
FPGA Design of Low-Complexity Joint Channel Estimation
and Data Detection for Large SIMO Wireless Systems
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Abstract—Joint channel estimation and data detection (JED) enables
near-optimal error-rate performance in realistic wireless communication
systems that suffer from channel estimation errors. In this paper, we
propose a new JED algorithm and a corresponding FPGA design for large
single-input multiple-output (SIMO) wireless systems that use constant-
modulus constellations. Our algorithm, referred to as PrOX (short for
PRojection Onto conveX hull), relies on biconvex relaxation (BCR) in
order to efficiently compute an approximate solution of the maximum-
likelihood JED problem that exhibits prohibitive complexity. PrOX is
a simple and hardware-friendly algorithm that achieves near-optimal
error-rate performance for a wide-range of system configurations. To
demonstrate the efficacy of PrOX, we develop a scalable VLSI architec-
ture and present reference implementation results on a Xilinx Virtex-7
FPGA. Compared to a recently-reported reference JED design, PrOX
achieves 3⇥ higher throughput, 20⇥ better hardware-efficiency (in terms
of throughput per look-up tables), and 8⇥ improved energy-efficiency.

I. INTRODUCTION

Large wireless systems, in which the base-station (BS) is equipped
with hundreds or thousands of antenna elements, have recently gained
significant attention. The large number of BS antennas enables
fine-grained beamforming and improved spectral-efficiency within
each cell compared to traditional, small scale single-input multiple-
output (SIMO) and multiple-input multiple-output (MIMO) wireless
systems [1], [2]. Pilot contamination is known to be a limiting factor
in such large wireless systems, i.e., channel training is contaminated
by pilot or data transmission of users communicating in adjacent
cells [3]. To mitigate the effects of pilot contamination, one can rely
on joint channel estimation and data detection (JED), which is capable
of approaching the performance of idealistic systems with perfect
channel-state information [4], [5]. While a few JED algorithms have
been proposed for traditional, small-scale SIMO and MIMO wireless
systems [4]–[7], their complexity is typically very high and not much
is known about their efficacy for systems with hundreds or thousands
of antennas. Moreover, with the exception of the VLSI design in [8],
no hardware designs for JED have been described in the literature.

A. Contributions
We develop a novel JED algorithm and a VLSI design for large

SIMO wireless systems that use constant-modulus constellations. Our
algorithm, referred to as PrOX (short for PRojection Onto conveX
hull), relies on the biconvex relaxation (BCR) framework [9], a general
method for computing approximate solutions to semidefinite problems
at low complexity. PrOX solves the biconvex problem that arises after
relaxing and regularizing the optimal maximum-likelihood (ML) JED
problem, enabling near ML-JED performance at low complexity. We
develop a scalable VLSI architecture for PrOX that achieves high-
throughput and low implementation complexity. We show reference
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implementation results on a Xilinx Virtex-7 FPGA and compare our
solution to the recently-reported JED design in [8].

B. Notation

Lowercase and uppercase boldface letters stand for column vectors
and matrices, respectively. For the matrix A, the Hermitian is AH

and the kth row and `th column entry is Ak,`. For the vector a, the
kth entry is ak. The Euclidean norm of a and the Frobenius norm
of A are kak2 and kAkF , respectively. The real and imaginary parts
of the vector a are <(a) and =(a), respectively.

II. SYSTEM MODEL AND ML-OPTIMAL JED

A. Large SIMO System Model

We consider a large SIMO wireless uplink system in which a single-
antenna user transmits data over K + 1 time slots to B BS antennas.
We model the input-output relation of a narrow-band, flat-fading
wireless channel as follows [4]–[6]: Y = hsH +N. Here, the matrix
Y 2 CB⇥(K+1) contains the B-dimensional receive vectors for the
K + 1 time slots, h 2 CB is the unknown SIMO channel vector
(assumed block fading over K+1 time slots), s 2 OK+1 contains the
transmitted data symbols for all K+1 time slots, and N 2 CB⇥(K+1)

is i.i.d. complex circularly-symmetric Gaussian noise with variance N0

per entry. We assume constant-modulus constellations for the set O.

