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Optimally-Tuned Nonparametric Linear
Equalization for Massive MU-MIMO Systems

Ramina Ghods, Charles Jeon, Gulnar Mirza, Arian Maleki, and Christoph Studer

Abstract—This paper deals with linear equalization in massive
multi-user multiple-input multiple-output (MU-MIMO) wireless
systems. We first provide simple conditions on the antenna
configuration for which the well-known linear minimum mean-
square error (L-MMSE) equalizer provides near-optimal spectral
efficiency, and we analyze its performance in the presence of
parameter mismatches in the signal and/or noise powers. We
then propose a novel, optimally-tuned NOnParametric Equalizer
(NOPE) for massive MU-MIMO systems, which avoids knowledge
of the transmit signal and noise powers altogether. We show that
NOPE achieves the same performance as that of the L-MMSE
equalizer in the large-antenna limit, and we demonstrate its
efficacy in realistic, finite-dimensional systems. From a practical
perspective, NOPE is computationally efficient and avoids dedi-
cated training that is typically required for parameter estimation.

I. INTRODUCTION

Massive (or large-scale) multi-user multiple-input multiple-
output (MU-MIMO) will be among the key technologies for
fifth-generation (5G) wireless systems as it provides (often
significantly) higher spectral efficiency than traditional, small-
scale MIMO [1], [2]. Data detection at the infrastructure
base-stations (BSs) in such massive MU-MIMO systems is
among the most critical components from a spectral efficiency
and computational complexity perspective. In particular, since
optimal data detection is known to be an NP-hard problem [3], a
naïve exhaustive search over all possible transmit signals would
result in prohibitive computational complexity for such large-
dimensional systems. Hence, alternative algorithms that achieve
high spectral efficiency at low complexity must be deployed
in practice. In addition, practical massive MU-MIMO systems
suffer—as do traditional MIMO systems—from real-world
hardware impairments and model mismatches (for example
amplifier nonlinearities, phase noise, quantization artifacts,
channel-estimation errors, etc.). Such system nonidealities are
known to substantially reduce the performance of optimal
data-detection algorithms unless one explicitly models these
impairments and estimates the associated parameters [4].

A. Contributions
In this paper, we address the above challenges by developing

a novel, nonparametric equalizer (NOPE) for massive MU-
MIMO systems that requires low complexity and is robust
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to system impairments and model mismatches. Our key
contributions can be summarized as follows:

• We present simple conditions for which linear minimum
mean-squared error (L-MMSE), zero-forcing (ZF), and
maximum ratio combining (MRC)-based equalizers provide
near-optimal performance in massive MU-MIMO systems.

• We analyze the impact of parameter mismatches on L-MMSE
equalization by extending the results by Tse and Hanly in [5].

• We propose a novel, computationally efficient, and nonpara-
metric algorithm called NOPE that does not require any
knowledge of the signal and noise powers.

• We prove, in the large-antenna limit, that NOPE achieves the
same performance as that of the L-MMSE equalizer, which
requires knowledge of the signal and noise powers.

• We demonstrate that NOPE achieves the performance of the
L-MMSE equalizer in realistic, finite-dimensional systems.

B. Relevant Prior Art

L-MMSE estimation is used in a large number of communica-
tion applications for estimation, detection, and equalization [5]–
[10]. The low complexity (besides the inversion of a potentially
large matrix) and acceptable performance in many situations are
responsible for the widespread use of L-MMSE estimation in
practical transceiver designs. For massive MU-MIMO systems,
it was shown in [11] that L-MMSE equalization enables (often
significantly) higher achievable rates than ZF or MRC-based
equalizers. To complement these results, we provide conditions
on the antenna configuration for which L-MMSE, ZF, and
MRC approach the fundamental performance limits.

One of the downsides of L-MMSE equalization is that it
requires accurate estimates of the signal and noise powers.
While Al-Dhahir and Cioffi in [12] analyzed the effect of
parameter mismatches to MMSE-based decision-feedback
equalizers, we extend the results by Tse and Hanly in [5]
and provide large-antenna limit expressions for the output
signal-to-inference ratio (SIR) of L-MMSE equalization in the
presence of parameter mismatches.

