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Abstract—We propose a novel data detection algorithm and a corre-
sponding VLSI design for large multi-user (MU) multiple-input multiple-
output (MIMO) wireless receiver. Our algorithm, referred to as ADMIN,
performs alternating direction method of multipliers (ADMM)-based
infinity norm constrained equalization. ADMIN is an iterative algorithm
that outperforms linear detectors if the number of users is small
compared to that of the antennas in base station (BS). ADMIN computes
the linear minimum mean-square error (MMSE) solution in the first
iteration. It is sufficient when the ratio between the numbers of BS
antennas and users is rather large. We develop a time-shared and iterative
VLSI architecture for LDL-decomposition based soft-output ADMIN.
Our architecture achieves 685.71 Mb/s for linear MMSE and 212.38 Mb/s
for ADMIN for a 16-user system that employs 64-QAM in a 28 nm CMOS
technology.

I. INTRODUCTION

Large (or massive) multiuser (MU) multiple-input multiple-output
(MIMO) is a key technology for fifth-generation (5G) wireless
communication systems that handles orders of magnitude more data
traffic. The idea of massive MU-MIMO is to equip the base station
(BS) with a large number of antenna elements that can serve a large
number of user terminals in the same frequency band [1], [2]. The
improvements in spectral efficiency of massive MU-MIMO systems
come at the cost of higher computational complexity compared to
that of conventional small-scale MIMO wireless systems. To enable
high-speed communication in the uplink (users communicate to
the BS), a variety of algorithms and VLSI architectures have been
proposed recently [3]–[6]; all of these methods use an approximation
of the linear minimum mean-square error (MMSE) equalizer. These
algorithms provide high throughput, but entail a performance loss
compared to exact inversion-based MMSE equalizers, especially
in systems in which the number of users is comparable to the
number of BS antennas. Castañeda et al. recently proposed an
approximate semidefinite relaxation-based data detector, referred to
as TASER, that achieves near maximum-likelihood performance in
such “symmetric” systems. TASER, however, is limited to BPSK and
QPSK modulation [7].

A. Contributions

In this paper, we propose a novel data detection algorithm and
VLSI design based on the alternating direction method of multipliers
(ADMM). Our algorithm is referred to as ADMM-based infinity-norm
(ADMIN for short) and performs infinity-norm or box-constrained
equalization, which outperforms linear detectors by a large margin if
the ratio between the numbers of BS antennas and users is small (two
or less). ADMIN is iterative by nature and performs linear MMSE
equalization in the first iteration. Therefore, for systems in which
the number of BS antennas is an order of magnitude more than the
number of users, it is sufficient to perform one ADMIN iteration. We
present a VLSI architecture for LDL-based soft-output ADMIN for
16 users transmitting data to a 16 antenna BS. The architecture is
implemented in a 28 nm CMOS technology and compared to the only
available 16-user ASIC implementations in [7] in terms of throughput,
area, and hardware efficiency.

B. Notation

Boldface lowercase and boldface uppercase letters stand for column
vectors and matrices, respectively. For a matrix, A, we denote its
Hermitian transpose by AH . We use Ak,l for the entry in the kth
row and lth column of the matrix A. The real and imaginary part
of a complex-valued matrix A are denoted by <(A) and =(A),
respectively. The identity matrix is I and `2-norm of the vector a is
‖a‖2 =

√∑
K |ak|2.

II. SYSTEM MODEL AND DATA DETECTION

We consider a massive MU-MIMO wireless uplink system that
employs orthogonal frequency division multiplexing (OFDM). We
assume that U single-antenna user terminals send data simultaneously
to a BS with B ≥ U antennas over W subcarriers. The U users first
encode their own bit stream with a channel encoding method (e.g.,
a convolutional code) and map the coded bit stream to constellation
points in the finite alphabet set O (e.g., 16-QAM with Gray mapping)
with an average transmit power Es per symbol. We assume perfect
channel state information (CSI) and synchronization at the receiver, as
well as a sufficiently long cyclic prefix such that there is no intersymbol
or interblock interference. By omitting the subcarrier index, the input-
output relation per subcarrier can be written as y = Hx+ n, where
y ∈ CB is the received signal vector, x ∈ CU is the transmit symbol
vector, H ∈ CB×U is the channel matrix, and n ∈ CB is the circularly
symmetric complex white Gaussian noise vector with zero mean and
variance N0 per complex entry.

Maximum likelihood (ML) detection is optimal in terms of
minimizing the vector error rate assuming that all data vectors are
equally likely. For the considered system model, the ML detector is
given by

x̂ML = arg min
x∈OU

‖y −Hx‖22. (1)

Unfortunately, this problem is of combinatorial nature and requires
prohibitive complexity for a large number of users [8]. To reduce
complexity, one can use minimum mean-square error (MMSE)
equalization, which can be viewed as a relaxed version of the ML
problem in which the data set D underlying ML detection is relaxed
to the set CU with an additional regularization term as follows:

x̂MMSE = arg min
x∈CU

‖y −Hx‖22 + N0E
−1
s ‖x‖22. (2)

The regularization term N0E
−1
s ‖x‖22 prevents x from growing too

large, because the transmit signals are taken from the discrete
constellation O that is centered around zero. Since the objective
function of (2) is quadratic in x, MMSE equalization has a closed
form solution and can be solved relatively efficiently in hardware [9].