B. Joint Channel Estimation and Data Detection (JED)

Let h be a deterministic, but unknown, channel vector with unknown
statistics. Then, we have the following ML-JED problem [6]:

�

ˆsJED, ˆh
 

= arg min

s2OK+1,h2CB

�

�Y � hsH
�

�

F
. (1)

Note that, if ˆsJEDej� 2 OK+1 for � 2 [0, 2⇡), then ˆhej� is also a
solution to (1). To avoid this ambiguity, we set the first entry of the
transmit vector to š 2 O and exploit this knowledge at the receiver.1

Since we assumed the entries in s to be constant-modulus, the
ML-JED estimate for the transmit vector can be written as [6]:

ˆsJED
= arg max

s2OK+1

kYsk2. (2)

This problem resembles the famous MaxCut problem that is known
to be NP-hard [10]. For a small number of time slots K + 1, the
problem in (2) can be solved exactly at low average complexity using
sphere decoding (SD) methods [6]. For a large number of time slots,
however, SD entails prohibitive complexity. Moreover, linear methods
(which are widely used for coherent data detection in MIMO systems)
are not useful for this case, since the entries of s grow unbounded
when relaxing the constraint s 2 OK+1 to s 2 CK+1. To enable JED

1This approach differs from traditional, pilot-based schemes as all transmitted
symbols are used to improve the channel estimate, which significantly improves
the error-rate performance (see Section V for simulation results).



for SIMO systems with a large number of time slots, the design of
novel, low-complexity algorithms is necessary. Recently, an algorithm
and VLSI design that relies on semidefinite relaxation (SDR) was
reported in [8]. We next propose a simpler and faster method to
compute approximate solutions to the ML-JED problem in (2).

III. PROX: PROJECTION ONTO CONVEX HULL

A. Biconvex Relaxation (BCR) of the ML-JED Problem
We start by reformulating the ML-JED problem in (2) using

BCR [9]. We first include a regularization term that forces the transmit
vector s 2 OK+1 to be close to a copy q 2 CK+1 as follows:

arg min

s2OK+1,q2CK+1

�kYqk22 + ↵kq� sk22, (3)

where ↵ is a suitably chosen regularization parameter. To ensure that
the problem in (3) is convex in q, ↵ must be larger than the maximum
singular value of the Gram matrix G = YHY. We next relax the
finite-alphabet constraint to the convex hull CO of the set O [11]

CO =

n

P|O|
i=1 ↵isi | (↵i 2 R+, 8i) ^P|O|

i=1 ↵i = 1

o

,

with si, i = 1, . . . , |O|, being the constellation points in O. The
convex hull of the BPSK constellation set CBPSK is the line along the
real axis in [�1,+1]; the convex hull CQPSK for QPSK is the square
with the four constellation points as corners. By relaxing O to CO ,
we arrive at the following relaxed ML-JED problem:

arg min

s2CK+1
O ,q2CK+1

�kYqk22 + ↵kq� sk22.

Finally, we include a norm constraint that promotes large values in
s, with the goal of forcing the entries of s to the boundary of the
convex hull. This leads to the final BCR formulation:

ˆsBCR
= arg min

s2CK+1
O ,q2CK+1

�kYqk22 + ↵kq� sk22 � �ksk22, (4)

where � < ↵ is a suitably chosen algorithm parameter.

B. Alternating Optimization
We solve the BCR problem in (4) using alternating minimization,

in which we keep one of the variables fixed while solving for the
other. The resulting iterative algorithm is given by

q(t)
= arg min

q2CK+1

�kYqk22 + ↵kq� s(t�1)k22

s(t) = arg min

s2CK+1
O

↵kq(t) � sk22 � �ksk22,

where t = 1, 2, . . . , tmax is the iteration counter. We initialize the
above iterative procedure with s(0) = š(G1,1)

�1g1, where g1 is the
first column of G, and š 2 O is the fixed symbol transmitted in the
first time slot and known at the receiver.