To mitigate the impact of parameter mismatches, linear and
adaptive methods have been proposed for randomly spread
code-division multiple-access (CDMA) systems in [13], [14].
Inspired by such results, we propose an optimally-tuned,
nonparametric linear equalization algorithm for massive MU-
MIMO systems. Our algorithm does not require any knowledge
of the signal and/or noise powers, achieves the performance
of the L-MMSE equalizer in the large-antenna limit, and is
computationally efficient as it avoids a costly matrix inversion.
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C. Notation

Lowercase and uppercase boldface letters designate column
vectors and matrices, respectively. For a matrix A, we define its
conjugate transpose as AH. The entry on the k-th row and `-th
column is Ak,`, We define 〈a〉 = 1

N

∑N
k=1 ak. Multivariate

complex-valued Gaussian probability density functions (PDFs)
with mean vector m and covariance matrix K are denoted by
CN (m,K). Expectation and variance with respect to the PDF
of the random variable X is EX [·] and VarX [·], respectively.

II. LINEAR MMSE EQUALIZATION

We start by introducing the system model and reviewing
the basics of parametric L-MMSE equalization with perfect
knowledge of the signal and noise powers. We then develop a
computationally efficient algorithm that relies on approximate
message passing (AMP) and we analyze its performance.

A. System Model

We consider the following standard input-output relation of
a massive MU-MIMO uplink system: y = Hx + n. Here, the
vector y ∈ CB corresponds to the received signal (B denotes
the number of BS antennas), the matrix H ∈ CB×U represents
the uplink channel (U denotes the number of user antennas),
the transmit signal vector is x ∈ CU , and the vector n ∈ CB
models receive noise where all its entries are assumed to be
i.i.d. circularly-symmetric complex Gaussian with variance N0

per complex entry. We assume that the transmit signal vector x
has i.i.d entries, i.e., p(x) =

∏U
u=1 p(xu), with zero mean and

signal variance Ex = E
[
|xu|2

]
, ∀u. We define the antenna

ratio as β = U/B, and the following quantities:

Definition 1. The large-antenna limit is defined by fixing the
antenna ratio β = U/B and letting U →∞.

Definition 2. A matrix H has uniform channel gains if the en-
tries of H are i.i.d. circularly-symmetric complex Gaussian with
variance 1/B per complex entry, i.e., Hb,u ∼ CN (0, 1/B).

B. Basics of L-MMSE Equalization

We start with the following well-known facts. The equaliza-
tion matrix W ∈ CU×B of the L-MMSE equalizer output
x̂ = Wy that minimizes the MSE = Ex,n

[
‖x̂− x‖2

]
is

given by W = (HHH + N0/Ex)−1HH. At high signal-
to-noise-ratio (SNR), i.e., for N0/Ex → 0, the L-MMSE
equalizer implements zero-forcing (ZF) equalization with
output x̂ = (HHH)−1HHy; at low SNR, the L-MMSE
equalizer implements MRC with output x̂ = HHy. We note
that L-MMSE is the optimal (linear and nonlinear) equalizer if
the signal and noise are independent and both i.i.d. circularly
symmetric complex Gaussian vectors.

C. L-MMSE Equalization via AMP

L-MMSE equalization as summarized above, can be imple-
mented using the mismatched complex bayesian AMP (mcB-
AMP) algorithm proposed in [15], which is a mismatched
version of the AMP algorithm put forward in [16]. In
particular, we use mcB-AMP with the following Gaussian

mismatched signal prior distribution: p̃(x) =
∏N
i=1 p̃(xi) with

p̃(xi) ∼ CN (0, Ex). By assuming that the detector knows
the true transmit signal prior distribution X0 ∼ p(x0) (e.g.,
two Dirac delta functions for BPSK), the parametric L-MMSE
algorithm, which we will refer to as MMSE-AMP, is as follows:

Algorithm 1. Initialize t = 1, x1
` = EX0

[X0], ` = 1, . . . , U ,
and r1 = y−Hx1. Then, for every iteration t = 1, 2, . . . , tmax
compute the output zt via the following steps:

σ̃2
t = 1

B ‖rt‖
2
2

τ t = arg minτ≥0 Ψ(σ̃2
t , τ) (1)

zt = xt + HHrt

xt+1 = Fmm(zt, τ t) (2)

rt+1 = y −Hxt+1 + βrt
〈
F′

mm
(zt, τ t)

〉
, (3)

Here, Fmm(x`, τ) = Ex
Ex+τ

x` is the posterior mean function,
F′

mm
(x`, τ) is its derivative in the first argument, and both

functions operate element-wise on vectors. Furthermore,

Ψ(σ̃2
t , τ) = EX0,Z

[
|Fmm(X0 + σ̃tZ, τ)−X0|2

]
=

τ2Ex+σ
2
tE

2
x

(Ex+τ)2

is the MSE function in which the expectation is taken with
respect to the true signal prior X0 ∼ p(x0) and Z ∼ CN (0, 1).

