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BLAh: Boolean Logic Analysis
for Graded Student Response Data

Andrew S. Lan, Andrew E. Waters, Christoph Studer, and Richard G. Baraniuk

Abstract—Machine learning (ML) models and algorithms can
enable a personalized learning experience for students in an
inexpensive and scalable manner. At the heart of ML-driven
personalized learning is the automated analysis of student re-
sponses to assessment items. Existing statistical models for this
task enable the estimation of student knowledge and question
difficulty solely from graded response data with only mini-
mal effort from instructors. However, most existing student–
response models are generalized linear models, meaning that they
characterize the probability that a student answers a question
correctly through a linear combination of their knowledge and
the question’s difficulty with respect to each concept that is
being assessed. Such models cannot characterize complicated,
non-linear student–response associations and hence, lack human
interpretability in practice. In this paper, we propose a non-
linear student–response model called Boolean Logic Analysis
(BLAh) that models a student’s binary-valued graded response to
a question as the output of a Boolean logic function. We develop
a Markov chain Monte Carlo inference algorithm that learns
the Boolean logic functions for each question solely from graded
response data. A refined BLAh model improves the identifiability,
tractability, and interpretability by considering a restricted set
of ordered Boolean logic functions. Experimental results on
a variety of real-world educational datasets demonstrate that
BLAh not only achieves best-in-class prediction performance on
unobserved student responses on some datasets but also provides
easily interpretable parameters when questions are tagged with
metadata by domain experts, which can provide useful feedback
to instructors and content designers to improve the quality of
assessment items.

Index Terms—Boolean logic, machine learning, Markov chain
Monte Carlo, personalized learning, student–response data.

I. INTRODUCTION

Machine learning (ML)-based personalized education lever-
ages sophisticated statistical models and algorithms to analyze
and extract knowledge from student–response data. The com-
puted model parameters and algorithm outputs can be used to
automatically deliver personalized feedback to students and
analytics to the instructor, in the process transforming the
outdated “one-size-fits-all” educational practice into one that
improves learning outcomes with less human intervention. As
a consequence, research in personalized learning has been
identified as a national priority within the United States [?].
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A. Student response modeling

Since the most prevalent form of student data consists of
their responses to assessment items like practice, homework,
and exam questions, the problem of student–response modeling
lies at the heart of ML-based personalized learning research.
Statistical models of student responses that model student
performance are crucial to personalized learning, especially
for learning analytics that automatically estimate the strengths
and weaknesses of each of student’s current knowledge. An
automated learning system can then deliver personalized
feedback and suggest a personalized learning action to each
student [?], [?] that helps them learn more efficiently.

The problem of student–response modeling is complicated
by the facts that (i) the model has to be as data-driven as
possible, since manually labeling the content and difficulty
of items is a labor-intensive process, (ii) the model has to be
robust in how it predicts unobserved student responses (missing
answers), and (iii) the model has to be interpretable in order
to provide meaningful feedback to the students and instructors.

In this paper, we focus on static student-response models that
can be used to estimate the students’ current knowledge; such
models do not capture the evolution of students’ knowledge
over time (such as learning and forgetting), which is the main
subject of study in the line of work referred to as knowledge
tracing (KT) [?], [?]. Therefore, the models we focus on in
this paper are best suited for applications in which the students’
knowledge are assumed to be static, i.e., in exams or quizzes.
Through the years, a wide range of such static student–response
models have been proposed in the literature, including linear
item response theory (IRT) [?] and factor analysis [?], [?], [?],
[?], [?], [?] models, and a few non-linear models [?], [?].

IRT methods model student responses to questions in terms
of a small number of parameters. The simplest method is
the 1PL IRT (or Rasch [?]) model that parameterizes each
student and question by an ability and difficulty parameter,
respectively; the probability of a correct response depends only
on the student’s ability minus the question’s difficulty. The
2PL IRT model adds an additional parameter to each question
that characterizes its ability to discriminate between students
with high ability and low ability. The 3PL IRT model adds
an additional parameter to each question that characterizes
the probability of guessing the correct answer to the question
without mastering the required knowledge; this is of particular
importance in multiple-choice testing.

While easy to implement and often effective, IRT models are
limited in their ability to analyze student responses to questions
that require the mastery of diverse knowledge components
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(which we term “concepts”). The multidimensional IRT (MIRT)
model [?] attempts to address this shortcoming using ability and
difficulty parameters that are multi-dimensional. This setting
makes the MIRT model more suitable for questions in science,
technology, engineering and mathematics (STEM) domains
that often involve multiple skills.

Factor analysis models can be viewed as extensions to
the basic MIRT model. Some factor analysis models employ
additional hand-crafted features [?], [?], [?], [?], [?], while
others are fully data-driven [?], [?]. These models typically
provide superior prediction performance on unobserved student
responses than simple IRT models [?], [?]. The recently pro-
posed SPARFA (short for SPARse Factor Analysis) model [?]
aims to provide interpretable model parameters while remaining
purely data-driven.

B. Limits of linear student–response models

A common feature of current multi-dimensional student–
response models is that they are linear (or affine). IRT-type
models and factor analysis models belong to the class of
generalized linear models (GLMs) (see, e.g., [?, Chap. 4]).
That is, apart from a non-linear inverse logit or probit link
function, they characterize the probability that a student answers
a question correctly as a linear (or affine) function of the
student’s knowledge of the concepts underlying a question
and the difficulty of that question. Thanks to their simple
structure, linear models are easily applicable and tend to
predict unobserved student responses accurately. However,
linear models lack interpretability, since they allow a student to
make up for weak knowledge on certain concepts with strong
knowledge on other concepts when answering a question, an
issue referred to as “explaining away” [?].

Indeed, many questions involve more complicated, non-linear
interactions between the underlying concepts. To illustrate,
consider the following two questions:

Question 1: Simplify the following expression:

(5x2 sin2 x+ 5x2 cos2 x+ 10x)/(x+ 2).

Question 2: Consider the two discrete-time signals:

x[n] = 2δ[n] + 4δ[n− 1] + 6δ[n− 2] + 8δ[n− 3]

g[n] = δ[n] + δ[n− 2].

Compute the circular convolution y[n] = x[n]⊗ g[n].