III. ADMIN: ADMM-BASED INFINITY NORM DETECTION

A. Infinity-Norm Constrained Equalization

Infinity norm or box-constrained equalization [10], [11] relaxes the
finite-alphabet constraint x ∈ OU to the convex polytope CO around



the constellation set O and solves the following convex optimization
problem:

x̂BOX = arg min
x∈CUO

‖y −Hx‖22. (3)

The convex polytope for QPSK and higher order QAM alphabets
can be expressed as CO = {xR + jxI : xR, xI ∈ [−α,+α]} where
α = maxu∈O <{u} is the tightest radius of the box around the
square constellation. For example, the convex polytope for QPSK
is given by a square box with radius α = 1 around the square
constellation of QPSK. Solving (3) exactly with conventional interior-
point methods in hardware would result in prohibitive complexity. We
therefore propose an ADMM-based solution for this box-constrained
equalization problem.

B. ADMM-Based Infinity-Norm Detection

ADMM is a well known numerical method to solve a wide range
of constrained convex and nonconvex optimization problems [12].
More specifically, ADMM solves the original convex optimization
problem by breaking them into smaller sub-problems that can be
solved efficiently. We rewrite (3) into the following equivalent form

minimize
x,z∈CU

1
2
‖y −Hx‖22 + g(z) subject to z = x (4)

where g(z) is the indicator function on the convex set CO such that

g(z) =

{
0, if z ∈ CUO
∞, otherwise.

The augmented Lagrangian for the problem in (4) is

Lβ(x, z,λλλ) =
1
2
‖y −Hx‖22 + g(z) + β

2
|z− x− λλλ‖22 (5)

where λλλ is the scaled dual variable associated with the constraint
z = x and β > 0 is a suitably chosen regularization parameter. We
can now use ADMM to solve the augmented Lagrangian over x and z.
In the first step of an ADMM iteration, we minimize x while z is
fixed. We take the derivative of (5) with respect to x and set it to
zero to compute the first step of ADMIN as

HH(y −Hx)− β(z− x− λλλ) = 0

⇒x̂ = (HHH+ βI)−1(HHy + β(z− λλλ)). (6)

The x-update of ADMIN solves a regularized least-squares problem.
Thus, ADMIN can be viewed as a method for solving the box-
constrained problem of (3) by iteratively carrying out regularized
least-square computations. Note that initializing z and λλλ with zero
and β = N0E

−1
s at (6) yields the MMSE equalizer in the first iteration.

The z update step can be expressed as

ẑ = arg min
z∈CUO

1
2
‖z− (x̂+ λλλ)‖22. (7)

Equation (7) is equivalent to an orthogonal projection of x̂+ λλλ onto
the convex polytope CUO . This projection is given by

projCO (w) =

{
w, if w ∈ CO
argminq∈CO |w − q|, otherwise.

In words, if w is outside the set CO , the projection outputs the value
closest to w within the set CO in terms of the Euclidean distance. For
example, if w is outside of a box with radius α = 1 that encloses the
square constellation of QPSK, then the projection outputs a value q
that is closest to w within the box. The update for the Lagrange vector
is given by

λλλ← λλλ− γ(ẑ− x̂), (8)

Algorithm 1 ADMIN
inputs: y, H, N0 and Es
1: preprocessing
2: β = N0E

−1
s ε

3: G = HHH+ βIU
4: G = LdLH

5: L̃ = L−1, D̃ = D−1

6: initialization
7: z = 0
8: λλλ = 0
9: detection
10: yMF = HHy
11: for i = 1 : K
12: x̂← L̃HD̃L̃(yMF + β(z− λλλ))
13: ẑ← projCO (x̂+ λλλ, α)
14: λλλ← λλλ− γ(ẑ− x̂)
15: z← ẑ
16: end
17: output: x̂

where 0 < γ is a suitably chosen step size. Note that step sizes
satisfying 0 < γ < 1 ensure the convergence of the ADMM but
larger values may improve the performance for small numbers of
iterations.
C. LDL-Decomposition based Soft-output ADMIN

The inversion of the regularized Gramian matrix, G = HHH+βIU
is required to compute the x-update of ADMIN. We can compute
the exact inverse of regularized the Gramian matrix with LDL-
decomposition in ADMIN. Fortunately, the computations required for
G, LDL decomposition, and inversion of L and D can be done during
the preprocessing, and thereby equalization can be simplified. During
the equalization stage, ADMIN computes the matched filter and then
iteratively updates x̂, ẑ, and λλλ. The complete ADMIN algorithm is
summarized in Algorithm 1.