We note that Algorithm 1 avoids the computation of matrix
inverses, which often dominate the computational complexity
of L-MMSE equalizers in small and large MIMO systems [17].

D. Asymptotic Performance Analysis

One of the key properties of AMP-based algorithms is that
their SIR performance can be analyzed in the large-antenna
limit using the state evolution (SE) framework. We require the
following result; the proof follows from [15, Eq. 12]:

Lemma 1. Fix β and let H have uniform channel gains. Then,
in the large-antenna limit, the output zt of Algorithm 1 can
be modeled as zt = x + wt with wt ∼ CN (0, σ2

t IU ), where
the equivalent noise variance σ2

t in iteration t is given by the
following SE equation: σ2

t+1 = N0 + β Ex
Ex+σ2

t
σ2
t .

For t→∞, the SE equation coincides with the asymptotic
SIR expression of the L-MMSE equalizer given by Tse and
Hanly in [5, Thm. 3.1] with SIR = 1/σ2. Hence. we have:

Corollary 2. In the large-antenna limit, MMSE-AMP achieves
the same SIR performance as the L-MMSE equalizer.

Since in the large-antenna limit and for uniform channel
gains AMP-based equalization decouples the MIMO system
into parallel and independent AWGN channels with variance σ2

t

(see [18, Sec. 6] for the details of this decoupling property), the
per-user achievable rate of the L-MMSE equalizer is given by
CL-MMSE = log2

(
1+Ex/σ

2
)

[bits/user/channel use], where σ2

is the fixed-point to the SE equation in Lemma 1.

E. When Does L-MMSE Achieve Near-Optimal Performance?

As shown in [8], [9], [19] for massive MU-MIMO systems
with significantly more BS antennas than users (i.e., for small
values of β), linear equalizers, such as MRC, ZF, and L-
MMSE achieve near-optimal performance. More specifically,



3

0 0.5 1 1.5 2 2.5 3 3.5 4
10−2

10−1

100

101

achievable rate R [bit/user/channel use]

m
ax

im
um

op
tim

al
an

te
nn

a
ra

tio
β
? L-MMSE

MRC
ZF

Fig. 1. Comparison of the maximum optimal antenna ratio (MOAR) β? for
MRC, ZF, and L-MMSE equalization to operate within δSNR = 1 dB of the
fundamental performance limit. For all achievable rates, L-MMSE supports the
largest antenna ratio β = U/B to operate within 1 dB of optimal performance.

reference [19] derives conditions for which ZF and MRC
approach the performance of L-MMSE equalization. We now
provide conditions on the antenna ratio β for which linear
equalizers approach optimal performance. We use the fact
that, in the large-antenna limit, the individually-optimal (IO)
posterior mean estimator (PME) decouples the MIMO system
into U parallel and independent AWGN channels z = x + w
with w ∼ CN (0, σ2IU ), where the equivalent noise variance
satisfies σ2 ≥ N0 [20]. Hence, the fundamental performance
limit is given by the channel capacity of an AWGN channel
CAWGN = log2

(
1 + Ex/N0

)
. We therefore characterize the

performance of linear equalizers as follows:

Definition 3. Assume that the IO-PME and a linear equalizer
achieve the same rate R at SNR Ex/N0 and Ex/N̂0, respec-
tively. We define the SNR loss as δSNR = N0/N̂0, which
satisfies 1 ≤ δSNR and characterizes the excess SNR required
by a linear equalizer to achieve optimal performance.

For MRC, ZF, and L-MMSE equalization, we can establish
the following result with proof given in Appendix A-A.