Since the problem in (4) is biconvex in s and q, both of the above
steps are convex and can be solved optimally and in closed form.
Concretely, we get the following simple algorithm:

q(t)
= (I� ↵�1G)

�1s(t�1)

s(t) = proxCK+1
O

(✓q(t)
),

(5)

where ✓ =

↵
↵��

> 0, I is the identity, and the proximal operator [12]

proxCK+1
O

(v) = arg min

s2CK+1
O

kv � sk22 (6)

is the element-wise orthogonal projection onto the convex hull CO .
For BPSK, the proximal operator in (6) is given by proxCBPSK

(vb) =

Algorithm 1 PRojection Onto conveX hull (PrOX)

1: inputs: bG, s(0), and %
2: for t = 1, . . . , tmax do
3: ˜q(t)

=

bGs(t�1)

4: s(t) = proxCK+1
O

(%˜q(t)
)

5: s(t)1 = š
6: end for
7: outputs: ŝk = arg mins2O |s(tmax)

k � s|, k = 2, . . . ,K + 1

Fig. 1. Block diagram of PrOX. We use a linear array of processing
elements (PEs) that achieves high throughput at low hardware complexity.

max {min {<(vb),+1} ,�1}; for QPSK, (6) corresponds to applying
the same operation, independently, to <(vb) and =(vb). In the case
of (5), v = ✓q(t), so the proximal operator in (6) projects a scaled
version of q(t) onto the convex hull of the constellation—this is why
we call our algorithm “PRojection Onto conveX hull” (PrOX).

C. Hardware Optimizations for PrOX
We now modify the algorithm in (5) to make it more hardware-

friendly. Since the receiver knows the first entry of s, there is no need
to apply the algorithm on this particular entry—instead, we force s(t)1

to be š at the end of each iteration. The matrix (I � ↵�1G)

�1

exhibits a large dynamic range for different system configurations and
channel realizations. To facilitate fixed-point design, we divide all of
its elements by a constant � > 0, so that the entries of the resulting
matrix are close to one in absolute value. This scaling procedure
requires us to introduce a new vector ˜q = ��1q, resulting in

˜q(t)
= ��1q(t)

= ��1
(I� ↵�1G)

�1s(t�1)

s(t) = proxCK+1
O

(✓�˜q(t)
) = proxCK+1

O
(%˜q(t)

),
(7)

where % = ✓�. By defining bG = ��1
(I � ↵�1G)

�1, we arrive at
the hardware-friendly version of PrOX summarized in Algorithm 1.
We note that ↵ > 0 and % > 0 are both algorithm parameters that
can be tuned to empirically improve the performance of PrOX.

IV. VLSI ARCHITECTURE

A. Architecture Overview
Figure 1 shows the proposed VLSI architecture for PrOX in a

system with QPSK modulation. Our architecture is a linear array
formed of N = K + 1 processing elements (PEs), each associated
with an entry of s and ˜q. To execute Algorithm 1, each PE consists of
three key components. The first component is the bG-matrix memory:
The kth PE contains memory for the real and imaginary parts of ˆgr

k,
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Fig. 2. Uncoded packet error rate (PER) for a SIMO system with B = 16
BS antennas and transmission over K = 16 time slots. PrOX achieves near-
optimal PER performance (close-to perfect CSIR) and exhibits a performance
similar to ML-JED. TASER [8] entails a 1 dB SNR loss for the QPSK case,
while conventional MRC with CHEST suffers a 4 dB SNR loss.

the kth row of bG. This memory is implemented using FPGA look-
up tables (LUTs) as distributed RAM. We assume that the memory
contents were computed during a preprocessing step. The second
component is a complex-valued multiply-accumulate (MAC) unit,
used to compute the matrix-vector product in line 3 of Algorithm 1.
The third component is the projection unit, which executes line 4 of
Algorithm 1. The hard-output estimates (see line 7 of Algorithm 1)
are extracted from the sign bits of the outputs of the projection unit. As
s(t)1 = š is forced at the end of each iteration (line 5 of Algorithm 1),
the first PE only contains two multiplexers and flip-flops that store š.

B. Architecture Operation
We now detail the operating principle of the PrOX architecture

shown in Figure 1. To prevent a high fan out, the entries of the bG
matrix are stored in a way that, for the kth PE, the first address of
its memories contains bGk,k; the second address, bGk,k+1, and so on.
In the first clock cycle, the kth PE has access to s(t�1)

k , so it can
compute the product bGk,ks

(t�1)
k and store the result in its accumulator.