Question 1 consists of two concepts: polynomial division
and the trigonometric identity sin2 x+ cos2 x = 1. In order to
answer this question correctly, a student must have mastered
both concepts. If a student does not know the trigonometric
identity, then they will not be able to fully simplify the
expression, regardless of their knowledge level on polynomial
division, and vice versa. Therefore, we see that Question 1 tests
students’ knowledge on polynomial division AND trigonometry.

Question 2 also consists of two concepts: convolution and
the discrete time Fourier transform (DTFT). On one hand, if a

student understands convolution, then they will be able to arrive
at the correct answer by directly performing the convolution in
the time domain. On the other hand, if a student understands
the DTFT, then they would also be able to arrive at the correct
answer by transforming both signals into the Fourier domain
using the DTFT, performing an element-wise multiplication,
and converting the result back into discrete time using the
inverse DTFT. Note that this second solution approach does
not require that the student understand how to compute a
convolution. Therefore, we see that Question 2 tests students’
knowledge on convolution OR the DTFT.

Linear response models, such as IRT and factor analysis
models, are fundamentally ill-equipped to model such ques-
tions.

C. Recent developments in non-linear student–response models

Limited progress has been made recently on developing
non-linear student–response models. We recently proposed the
dealbreaker (DB) model [?] that characterizes the probability of
a student answering a question correctly as a function of their
weakest knowledge among all the tested concepts. In addition to
enabling computationally efficient parameter inference, the DB
model exhibits excellent prediction performance and enables
interpretability of the model parameters. However, the DB
model is limited to AND-like concept mechanisms and hence,
is unable to model questions with other types of non-linear
response–concept associations, e.g., the OR Question 2 above.

There exist related results on AND-like models, including
the Q-matrix model [?] and the deterministic input, noisy AND
(DINA) model [?]. The generalized DINA (G-DINA) model put
forward in [?] posits that a student’s probability of answering
a question correctly depends on the probability of all possible
combinations of their binary-valued concept knowledge states
that characterize whether or not a student has mastered each
concept. Although the G-DINA model is capable of learning
more general, non-linear response–concept associations, its
prediction performance is, in many cases, inferior to that of
the DB model, despite DB’s limitation to AND-type questions.
Similar to the G-DINA model, the work in [?] tries to learn
a conditional probability table relating a student’s probability
of answering each question correctly to their binary-valued
concept knowledge states; however, their focus is to learn the
prerequisite relationships among concepts.

Another important recent line of results employ neural
networks for student-response data analysis, especially in the
context of KT [?]. These methods are also non-linear but have
limited interpretability and are therefore mainly useful for
prediction tasks. Furthermore, it remains unclear whether they
outperform even the most basic methods in terms of predicting
unobserved student responses; see [?] for a detailed discussion
of this issue.

D. Contributions

In this paper, we introduce Boolean Logic Analysis (BLAh),
a modeling and inference framework capable of learning
arbitrary non-linear response–concept associations that can
be represented by Boolean logic functions. The BLAh model
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TABLE I
EXAMPLE OF A BOOLEAN LOGIC FUNCTION WITH K = 3.

Sn,1 Sn,2 Sn,3 Mi,n = Mi(sn)

s1 0 0 0 0
s2 0 0 1 0
s3 0 1 0 1
s4 0 1 1 1
s5 1 0 0 0
s6 1 0 1 0
s7 1 1 0 0
s8 1 1 1 1

characterizes the correctness of a student’s response to a
question as the output of a Boolean logic function, the input to
which is a set of binary-valued student latent concept knowledge
exhibition states, which is governed by the student’s knowledge
and the difficulty of the question with respect to each concept.
See Table I for an example of such a Boolean logic function.
The set of Boolean logic functions includes as special cases
the examples introduced in Questions 1 and 2 above, namely
AND functions (students have to master all of the underlying
concepts in order to answer a question correctly) and OR
functions (students need only master one of the underlying
concepts to answer a question correctly). This latter case is a
case that DB model does not cover.

The BLAh model provides substantial flexibility in modeling
complex response–concept associations in student–response
data but, unfortunately, suffers from the curse of dimensionality.
Indeed, the total number of possible Boolean logic functions
is a super-exponential function of the number of concepts. In
order to mitigate this issue, we propose a restricted set of
ordered Boolean logic functions, based on the observation that
mastering more concepts will not negatively impact a student’s
chance to answer a question correctly. Such a restricted set of
logic functions not only greatly reduces the number of Boolean
logic functions and makes parameter inference more tractable,
but it also provides improved model interpretability.

We develop a novel Markov chain Monte Carlo (MCMC)
inference algorithm to learn arbitrary Boolean logic functions
solely from binary-valued graded student–response data. We
also develop an algorithm variant for the restricted set of
ordered Boolean logic functions.

Using three real-world educational datasets, we demonstrate
that the BLAh framework achieves comparable or superior per-
formance to state-of-the-art student–response models (including
the DB model) in terms of predicting unobserved responses,
and significantly outperforms other models (including the G-
DINA model, in particular). Moreover, we demonstrate that
the restricted set of ordered Boolean logic function achieves
some interpretability of the model parameters and reveals new
insights on the response–concept associations in questions
involving multiple concepts, given concept tags provided by
domain experts. To demonstrate the interpretability of BLAh,
we provide examples of the learned Boolean logic functions
(including AND and OR functions) for several questions in a
real-world student dataset.

The rest of the paper is organized as follows. Section II

details the BLAh model. Section III proposes the two parameter
inference algorithms. Section IV provides our experimental
results on real-world datasets. We conclude in Section V.

II. BLAH: BOOLEAN LOGIC ANALYSIS

We now describe BLAh. In Section II-A, we introduce
the BLAh statistical model for predicting unobserved student
responses. In Section II-B we extend it to focus on a restricted
set of ordered Boolean logic functions that greatly enhances the
learned logic function’s interpretability for educational datasets.