Lemma 3. Assume the large-antenna limit and let H have
uniform channel gains. For a fixed rate R, the SNR loss of
MRC, ZF, and L-MMSE will be no larger than δSNR if β ≤
β?(δSNR, R), where β?(δSNR, R) is the maximum optimal
antenna ratio (MOAR) given by

MRC: β?(δSNR, R) =
(
1− δSNR−1

)
1

2R−1

ZF: β?(δSNR, R) = 1− δSNR−1

L-MMSE: β?(δSNR, R) =
(
1− δSNR−1

)
2R

2R−1
.

Fig. 1 illustrates the MOAR for MRC, ZF, and L-MMSE
equalization as a function of their achievable rates for a fixed
SNR loss of δSNR = 1 dB. Lemma 3 identifies the maximum
antenna ratio β for which these linear equalizers are able to
operate within 1 dB SNR of the fundamental performance limit.
We see that L-MMSE enables the largest user-to-BS antenna
ratios β among the considered equalizers for all rates. Consider,
for example, the dotted black vertical line at 1.5 bit/user/channel
use. We see that L-MMSE exhibits an SNR loss of less than
1 dB for any antenna ratio below 0.3; MRC and ZF require
antenna ratios of 0.2 and 0.1, respectively.
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Fig. 2. Achievable rates for different equalizers with β = 0.3. Overestimating
(Ep

x > Ex) and underestimating Ep
x < Ex) the signal power in the L-MMSE

equalizer entails significant losses in terms of the achievable rates.

III. L-MMSE WITH PARAMETER MISMATCH

Although L-MMSE significantly outperforms MRC and ZF
equalization, it requires knowledge of the signal and noise
powers. We now analyze the impact of a signal power parameter
mismatch on the performance of the L-MMSE equalizer.

A. Mismatch Analysis of AMP-based L-MMSE equalizer

Analogously to [15, Sec. III-A], the mcB-AMP algorithm
with a mismatched Gaussian prior p(xu) = CN (0, Ep

x),
∀u, achieves the performance of a L-MMSE equalizer with
mismatched signal power defined by Ep

x . The following lemma
provides the SE equation for this mismatched L-MMSE
algorithm; the proof can be established from the results of
the coupled SE equations in [15, Thm. 1]:

Lemma 4. Fix β and let H have uniform channel gains. Then,
in the large-antenna limit, the performance of an optimally
tuned AMP-based L-MMSE estimator with a mismatched signal
power Ep

x is given by the following coupled SE equations:

σ2
t+1 = N0 + β

θ4tEx+E
p
x
2σ2

t

(Ep
x +θ2t )2

and θ2
t+1 = N0 + β

Ep
xθ

2
t

Ep
x +θ2t

.

We note that for t→∞ and in the large-antenna limit, the
result from Lemma 4 empirically matches the performance of
the standard L-MMSE estimator in Section II-B with N0/E

p
x .

For no parameter mismatch, i.e., for Ep
x = Ex, we have:

Corollary 5. Let Ex = Ep
x . Then, the SE equations in Lemma 4

for t → ∞ coincide with the Tse-Hanly equation in [5,
Thm. 3.1] for the L-MMSE equalizer with SIR = 1/σ2.

B. Numerical Analysis of Signal Power Mismatch

Fig. 2 illustrates the impact of parameter mismatch on the
achievable rate of L-MMSE equalization in a MIMO system
with an antenna ratio of β = 0.3. The dotted black and
magenta curves show the achievable rate of the mismatched
L-MMSE equalizer with overestimated and underestimated
signal powers. The mismatched signal power Ep

x is set to the
90-percentile of a signal-power estimator with two training
data symbols. In words, for a given SNR, the mismatched
L-MMSE equalizer will have an achievable rate between that
of the exact L-MMSE equalizer (red curve) and the minimum
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of the mismatched versions (black and magenta dotted curves)
in 90% of the transmissions. Clearly, the mismatched L-MMSE
equalizer may experience a significant rate loss. We also see
that underestimating the signal power (Ep

x < Ex) results in a
performance close to that of MRC; overestimating (Ep

x > Ex)
results in a performance close to that of the ZF equalizer.

IV. NOPE: NONPARAMETRIC EQUALIZER

To cope with the detrimental effects of parameter mismatches
in the L-MMSE equalizer, we now present our NOPE algorithm,
which does not require knowledge of the signal or noise powers.