At the same time, this PE sends s(t�1)
k to the (k � 1)th PE. In the

second clock cycle, the kth PE receives s(t�1)
k+1 from the (k + 1)th

PE, so it can compute bGk,k+1s
(t�1)
k+1 and add it to the previous result.

This clock cycle is also used by this PE to transmit s(t�1)
k+1 to the

(k � 1)th PE. In the third clock cycle, the kth PE receives s(t�1)
k+2

from the (k + 1)th PE (which received this value from the (k + 2)th
PE during the second cycle), so the kth PE can continue executing its
complex-valued MAC operation. This process is replicated in all PEs,
enabling each entry of s(t�1) to circulate through the linear array.
After K + 1 cycles, all PEs have had access to all entries of s(t�1)

and used them to compute their respective entry of ˜q(t). During this
process, the first PE (which differs from the other PEs) executes the
same procedure: it first sends š to the (K+1)th PE, and then forwards
the s(t�1) entry received from the second PE to the (K + 1)th PE.
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Fig. 3. Throughput vs. performance trade-off for K = 16 time slots. Vertical
solid lines represent MRC with CSIR; dashed lines represent ML-JED. The
numbers next to the markers correspond to the number of PrOX iterations tmax.

As the MAC units contain three pipeline stages, two clock cycles are
required to flush the pipeline. Hence, the matrix-vector multiplication
on line 3 of Algorithm 1 is computed in K + 3 clock cycles.

We now describe the operation of the projection unit. For QPSK
constellations, the unit consists of two identical modules (cf. Figure 1).
One of these modules takes q̄ = <(q̃(t)) as its input, while the other
takes q̄ = =(q̃(t)). Each module checks whether its input q̄, after
being multiplied with %, is below �1, above +1 or in-between these
numbers, and outputs �1, +1, or %q̄, respectively. To do so, each
module takes its input and adds, separately, �1/% and +1/% to it.
The two results are used to select the output value. The quantity %q̄
is computed in parallel. By restricting % to be a power of two, the
multiplication can be carried out with arithmetic shifts. The projection
unit uses one clock cycle to complete its operation, but it can start
only after the K + 3 cycles used by the complex MAC unit. After
the projection unit has finished, the new s(t)k will be available at the
inputs of the complex-valued MAC unit, ready to start a new iteration.
Consequently, each PrOX iteration requires K + 4 clock cycles.

C. Fixed-Point Parameters

We use 6 bit fixed-point values for representing the s(t) entries,
with 3 fraction bits. For the elements of bG, 12 bit fixed-point values
are used, with 11 fraction bits. The intermediate values and outputs
of the complex-valued MAC unit use 15 bits with 11 fraction bits.

V. IMPLEMENTATION RESULTS AND COMPARISON

A. Error-Rate Performance

Figures 2(a) and 2(b) show packet error rate (PER) simulation results
for PrOX as in (5) for tmax = 5 iterations. The results are obtained
from 50, 000 Monte-Carlo trials in a B = 16 BS antenna SIMO
system with K = 16 time slots, using an i.i.d. flat Rayleigh block-
fading channel model. We show the performance of maximum ratio
combining (MRC) detection with both perfect receive-side channel
state information (CSIR) and channel estimation (CHEST), ML-JED



TABLE I
IMPLEMENTATION RESULTS ON A XILINX VIRTEX-7

XC7VX690T FPGA FOR DIFFERENT PROX ARRAY SIZES

Array size (N=K+1) N=5 N=9 N=17 N=33
Time slots (K=N�1) K=4 K=8 K=16 K=32

Slices 327 658 1 491 3 018
LUTs 990 1 991 4 818 9 861
FFs 515 989 1 953 3 857
DSP48s 16 32 64 128
Max. clock freq. [MHz] 358 341 297 240
Min. latency [cycles] 8 12 20 36
Max. throughputa [Mb/s] 358 454 475 426
Power estimateb [W] 0.45 0.47 0.79 1.14

aAssuming QPSK modulation; for BPSK, the throughput is halved.
bStatistical power estimation at max. clock freq. and 1.0 V supply voltage.

detection using the method in [7], and the recent TASER algorithm [8]
with 20 iterations. Note that MRC with perfect CSIR is optimal for this
scenario. However, the assumption of perfect CSIR cannot be realized
in practice and one must resort to CHEST, which entails a performance
loss of more than 4 dB at 1% PER. PrOX significantly outperforms
MRC with CHEST and approaches near-ML-JED performance but, in
contrast to ML-JED detection, at very low complexity. We also show
the performance of the VLSI design of PrOX as in Algorithm 1; our
fixed-point design exhibits virtually no implementation loss.