A. The BLAh statistical model

Let N denote the number of students, Q denote the number
of questions, and K denote the number of latent concepts
involved in the questions, following the convention in [?], with
K � Q,N . Let Ck,j ∈ R denote student j’s knowledge level
on concept k, with large, positive values representing high
knowledge, and let µi,k ∈ R denote question i’s intrinsic
difficulty level on concept k, with large, positive values
representing high difficulty. When a student responds to a
question, these parameters dictate whether the student is able to
exhibit enough knowledge to successfully solve different parts
of the question involving different concepts. Correspondingly,
let Si,j,k denote the binary-valued latent concept knowledge
exhibition state of student j on concept k when responding to
question i, given by

p(Si,j,k = 1) = Φ(Ck,j − µi,k), (1)

where Φ(·) =
∫ x
−∞N (t; 0, 1)dt denotes the inverse probit

link function and N (t; 0, 1) denotes the standard normal
distribution.
Si,j,k = 1 means that student j shows mastery of concept k

when responding to question i, and Si,j,k = 0 means that
student j does not show mastery of concept k when responding
to question i. Therefore, the knowledge state of student j when
responding to question i can be fully characterized by the
vector si,j = [Si,j,1, . . . , Si,j,k, . . . , Si,j,K ]T ∈ {0, 1}K . Such
a model enables a student’s mastery on a concept to exhibit
different outcomes in different questions (depending on the
difficulty of the question). This feature makes BLAh more
flexible than modeling each student as a single set of binary-
valued latent knowledge mastery states when responding to
every question.

In the BLAh statistical model, the key that governs students’
responses to each question is a Boolean logic function that maps
the binary-valued latent knowledge exhibition state vector si,j
to the binary-valued graded response of student j to question i,
Yi,j . Yi,j = 1 denotes a correct response, and Yi,j = 0 denotes
an incorrect response. The Boolean logic function correspond-
ing to question i, Mi(·), is parameterized by a vector of truth-
table entries mi = [Mi,1, . . . ,Mi,n, . . . ,Mi,2K ]T ∈ {0, 1}2K .
See Table I for an example truth-table for K = 31.

1The most significant bit is the first bit, the least significant bit is the last
bit, and the latent states sn are ordered by increasing value.
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Given student j’s latent knowledge exhibition state vector
si,j when responding to question i, their binary-valued graded
response Yi,j is simply equal to Mi(si,j), i.e.,

p(Yi,j |si,j) = I(Mi(si,j) = Yi,j), (i, j) ∈ Ωobs,

where I(·) denotes the indicator function, and Ωobs denotes
the index set of student responses that are observed in the case
that not every student answers every question.

Equivalently, we can also marginalize out the latent knowl-
edge exhibition state vector si,j and write the probability of a
graded response Yi,j as

p(Yi,j |Ck,j , µi,k,∀k,Mi)

=
∑

sn∈{0,1}K
p(Yi,j |sn)p(sn|Ck,j , µi,k,∀k)

=
∑

sn∈{0,1}K
I(Mi(sn) = Yi,j)p(sn|Ck,j , µi,k,∀k)

=
∑

n:Mi(sn)=Yi,j

K∏
k=1

Φ(Ck,j − µi,k)Sn,k

× (1− Φ(Ck,j − µi,k))1−Sn,k . (2)

In words, the probability of a particular graded response is
the sum of the probabilities of the student being in the latent
concept knowledge exhibition states that, when used as inputs
to the Boolean logic function of the question, produce the
corresponding graded response as output.

The goal of the inference algorithm we develop in Section III
is to estimate the parameters Ck,j , ∀k, j, µi,k, ∀i, k, and mi,
∀i given only the observed graded responses Yi,j , (i, j) ∈ Ωobs.

B. Restricted set of ordered Boolean logic functions

The BLAh statistical model with arbitrary Boolean logic
functions proposed in the previous section suffers from the
curse of dimensionality. That is, the total number of possible
binary-valued student latent concept knowledge exhibition
states is 2K , and the total number of possible logic functions is
Mi(·) is 22

K

, which grows at a super-exponential rate with the
number of concepts K. Therefore, parameter inference with
this model is computationally intractable except for extremely
small values of K. Moreover, identifiability issues arise, since
one can flip the signs of the variables Ck,j and µi,k, ∀i, j, k
and also simultaneously flip the truth-table entries (mi, ∀i)
in the Boolean logic functions and still arrive at the same
likelihood for the observed responses. These identifiability
issues limits the interpretability of the BLAh model parameters
with arbitrary Boolean logic functions.

In order to alleviate these issues, we introduce a restricted
set of Boolean logic functions for student–response data, based
on the following realistic assumption:

Assumption 1. Mastery of more concepts does not negatively
impact a student’s chance of answering a question correctly.

TABLE II
EXAMPLE OF AN ORDERED BOOLEAN LOGIC FUNCTION IN THE

RESTRICTED SETMo WITH K = 3.

Sn,1 Sn,2 Sn,3 Mi,n = Mi(sn)

s1 0 0 0 0
s2 0 0 1 1
s3 0 1 0 0
s4 0 1 1 1
s5 1 0 0 0
s6 1 0 1 1
s7 1 1 0 0
s8 1 1 1 1

This corresponds to [?, Assumption 3]. In the context of the
BLAh model, we define the following restricted set of ordered
Boolean logic functions as

Mo = {M(·) : M(sp) ≤M(sq) ∀p, q such that sp � sq},
(3)

where sp � sq is defined by

sp � sq if Sp,k ≤ Sq,k ∀k.

Intuitively, Mo defines a restricted set of Boolean logic
functions that satisfy Assumption 1. Concretely, for every
pair of binary-valued latent knowledge exhibition state vectors
satisfying sp � sq , where sq corresponds to a higher knowledge
state than (or as high as) sp, their corresponding truth-table
values specify that higher knowledge (sq) leads to an equally
good or better outcome on a question than sp. For example,
with sp = [0, 1, 0], corresponding to mastery of concept 2
but not concepts 1 and 3, and sq = [1, 1, 0], corresponding
to mastery of concepts 1 and 2 but not concept 3), we have
M(sp) ≤ M(sq). Based on this definition, it is easy to see
that the logic function in Table I does not belong to the set of
ordered Boolean logic functions Mo (s3 � s7 but M(s3) >
M(s7)), while the one in Table II does.