A. The NOPE Algorithm

MMSE-AMP, as in Algorithm 1, requires knowledge of
the true transmit signal prior distribution p(x) and the signal
power Ex. To design a nonparametric version that does not
need this information, we need to solve the following issues:
• NOPE will not have any knowledge of the true signal prior.

Hence, to tune the threshold parameter τ t in (1), we need a
way to estimate the MSE function Ψ(σ̃2

t , τ
t).

• The signal power Ex must be tuned in each algorithm
iteration t to achieve optimal performance

Reference [21] develops a nonparametric approach to tune
the threshold parameter of AMP-based sparse signal recovery
using Stein’s unbiased risk estimate (SURE) [22]. Inspired
by this approach, we will tune both the (unknown) signal
power Ex and the parameter τ t using SURE. We start by
defining the parameter γt = Ex/τ

t and rewrite the functions
Fmm(x`, γ

t) = γt

γt+1x` and F′mm
(x`, γ

t) = γt

γt+1 in Algo-
rithm 1. As a consequence of this parameter change, we only
need to estimate a single parameter per iteration, namely γt.

Optimal tuning within NOPE can be achieved if the param-
eters {γ1, . . . , γtmax} are tuned so that the MSE function Ψ
is minimized at iteration tmax. As shown in [15, Thm. 3] a
joint optimization over all parameters is not required—instead
optimal tuning can be achieved by tuning each parameter γt

separately at iteration t starting from t = 1 to tmax.
To estimate the MSE function Ψ without knowledge of the

true signal prior, we use the SURE function, which is given by

Ψ̂(σ̃2
t , γ

t) = 1
U ‖Fmm(zt, γt)− zt‖2
+ σ̃2

t + 2σ̃2
t

〈
F′

mm
(zt, γt)− 1

〉
= σ̃2

t
γt−1
γt+1 +

‖zt‖22
U(γt+1)2 . (4)

The minimum of the SURE function is achieved for γtmin =
‖zt‖22/(Uσ̃2

t )− 1. Hence, we replace the tuning stage in (1)
by γtmin to arrive at the following algorithm we call NOPE:

Algorithm 2. Initialize t = 1, r1 = y, and x1 = 0. Then, for
every iteration t = 1, 2, . . . , tmax compute the following steps:

zt = xt + HHrt

γt = 1
β
‖zt‖22
‖rt‖22

− 1

xt+1 = γt

γt+1z
t

rt+1 = y −Hxt+1 + βrt γt

γt+1 .

The following result establishes the fact that NOPE achieves
the same performance as that of an L-MMSE equalizer that
has perfect knowledge of the signal and noise powers.

Corollary 6. Let H have uniform channel gains. In the large-
antenna limit and for t→∞, NOPE as in Algorithm 2 achieves
the same SIR performance as the L-MMSE equalizer.

A sketch of the proof is as follows. By following the steps
in [21, Sec. 4.4], we see that minimizing the SURE function (4)
for the NOPE algorithm results in optimal tuning. Since optimal
tuning is used, the SE equation from Lemma 1 is valid for
NOPE and coincides to the SIR expression for the L-MMSE
equalizer given by Tse and Hanly in [5, Thm. 3.1].

B. Robust Implementation of NOPE

NOPE, as in Algorithm 2, requires the channel matrix H to
have uniform gains, which is rarely satisfied in practice. We next
outline how NOPE can be made robust to more general channel
matrices. We will use ideas from the generalized approximate
message passing (GAMP) algorithm [23]. However, instead
of allowing arbitrary variances in the channel matrix, we only
assume that each user experiences a different variance (e.g.,
caused by large-scale fading). This assumption allows us to
rewrite the channel matrix as H = H̃D, where each element
of H̃ is distributed CN (0, 1/B) and D is a diagonal matrix
containing the users’ individual gains. With this formulation,
we can estimate the gain of the `-th user as d̂2

` =
∑B
j=1|Hj,`|2.

Thus, D is estimated with a diagonal matrix D̂, where the `-th
diagonal element is given by d̂`. By using GAMP [23], we
first generalize Algorithm 1 to support nonuniform channel
gains. The generalization requires us to modify the posterior
mean function in (2) into an element-wise operation defined as

Fmm
` (zt`, τ

t) = Ex

Ex+τt/d̂2`
zt`. (5)

Furthermore, step (3) in Algorithm 1 must be replaced by
rt+1 = y −HD̂−2xt+1 + βrt 1

U

∑U
`=1 F

′mm
` (zt`, τ

t). We are
now able to convert this generalized MMSE-AMP algorithm
into a nonparametric algorithm by estimating the parameters Ex
and τ t in (5) in the large-antenna limit as given in the following
result; the proof is given in Appendix A-B.