Figures 3(a) and 3(b) show the trade-off between the throughput
of PrOX and the minimum SNR required to achieve 1% PER, for
SIMO systems with K = 16 time slots and different numbers of
BS antennas. As a reference, we include the performance of MRC
with CSIR and that of an optimal ML-JED detector. By increasing
the number of PrOX iterations tmax, the desired PER is achieved at a
lower SNR at the expense of lower throughput. Note that for BPSK
modulation, 2 iterations are typically enough to reach near-ML-JED
performance, which leads to a throughput of 118Mb/s. For QPSK,
3 iterations are sufficient and achieve 158Mb/s.

B. Implementation Results

To demonstrate the efficacy of PrOX, we developed FPGA designs
for various array sizes N 2 {5, 9, 17, 33} that support JED for
K 2 {4, 8, 16, 32} time slots, respectively. Our FPGA implementation
results are shown in Table I. As expected, the resource utilization
scales linearly with the array size N . For the N 2 {5, 9, 17} arrays,
the critical path is in the PEs’ projection unit; for the N = 33 array,
the critical path is in the distribution of control signals.

Table II compares PrOX with TASER [8], which has been imple-
mented on the same FPGA for a SIMO system with B = 128 BS
antennas and communication through K = 8 time slots. PrOX requires
significantly fewer resources and a lower power than TASER, while
achieving a higher throughput. This makes this design superior to
TASER in terms of both hardware-efficiency (measured in throughput
per FPGA LUTs) and energy per bit: PrOX is 20⇥ more hardware-
efficient and 8⇥ more energy-efficient than TASER for the considered
scenario. At the same time, PrOX exhibits a similar (for BPSK) or
better (for QPSK) PER performance than TASER, while using fewer
iterations, as shown in Figures 2(a) and 2(b). We note that while PrOX
is only suitable for JED in large SIMO, TASER can also perform
near-ML data detection in coherent massive MIMO systems [8].

VI. CONCLUSIONS

We have proposed PrOX, a novel joint channel estimation and data
detection (JED) algorithm for large SIMO systems with constant-

TABLE II
COMPARISON OF JED DATA DETECTORS FOR A QPSK, B = 128, K = 8

LARGE-SIMO SYSTEM ON A XILINX VIRTEX-7 XC7VX690T FPGA

Detection algorithm PrOX TASER [8]
Error-rate performance Near ML-JED Near ML-JED
Iterations tmax 3 3

Slices 658 (0.61 %) 4 350 (4.02 %)
LUTs 1 991 (0.46 %) 13 779 (3.18 %)
FFs 989 (0.11 %) 6 857 (0.79 %)
DSP48s 32 (0.89 %) 168 (4.67 %)
Clock frequency [MHz] 341 225
Latency [clock cycles] 12 72
Throughput [Mb/s] 151 50
Power estimatea [W] 0.47 1.30

Throughput/LUTs 75 841 3 629
Energy/bit [nJ/b] 3.09 26.0

aStatistical power estimation at max. clock freq. and 1.0 V supply voltage.

modulus constellations, as well as a VLSI architecture. The low
complexity of PrOX translates into a low-area, high-throughput, and
low-power FPGA design. Our FPGA implementation for a SIMO
system with K = 8 time slots achieves a maximum throughput
of 454Mb/s, while using only 2 k FPGA LUTs. In addition, PrOX
significantly outperforms TASER [8], the only other existing JED
design, in all performance metrics.

We conclude by noting that PrOX is a first step towards hardware
accelerators that are able to find approximate solutions to the MaxCut
problem at low complexity and in a hardware-efficient manner. The
design of accelerators for MIMO JED is part of ongoing research.
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