Such a restricted set of ordered Boolean logic functions
is significantly smaller than the set of arbitrary Boolean
logic functions on length-K binary-valued latent knowledge
exhibition state vectors. For example, for K = 4, a simple
calculation2 shows that the restricted set has |Mo| = 168
functions, much smaller than the total of 22

4

= 65536 possible
functions. Therefore, by restricting ourselves to Boolean logic
functions in the restricted set, we can significantly reduce
the size of the parameter space that must be explored by an
MCMC inference algorithm, thereby reducing the resulting
computational complexity. Furthermore, such a set of ordered
Boolean logic functions eliminates the identifiability issue
mentioned above, since a logic function generated by flipping
every value in the truth-table of an ordered function in the
restricted set will not be ordered, in general. In Section III-B,
we will detail a corresponding MCMC inference algorithm that
adapts the MCMC inference algorithm for arbitrary Boolean
logic functions to functions in the restricted set Mo.

2We simply enumerate every possible Boolean logic function and check
whether it is ordered to calculate the size of the restricted set; however, such
an approach is not presently computationally tractable for K ≥ 5.
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III. INFERENCE ALGORITHMS FOR BLAH

We now develop two MCMC inference algorithms to learn
the BLAh model parameters for arbitrary Boolean logic
functions and the restricted set of ordered functions given
only binary-valued graded student responses.

A. Inference algorithm for arbitrary Boolean logic functions

We develop a Metropolis-Hastings (MH)-within-Gibbs sam-
pling algorithm for parameter inference for the BLAh model
with arbitrary Boolean logic functions. Since the latent knowl-
edge exhibition states Si,j,k are binary-valued, we introduce
the slack variables Zi,j,k ∈ R, ∀ i, j, k for the probit likelihood
model [?], which enables us to sample efficiently from the
posterior distributions of Ck,j and µi,k. Specifically, we define
the slack variables as

Zi,j,k = Ck,j − µi,k + εi,j,k, εi,j,k ∼ N (0, 1),

and

Si,j,k =

ß
1 if Zi,j,k > 0,
0 otherwise.

The prior distributions for each latent variable are given by

Ck,j ∼ N (µc, σ
2
c ),

µi,k ∼ N (µµ, σ
2
µ),

mi ∼ U(22
K

),

where U(22
K

) denotes the uniform distribution over a set of
22

K

discrete values, i.e., we put an uninformative prior over the
set of arbitrary Boolean logic functions so that each Boolean
logic function is equally likely.

After randomly initializing the latent variables Ck,j , µi,k,
and mi according to their prior distributions, our MH-within-
Gibbs sampling algorithm performs the following steps in each
iteration:

1) Impute Yi,j , (i, j) ∈ Ωcobs: If there are some unobserved
graded responses, i.e., Ωobs 6= {1, . . . , Q} × {1, . . . , N},
then we impute their values following the approach
detailed in [?]. We first calculate pi,j = p(Yi,j =
1|Ck,j , µi,k,∀k,Mi), ∀(i, j) ∈ Ωcobs from (2), and then
sample Yi,j , ∀(i, j) ∈ Ωcobs from the Bernoulli distribution
Ber(pi,j).

2) Sample mi: Since the total number of arbitrary logic
functions is 22

K

, the cardinality of the set of such Boolean
logic functions explodes even for very small values of the
numbers of concepts K. Therefore, it is computationally
intractable to sample directly from the posterior distribu-
tion of mi (22

K

likelihood calculations in each iteration).
Instead, we use a more tractable Metropolis-Hastings step
to sample from mi (one likelihood calculation in each
iteration). Specifically, for question i, we propose the
parameter of a new logic function, m′i, by randomly
flipping each entry of the parameter vector of the old
logic function mi with probability pF . We then evaluate
the data likelihood for both the new logic function and the
old logic function via p′ =

∏N
j=1 p(Yi,j |Ck,j , µi,k,m′i)

and p =
∏N
j=1 p(Yi,j |Ck,j , µi,k,mi). We accept this new

proposal with the following acceptance probability

min

ß
1,
p′

p

™
,

since the proposal distribution is symmetric and the prior
distribution on mi is uniform.

3) Sample si,j : In order to sample from the posterior
distributions of Ck,j and µi,k, we need to first sample the
slack variables Si,j,k and Zi,j,k. We begin by sampling
the latent knowledge exhibition state vectors si,j , whose
posterior distribution is given by

p(si,j |Yi,j , Ck,j , µi,k,∀k)

∝ p(Yi,j |si,j ,Mi)p(si,j |Ck,j , µi,k,∀k)

= I(Yi,j = Mi(si,j))

×
K∏
k=1

Φ(Ck,j − µi,k)Si,j,k(1− Φ(Ck,j − µi,k))1−Si,j,k .

Therefore, we can sample the values of si,j from the
multinomial distribution defined above.

4) Sample Zi,j,k: We sample the slack variable Zi,j,k; its
posterior distribution is given by

p(Zi,j,k|Si,j,k, Ck,j , µi,k)

∝ p(Si,j,k|Zi,j,k)p(Zi,j,k|Ck,j , µi,k)

= I(Zi,j,k ≥ 0 if Si,j,k = 1, Zi,j,k ≤ 0 if Si,j,k = 0)

×N (Ck,j − µi,k, 1)

= N±(Ck,j − µi,k, 1),

where N±(·) denotes the truncated normal distribution
with + corresponds to truncation on the interval [0,∞)
and − corresponds to truncation on (−∞, 0].

5) Sample Ck,j and µi,k: We sample the variable Ck,j from
its posterior distribution

p(Ck,j |Zi,j,k, µi,k,∀i)

∝
Q∏
i=1

p(Zi,j,k|Ck,j , µi,k)p(Ck,j)

=

Q∏
i=1

N (Zi,j,k|Ck,j , µi,k)N (Ck,j |µc, σ2
c )

∝ N (µ′c, σ
2
c
′
),

where σ2
c
′

= (Q+ 1/σ2
c )−1 and µ′c = σ2

c
′
(
∑Q
i=1 Zi,j,k +

µi,k + µc/σ
2
c ). Using a similar procedure, we can sample

the variables µi,k from their posterior distribution

p(µi,k|Zi,j,k, Ck,j ,∀j) ∝ N (µ′µ, σ
2
µ
′
),

where σ2
µ
′

= (N + 1/σ2
µ)−1 and µ′µ = σ2

µ
′
(
∑N
j=1 Ck,j −

Zi,j,k + µµ/σ
2
µ).

