and Rice University. He is currently an Assistant Professor of Computer Science at the University of Maryland. His research interests lie in the areas of numerical optimization, distributed computing, image processing, and machine learning.

Aswin C. Sankaranarayanan (saswin@andrew.cmu.edu) is an Assistant Professor at the ECE Department in the Carnegie Mellon University (CMU). He received his Ph.D. from University of Maryland, College Park where he was awarded the distinguished dissertation fellowship by the ECE department in 2009. He was a post-doctoral researcher at the DSP group at Rice University. Aswin's research encompasses problems in compressive sensing and computational imaging. He has received best paper awards at the CVPR Workshops on Computational Cameras and Displays (2015) and Analysis and Modeling of Faces and Gestures (2010).

Christoph Studer (studer@cornell.edu) received the M.S. and Ph.D. degrees from ETH Zurich, Switzerland, in 2005 and 2009, respectively. He has been a postdoctoral student and research scientist at ETH Zurich and Rice University, and is now an Assistant Professor at Cornell University in the School of Electrical and Computer Engineering. His research interests are at the intersection of digital VLSI circuit and system design, signal and image processing, and wireless communication.

Ashok Veeraraghavan (vashok@rice.edu) is an Assistant Professor of Electrical and Computer Engineering at Rice University, where he directs the Computational Imaging and Vision Lab.

His research interests are broadly in the areas of computational imaging, computer vision and robotics. Before joining Rice University, he spent three wonderful and fun-filled years as a Research Scientist at Mitsubishi Electric Research Labs in Cambridge, MA. He received his Bachelors in Electrical Engineering from the Indian Institute of Technology, Madras in 2002 and M.S. and Ph.D. degrees from the Department of Electrical and Computer Engineering at the University of Maryland, College Park in 2004 and 2008, respectively. His work has received numerous awards, including the Doctoral Dissertation award from the Department of Electrical and Computer Engineering at the University of Maryland, the Hershel M. Rich Invention award from Rice University, and the best poster runner-up award from International Conference on Computational Photography, 2014.

Michael B. Wakin (mwakin@mines.edu) is the Ben L. Fryrear Associate Professor in the Department of Electrical Engineering and Computer Science at the Colorado School of Mines (CSM). Dr. Wakin received the Ph.D. in Electrical Engineering from Rice University. He was an NSF Mathematical Sciences Postdoctoral Research Fellow at Caltech from 2006–2007 and an Assistant Professor at the University of Michigan from 2007–2008. His research interests include sparse, geometric, and manifold-based models for signal processing and compressive sensing. Dr. Wakin has received the NSF CAREER Award, the DARPA Young Faculty Award, and the CSM Excellence in Research Award for his research as a junior faculty member.

FUNDING

TG was supported in part by the US NSF grant CCF-1535902 and by the US ONR grant N00014-15-1-2676.

ACS was supported by NSF grant IIS-1618823 and the ARO grant W911NF-16-1-0441.

CS was supported in part by Xilinx Inc. and by the US NSF under grants ECCS-1408006 and CCF-1535897.

AV was supported by NSF grant CCF-1527501.

MBW was supported by NSF CAREER Grant CCF-1149225 and NSF Grant CCF-1409258.