Theorem 7. In the large-antenna limit, the parameters Ex
and τ t in (5) can be estimated using

Êx =
‖D̂−1zt‖2

2
−β‖rt‖2

2∑U
`=1 d̂

2
`

and τ̂ t = 1
B ‖rt‖2. (6)

Theorem 7 completes the necessary modifications to derive
a robust version of the NOPE algorithm.

C. Numerical Results and Conclusion

Fig. 3 shows symbol error-rate (SER) simulation results in a
B = 128 and U = 96 massive MU-MIMO system with QPSK
modulation. We show the performance of ZF equalization and
the AWGN lower bound as a fundamental performance limit.
Evidently, the SER performance of NOPE with 20 iterations is
virtually indistinguishable from the L-MMSE estimator, which
requires exact knowledge of both the signal and noise powers.
Thus, NOPE is suitable for situations in which the transmit
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Fig. 3. Symbol error-rate of NOPE algorithm in a 128× 96 massive MU-
MIMO system. NOPE closely approaches the performance of the L-MMSE
estimator that requires exact knowledge of the signal and noise power.

constellation may be unknown to the receiver. In addition,
NOPE often requires lower computational complexity than the
L-MMSE estimator as it avoids the computation of a large
matrix inversion, i.e., all involved operations for NOPE are
matrix-vector products. These results demonstrate that large-
dimensionality of MU-MIMO systems provides the unique
opportunity to design nonparametric algorithms that directly
estimate the key system or model parameters from the received
data, making them resilient to dynamic variations or model
mismatches, while avoiding manual parameter tuning.

APPENDIX A
PROOFS

A. Proof of Lemma 3
Recall that the maximum achievable rate of IO-PME at SNR

Ex/N0 is given by CAWGN = log2(1 + Ex/N0). In the large
antenna limit, the maximum achievable rates for MRC, ZF and
L-MMSE at SNR Ex/N̂0 are given by R = log2

(
1 + Ex/σ

2
)
,

where σ2 is obtained from the following fixed-point equation:

σ2 = N̂0 + β?Ψ(σ2), (7)

where Ψ(σ2) is Ex, σ2, and Ex
Ex+σ2σ

2 for MRC, ZF and L-
MMSE, respectively [5]. Hence, the SNR loss is given by:

δSNR = N0

N̂0

(a)
= N0

σ2−β?Ψ(σ2)

(b)
=
(

1− β?Ψ
(

Ex
2R−1

)
2R−1
Ex

)−1

.

Here, (a) follows from (7), and (b) follows from the fact that
since R = CAWGN, we have σ2 = N0 = Ex

2R−1
. We can now

extract β? given δSNR as given by Lemma 3. Moreover, for
any β ≤ β? the SNR loss will be smaller than δSNR.

B. Proof of Theorem 7
By the decoupling property of GAMP [23], each entry of

the output zt can be modeled as zt` = d̂2
`x`+ d̂`w

t
` in the large-

antenna limit, with wt` ∼ CN (0, σ2
t ) where σ2

t is computed
using the SE framework [23, Sec. V-C]. In the large-antenna
limit, we estimate the signal power from the expression

lim
U→∞

1
U

∥∥∥D̂−1zt
∥∥∥2

2

(a)
= lim
U→∞

1
U

∑U
`=1E

[∣∣zt`/d̂`∣∣2]
= lim
U→∞

1
U

∑U
`=1E[|wt`|2]+E[|x`|2]d̂2

`

= σ2
t + Êx limU→∞

1
U

∑U
`=1 d̂

2
` . (8)

Here, (a) follows from Kolmogorov’s strong law of large
numbers [24] given that

∑∞
`=1(Exd

2
` + σ2)/`2 <∞, which

is satisfied since the user gains d2
` are finite for all users. As

shown in [18], the parameters τ t and σ2
t in (8) can be estimated

from ‖rt‖2/B. We can finally solve (8) for Êx and obtain (6).
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