We repeat the above sampling steps for T iterations (including
a burn-in period) to generate posterior statistics for the latent
variables of interest Ck,j , µi,k, and mi. The parameters µc, σ2

c ,
µµ, σ2

µ are hyperparameters, and pF is an algorithm parameter.
Details on the selection of these parameters are discussed in
Section IV.
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B. Inference algorithm on the restricted set of ordered Boolean
logic functions

Despite the fact that the number of ordered Boolean logic
functions is much smaller than the number of arbitrary Boolean
logic functions, it is still not efficient to sample directly from
its posterior (|Mo| likelihood calculations in every iteration
of the MCMC algorithm). On the other hand, the MH-within-
Gibbs inference algorithm developed in the previous section for
arbitrary Boolean logic functions cannot be directly applied to
inference with the restricted setMo introduced in Section II-B.
The reason is that randomly flipping the entries in the parameter
vector mi of a function Mi ∈Mo can result in a logic function
M ′i /∈Mo. An obvious approach is to repeat the MH proposal
step multiple times until a newly proposed function also belongs
to Mo. Such an approach, however, is very computationally
inefficient, since the size of the restricted set is much smaller
than that of the set of arbitrary Boolean logic functions, which
means that most proposals will be rejected, leading to a very
inefficient exploration of the parameter space. We therefore
need another, more efficient approach to adapt the MH step
(Step 2) to the restricted set.

We start by noting that, since for a small value of K the size
of the restricted set Mo is small enough (e.g., |Mo| ≤ 168
for K ≤ 4), we can enumerate all of the ordered Boolean
logic functions. Then, if we can calculate the exact transition
probability from each ordered logic function to every other
one, then we can employ a MH proposal step using these
transition probabilities that guarantees a newly proposed logic
function to be within the set Mo, leading to a better sampling
algorithm that explores the parameter space more efficiently.
We emphasize that most questions in real-world assessments
involve no more than a few (e.g., four) concepts, thus enabling
the use of a more efficient sampling algorithm. For questions
involving more than four concepts, we can still apply the regular
MH step and simply reject every proposed logic function that
is unordered, with lower computational efficiency.

The key to this efficient sampling algorithm is to calculate
the transition probabilities between pairs of ordered Boolean
logic functions induced by randomly flipping the entries of
mi. However, this calculation is complicated by the fact that
if we simply randomly flip the entries of mi independently,
then there can be multiple different combinations of flips that
result in the same logic function M ′i . As a concrete example,
in Table III, a direct comparison of Mi and M ′i shows that
both Mi,5 and Mi,6 have to be flipped; however, since the new
logic function also has to be ordered, only flipping Mi,5 will
also lead to M ′i . The reason is that, since s5 � s6, Mi,6 is
also mandated to flip in order for M ′i to remain ordered upon
the flipping of Mi,5, according to the definition of the ordered
Boolean logic function (3).

We now detail an efficient method to calculate the transition
probabilities between pairs of ordered Boolean logic functions.
We will first need a method to generate the entire restricted set
Mo. We first generate the index set on the latent knowledge
exhibition states

I = {(p, q) : sp � sq}.

TABLE III
EXAMPLE OF A TRANSITION FROM ONE LOGIC FUNCTION INMo TO

ANOTHER. FLIPS IN PARENTHESES DENOTE NON-ESSENTIAL FLIPS, WHILE
THE OTHER FLIPS ARE ESSENTIAL FLIPS.

sn Mi,n flip0→1 flip1→0 M ′
i,n

s1 0 0 0 0 0
s2 0 0 1 0 0
s3 0 1 0 0 0
s4 0 1 1 1 → 0
s5 1 0 0 0 → 1
s6 1 0 1 0 (→) 1
s7 1 1 0 1 1
s8 1 1 1 1 1

Using the index set, we can simply enumerate all Boolean
logic functions and construct Mo as defined in (3).

Now we can start to calculate the transition probabilities
between pairs of ordered Boolean logic functions. As an illus-
trative example, consider the transition from a logic function
in Mo, parameterized by mi, to another, parameterized by
m′i, as illustrated in Table III. First, the entries in Mi that
need to be flipped in order to result in another logic function
M ′i ∈ Mo can be divided into two classes: flips from 0 to
1 and flips from 1 to 0, as indicated by the corresponding
columns in Table III. These classes can be treated separately.
Second, taking a closer look at flips from 0 to 1, we see that
there is a subtle difference between the flips to Mi,5 and Mi,6,
as described above; since s5 � s6, flipping Mi,5 mandates the
flipping of Mi,6 in order for M ′i to remain inMo; the flipping
of Mi,6 does not mandate the flipping of Mi,5. Therefore, as
described above, flipping Mi,5 alone results in the same new
ordered Boolean logic function M ′i as flipping both Mi,5 and
Mi,6. This subtle difference is key to calculating the transition
probability from Mi to M ′i . To emphasize this difference, we
call the flip to Mi,5 an essential flip, since it is necessary
for the transition from Mi to M ′i ; we call the flip to Mi,6

a non-essential flip. Denoting the set of all 0 to 1 flips as
F0→1(Mi →M ′i), we can formally define the set of essential
0 to 1 flips as

F0→1(Mi →M ′i)
E = {n : Mi,n = 0, M ′i,n = 1, and

M ′i,m = 0 ∀ (m,n) ∈ I} ⊆ F0→1(Mi →M ′i),

which is a set consisting of all the flips that are essential to go
from Mi to M ′i ; the superscript E stands for “essential”. The
set of non-essential 0 to 1 flips that contains flips that are not
essential is then given by

F0→1(Mi→M ′i)
NE =F0→1(Mi→M ′i)\F0→1(Mi→M ′i)

E,

where the superscript NE stands for “non-essential”. A similar
definition for sets of essential and non-essential 1 to 0 flips
is defined analogously. Using this notation, we detail the
procedure to find all essential and non-essential 0 to 1 and 1
to 0 flips in order to go from an ordered logic function Mi to
another ordered logic function M ′i in Algorithm 1.

In Algorithm 1, “fq01” is short for “flip queue 0 to 1”, and
“ef01” is short for “essential flips 0 to 1”. “fq10” and “ef10”
are defined analogously. Algorithm 1 works as follows. We
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Algorithm 1: FIND ALL (NON-)ESSENTIAL FLIPS
BETWEEN TWO ORDERED BOOLEAN LOGIC FUNCTIONS

Input: Logic functions Mi, M ′i in the restricted set Mo

Output: Set of essential flips F(Mi →M ′i)
E, and set of

non-essential flips F(Mi →M ′i)
NE

(fq01)← {n : Mi(sn) = 0 and M ′i(sn) = 1}
(ef01)← {n : Mi(sn) = 0 and M ′i(sn) = 1}
while fq01 is not empty do

for j : (fq01[1], j) ∈ I do
ef01← ef01 \ j
fq01← fq01 ∪ {j}

fq01← fq01 \ fq01[1]

(fq10)← {n : Mi(sn) = 1 andM ′i(sn) = 0}
(ef10)← {n : Mi(sn) = 1 andM ′i(sn) = 0}
while fq10 is not empty do

for j : (j, fq10[1]) ∈ I do
ef10← ef10 \ j
fq10← fq10 ∪ {j}

fq10← fq10 \ fq10[1]

F(Mi →M ′i)
E ← ef01 ∪ ef10

F(Mi →M ′i)
NE ← ({n : Mi(sn) = 0 and M ′i(sn) =

1} \ ef01)∪ ({n : Mi(sn) = 1 and M ′i(sn) = 0} \ ef10)

start by adding every flip from 0 in the original logic function
Mi to 1 in the new logic function M ′i into fq01 and ef01. Then,
we iteratively take the first flip out of fq01 and eliminate all
the flips that are mandated by this flip from ef01, according to
I, while also adding every such flip to the end of fq01. After
fq01 becomes empty, the set containing the remaining elements
in ef01 is exactly the set of essential flips F0→1(Mi →M ′i)

E,
while F0→1(Mi → M ′i)

NE is then simply the set containing
flips that are eliminated from ef01. The above procedure is
then repeated to obtain the sets of essential and non-essential
flips from 1 to 0.

Once we identify the set of essential flips F(Mi →M ′i)
E,

set of non-essential flips F(Mi →M ′i)
NE, and the set of non-

flips NF(Mi → M ′i) = {n : Mi(sn) = M ′i(sn)}), we can
calculate the unnormalized probability to go from logic function
Mi to M ′i , induced by randomly flipping the truth-table values
with flipping probability pF defined by

q(Mi →M ′i) = p
|F(Mi→M ′

i)
E|

F (1− pF )|NF(Mi→M ′
i)|×

|F(Mi→M ′
i)

NE|∑
k=0

C
|F(Mi→M ′

i)
NE|

k pkF (1− pF )|F(Mi→M ′
i)

NE|−k,

since the essential flips must occur and each non-essential
flip can either occur or not occur. Finally, the exact transition
probability from Mi to M ′i is given by

p(Mi →M ′i) =
q(Mi →M ′i)∑

i′′ 6=i q(Mi →M ′′i )
. (4)

Using these transition probabilities between any pair of
Boolean logic functions in the restricted set Mo, the only
modification to the inference algorithm for arbitrary Boolean
logic functions in Section III-A is Step 2, which becomes

2o) Sample mi: We use an MH step to sample from mi.
Specifically, for question i, we propose the parameter of a
new logic function m′i according to (4). Then, we evaluate
the likelihood of both the new logic function and the old
logic function as p′ =

∏N
j=1 p(Yi,j |Ck,j , µi,k,m′i) and

p =
∏N
j=1 p(Yi,j |Ck,j , µi,k,mi). Then, we accept this

new proposal with probability

min{1, r}, where r =
p′

p

p(M ′i →Mi)

p(Mi →M ′i)
,

since the proposal distribution is not symmetric.
This inference algorithm is only practical for a small number
of concepts, i.e., K ≤ 4; in this case, a (non-trivial) calculation
shows that the new MH step is approximately three times
more efficient than the regular MH step in terms of proposing
to explore new ordered logic functions. For larger values of
K, since we cannot enumerate every ordered Boolean logic
function, we must resort to the regular MH approach that keeps
proposing and rejecting new functions until an ordered one is
proposed.

IV. EXPERIMENTS

We now experimentally validate our proposed BLAh model
and inference algorithm using three real-world educational
datasets. We first compare its performance on predicting
unobserved student responses to state-of-the-art baseline algo-
rithms, and then showcase the power of BLAh in generating
interpretable model parameters by investigating the learned
Boolean logic functions for a number of test questions.

A. Predicting unobserved student responses

We first compare the prediction performance of BLAh to
several existing models and algorithms: the DB model [?], the
G-DINA model [?], the 3PL MIRT model [?], and the SPARFA-
Lite model [?], a simplification of the SPARFA model that
exhibits better computational efficiency. The first two models
are non-linear; the second two are linear (see Section I-C for
details).

a) Datasets: We consider the following three real-world
educational datasets in our experiments:
• MT: N = 99 students answering Q = 34 questions

in a high-school algebra test administered on Amazon’s
Mechanical Turk [?]; 100% of the responses are observed.
Additional tagging information is available for this dataset,
i.e., a domain expert defined K = 12 concepts for
the entire dataset and associated each question with
between one and four concepts. This expert tagging
information will be used to interpret the learned Boolean
logic functions in Section IV-B.

• CE: N = 92 students answering Q = 203 questions
in a semester-long undergraduate engineering course
on introduction to computer engineering; 99.5% of the
responses are observed. The majority of the questions in
this dataset belong to the midterm and final exams.

• SS: N = 41 students answering Q = 143 questions in a
semester-long undergraduate engineering course on signals
and systems; 97.1% of the responses are observed. The
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TABLE IV
PERFORMANCE COMPARISON OF PREDICTING UNOBSERVED STUDENT RESPONSES IN TERMS OF THE PREDICTION ACCURACY (ACC) FOR THE BLAH

MODEL AGAINST THE DB, G-DINA, 3PL MIRT, AND SPARFA-LITE MODELS.

Model BLAh DB G-DINA 3PL MIRT SPARFA-Lite

K 3 6 3 6 3 6 3 6

MT 0.806±0.013 0.803±0.015 0.801±0.013 0.799±0.012 0.770±0.012 0.775±0.017 0.673±0.024 0.723±0.020 0.802±0.016

CE 0.870±0.004 0.873±0.004 0.875±0.004 0.871±0.004 0.850±0.005 0.800±0.006 0.757±0.017 0.754±0.015 0.874±0.004

SS 0.869±0.009 0.874±0.008 0.869±0.009 0.868±0.008 0.834±0.013 0.800±0.020 0.757±0.016 0.732±0.021 0.873±0.009

TABLE V
PERFORMANCE COMPARISON OF PREDICTING UNOBSERVED STUDENT RESPONSES IN TERMS OF THE AREA UNDER THE RECEIVER OPERATING

CHARACTERISTIC CURVE (AUC) FOR THE BLAH MODEL AGAINST THE DB, G-DINA, 3PL MIRT, AND SPARFA-LITE MODELS.

Model BLAh DB G-DINA 3PL MIRT SPARFA-Lite

K 3 6 3 6 3 6 3 6

MT 0.852±0.015 0.849±0.015 0.840±0.018 0.839±0.018 0.784±0.023 0.730±0.021 0.646±0.027 0.690±0.024 0.838±0.019

CE 0.829±0.009 0.830±0.009 0.831±0.005 0.830±0.004 0.760±0.014 0.788±0.011 0.613±0.019 0.633±0.015 0.830±0.007

SS 0.815±0.021 0.822±0.020 0.810±0.019 0.812±0.018 0.678±0.026 0.648±0.030 0.692±0.025 0.672±0.028 0.825±0.020

majority of the questions in this dataset belong to the
midterm and final exams.

b) Experimental setup: We test the prediction perfor-
mance of the algorithms using 5-fold cross validation: in
each run, we randomly partition the observed graded student
responses Yi,j into 5 equal-sized folds. Four folds of the
data are used for training (and validation for the algorithms
that have tuning parameters), while the other held-out fold is
treated as unobserved student responses and used to test the
performance of the algorithms. We repeat our experiments on
20 different random partitions of the dataset, and report the
average performance and standard deviation of every algorithm.

For the BLAh model, we resort to the arbitrary set of Boolean
logic functions and use the algorithm detailed in Section III-A,
since (i) we observed that the restricted set does not provide
any improvement in prediction performance over the arbitrary
set, and (ii) enumerating every Boolean logic function in the
restricted set Mo is computationally prohibitive for K > 4.
Furthermore, there is no need to consider the label switching
problem that is common in Bayesian factor models [?], since
interpretability is not essential to prediction performance. The
final predicted success probability of each unobserved student
response is obtained by averaging the predictive probability
pi,j , (i, j) ∈ Ωcobs as in (2) calculated in Step 1 of the MCMC
algorithm from Section III over a number of iterations after
a certain burn-in period, while the predicted response is the
corresponding maximum likelihood estimate (1 if the average
predicted success probability > 0.5). The hyperparameters are
set as µc = µµ = 0, σ2

c = σ2
µ = 5, pF = 1

2K
since that

we have found that the performance of BLAh is robust to
the values of these hyperparameters in our experiments. We
run the MCMC inference algorithm for a total of T = 20000
iterations; we use the first 10000 iterations as burn-in to ensure
that the Markov chain is well-mixed, although we observed
good mixing after as few as 1000 iterations and no more than
5000 iterations in our experiments.

For the DB model, we use only the soft DB model due to its

computational efficiency. For the DINA model, we implemented
its EM inference algorithm as detailed in [?].3 For the 3PL
MIRT model, we estimate the model parameters using the
MIRT package in R [?]. For every model except SPARFA-Lite
(since SPARFA-Lite does not require the number of concepts K
as an input), we use multiple values K ∈ {3, 6}. For simplicity
of exposition, we do not show results for other values of K,
because we found that the performance of BLAh is robust for
a large range of values (for any K ≤ 10).

c) Evaluation metrics: We compare the prediction perfor-
mance of the algorithms on the unobserved student responses
using two standard metrics: (i) the prediction accuracy (ACC)
metric, i.e., the portion of correct predictions, and (ii) the area
under curve (AUC) metric, i.e., the area under the receiver
operating characteristic (ROC) curve of the resulting binary
classifier [?]. The range of both metrics is [0, 1], with larger
values corresponding to better prediction performance.

d) Results and discussion: Tables IV and V show the
performance of all the algorithms on predicting unobserved
student responses on all datasets using the ACC and AUC
metrics. The results show that the BLAh model achieves
superior performance on one dataset (MT) and comparable
performance on the other datasets (CE, SS) compared with
the other models. We note that the performance of the other
algorithms are all in the same range except for the basic linear
model 3PL MIRT, which is subpar.

Table VI compares the prediction performance of multiple
versions of BLAh. O-BLAh denotes the BLAh model with
ordered Boolean logic functions using K = 3 latent concepts
(the same as BLAh in Table VI), and O-BLAh-Tag denotes the
BLAh model with ordered Boolean logic functions with expert
tagging (for each question, we only learn an ordered Boolean
logic function on the tagged concepts). The performance of O-
BLAh is similar to that of BLAh; the performance of O-BLAh-
Tag is significantly worse than that of BLAh and O-BLAh. This

3We also used the R package CDM [?], which does not perform as well as
our own implementation.
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TABLE VI
PERFORMANCE COMPARISON OF PREDICTING UNOBSERVED STUDENT

RESPONSES FOR MULTIPLE VERSIONS OF THE BLAH MODEL USING THE
MT DATASET.

BLAh O-BLAh O-BLAh-Tag

ACC 0.806±0.013 0.800±0.014 0.777±0.016
AUC 0.852±0.015 0.850±0.015 0.813±0.017

fact is not surprising, as it has been shown that expert tagging
often performs much worse than blind collaborative filtering
[?]. Therefore, we suggest BLAh with arbitrary Boolean logic
functions when prediction performance is paramount and BLAh
with ordered Boolean logic functions when expert tags are
available and interpretability is paramount. Next we dig deeper
into interpretability.

B. Interpreting logic functions using the restricted set

Although we have shown that the BLAh model achieves
comparable or in some cases, slightly better prediction perfor-
mance than the existing algorithms, the learned logic functions
are difficult to interpret due to the identifiability issue discussed
in Section II-B. Therefore, in this experiment, we focus on the
restricted set of ordered Boolean logic functions to see what
insights they can provide.

TABLE VII
AN EXAMPLE QUESTION AND ITS OPTIONS IN THE MT DATASET.

Option If 3x
7
− 9

8
= −5, then x =?

A 14 7
24

B 9 7
24

C 9 1
24

D 14 1
24

TABLE VIII
LEARNED BOOLEAN LOGIC FUNCTION FOR THE QUESTION IN TABLE VII.

Solve equations Fractions “Mi(·)

0 0 0.00
0 1 0.99
1 0 0.00
1 1 1.00

a) Experimental setup: We use only the MT dataset in this
experiment, since its questions have been manually labeled by
a domain expert. Our goal is to examine the non-compensatory
response–concept associations that BLAh with ordered Boolean
logic functions can learn given question tags provided by
domain experts. For each question, we learn a Boolean logic
function only on the tagged concepts, i.e., concepts that the
expert identifies as tested by the question. We set the proposal
truth-table bit flipping probability parameter to pF = 1/Ki

for each question, where Ki denotes the number of tags on
question i. The rest of the experimental setup are the same as
those detailed above in Section IV-A. We investigate the learned
logic function M̂i(·) given by the posterior mean of mi.

TABLE IX
AN EXAMPLE QUESTION AND ITS OPTIONS IN THE MT DATASET.

Option
Which step is the first incorrect step
in the following procedure to solve
−5(2x− 1) = −3x+ 6?

A −10x+ 5 = −3x+ 6
B −7x+ 5 = 6
C −7x = 11
D x = − 11

7

TABLE X
LEARNED BOOLEAN LOGIC FUNCTION FOR THE QUESTION IN TABLE IX.

Simplify expressions Solve equations “Mi(·)

0 0 0.00
0 1 0.21
1 0 0.97
1 1 1.00

b) Results and discussion: We select a few questions with
interesting insights offered by the learned logic function and
detail them below.

First, consider the question in Table VII. The posterior mean
of the learned logic function is shown in Table VIII. The names
of the columns correspond to the tags provided by the domain
experts for this question. The learned Boolean logic function
states that, in order to answer this question correctly, a student
only has to master the concept “Fractions,” but not necessarily
the concept “Solving equations”. Upon further investigation, it
is clear that the focus of this question is indeed on the concept
of “Fractions,” since solving the equation is a trivial task if the
fractions are handled properly. This observation is validated
by the learned question intrinsic difficulties for these concepts:
µ̂i,k = 1.23 for “Fractions” and µ̂i,k = −0.97 for “Solving
equations.”

Second, consider the question shown in Table IX. The
posterior mean of the learned logic function is shown in Table X.
We see that the learned logic function states that, in order to
answer this question correctly, a student only has to master the
concept “Simplifying expressions.” This is indeed the case for
this question, since the steps up to the first incorrect step (which
is Step 3) are all about simplifying expressions; the other tested
concept of the question, “Solve equations,” is only required
in the last step. Therefore, students’ knowledge of “Solving
equations” would not be tested if they master the concept
“Simplifying expressions” and identify that the incorrect step is
Step 3. This example shows that BLAh can be used to provide
valuable feedback to instructors and content authors towards
improving the quality of educational content—in this case,
suggesting the design of better distractor options.

Third, consider the question shown in Table XI. The posterior
mean of the learned logic function is shown in Table XII. We
see that the learned logic function states that, in order to
answer this question correctly, a student must have mastered
both the concept of “Quadratic form” and the concept of
“Inequalities.” Indeed, the path to the correct answer to this
question requires students to first simplify a polynomial in
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TABLE XI
AN EXAMPLE QUESTION AND ITS OPTIONS IN THE MT DATASET.

Option The inequality 6x2 − 12x > 18 is equivalent to

A x < −1 or x > 3
B −1 < x < 3
C −3 < x < 1
D x > 1 or x < −3

TABLE XII
LEARNED BOOLEAN LOGIC FUNCTION FOR THE QUESTION IN TABLE XI.

Solve equations Quadratic form “Mi(·)

0 0 0.00
0 1 0.02
1 0 0.05
1 1 1.00

quadratic form and then identify the correct interval using the
concept of inequalities.

These three examples from the algebra test dataset demon-
strate that BLAh is able to learn more complicated response–
concept associations than linear models, thus making it more
suitable for questions involving the interaction among multiple
tested concepts. The insights BLAh can extract from graded
student responses can provide useful feedback to instructors
and content designers to improve the quality of questions.

V. CONCLUSIONS

We have proposed a new, non-linear student–response model,
the BLAh model, that characterizes a student’s response
to a question as the output of a Boolean logic function.
BLAh improves over traditional linear models, since it can
learn complicated associations between questions and the
underlying concepts they assess. Experimental results on real-
world educational datasets have shown that BLAh with arbitrary
Boolean logic functions achieves good prediction performance.
Furthermore, resorting to a restricted set of ordered Boolean
logic functions, BLAh shows the potential to achieve great
interpretability by identifying the role each tested concept plays
in the success on a question in situations where prediction is
not the main objective.

Possible avenues of future work include (i) incorporating the
Indian buffet process [?] to estimate the number K of concepts
from data as a “BLAh Buffet,” (ii) studying other restricted
sets of Boolean logic functions, e.g., the set of logic functions
that are invariant under permutations, which would eliminate
the label-switching problem [?] common in factor analysis,
(iii) employing sparsity constraints, since each question should
only assess a small number of concepts out of all concepts
in a domain (as noted in [?, Assumption 2] and [?], [?]), and
(iv) exploring advanced MCMC techniques to speed up the
convergence of the Markov chain or more computationally
efficient convex optimization-based techniques (e.g., that build
upon [?]), which may reduce the computational complexity of
the BLAh inference algorithm.
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