The post-equalization SINR vector ρρρ, that is required to compute
the log-likelihood ratio (LLR) values, can be extracted from ρi =
1/N0E

−1
s ai where ai is the i-th entry of the main diagonal of G−1.

This can be done efficiently with the help of L̃ = L−1 and D̃ = D−1

as ρi = (̃li)
Hdiag(D̃)(̃li) where l̃i is the i-th column of L̃. The

number of complex-valued multiplication needed for each ADMIN
iteration is 2(U2+U) where U is the number of users. Therefore, the
complexity of the detector scales with KU2 where K is the number
of ADMIN iterations.

D. Error-rate Performance

We simulate a typical 40 MHz IEEE 802.11n OFDM uplink scenario
with a rate-3/4 convolutional code where the channel matrices are
generated using WINNER-phase-2 model and the max-log BCJR
algorithm is used for soft-input soft-output channel decoding. We
show the (coded) packet error-rate (PER) for ADMIN as well as linear
MMSE equalization, single-input multiple-output (SIMO) lower bound,
TASER and box-constrained coordinate descent (CD) detector [6]
in Fig. 1. ADMIN provides a significant performance improvement
over MMSE equalization for a symmetric system with five iterations
(K = 5) and thus, we choose ADMIN with K = 5 for error-rate
performance. CD outperforms other MMSE approximations like the
Neumann series approach [3] or the conjugate gradient (CG) [5] based
detectors in terms of PER. For a fair comparison against ADMIN with
K = 5, we run CD with five (K = 5) and ten (K = 10) iterations
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(a) 16 BS antennas, 16 users and QPSK.
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(b) 16 BS antennas, 16 users
and 64-QAM.
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(c) 32 BS antennas, 16 users and 64-QAM.

Fig. 1: Packet error rate (PER) for a large MU-MIMO-OFDM system with rate-3/4 convolutional code and WINNER channel model.
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Fig. 2: VM unit: Computes vector-vector multiplication. It has i =
1, 2, . . . ,M multiplier units in parallel. The adder tree sum the output
of the multipliers.

respectively. Figs. (1a) and (1b) illustrates the PER performance for
a 16 users and 16 BS antenna system. For lower order modulation
(e.g., QPSK), ADMIN achieves a substantial performance gain over
MMSE. ADMIN also outperforms TASER and CD with a smaller
number of iterations. For higher order modulation (e.g. 64-QAM),
CD fails to detect the symbols for square systems. ADMIN provides
approximately 5 dB gain compared to MMSE in this scenario. Fig. (1c)
illustrates the PER performance for 16 users and 32 BS antennas.
ADMIN with five and CD with ten iterations performs similar in
this scenario. However, CD performs worse than MMSE with five
iterations in this scenario.

IV. VLSI ARCHITECTURE

A. Architecture Overview

We propose a VLSI architecture for ADMIN that takes H, y, L̃,
d̃ = diag(D̃) as inputs. We use fixed-point arithmetic to optimize
the efficiency of our hardware. We use 18 bits throughout the design
where 12 bits are used for fractional part and 5 bits are used for
the integer. The fixed-point performance is shown in Fig. 1(b). The
architecture supports ADMIN detection (lines 6− 16) as summarized
in Algorithm 1. The architecture is divided in two parts and they are
explained in the following subsections.

B. Vector Multiplication Unit

The vector multiplication unit (VM) computes the x minimization
step of ADMIN (line 12) of Algorithm 1. VM is designed with time-
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Fig. 3: MFU unit: Computes z minimization and λλλ-update in pipelined
fashion.

shared processing elements to compute vector-vector multiplication.
VM consists of 16 complex multipliers followed by an adder tree. A
register is placed between each complex multiplier and adder tree to
reduce the critical path. The adder tree can sum 16 complex values in
a single cycle. H is stored in a standard cell-based memory in such
a way that each address can read a column of H in a single cycle.
The VM unit first computes the matched filter yMF = HHy in 16
cycles. The same values of yMF are needed for all the five ADMIN
iterations and that is why they stored in a register array.

The lower triangular matrix L̃ is also stored in another standard
cell-based memory. The triangular memory is designed in such a
way that it is possible to read an entire column or row of L̃ in a
single cycle. The L̃ is read row-wise to compute the L̃yMF and the
output is stored in a temporary register array, t. The next step is to
compute the elementwise multiplication between d̃ and t. The output
from the multiplier array is written back to t unlike the previous
computations. The triangular memory is read column-wise in next 16
cycles to compute L̃Ht that results in x̂ which is the output of VM
unit.

C. Matched Filter Update Unit

The matched filter update (MFU) update unit computes the z
minimization and λλλ-update steps of ADMM. The output values from
the VM unit, x̂i, where i = 1, 2, . . . ,M , are obtained sequentially.
Therefore, we choose a pipelined architecture for MFU. The λλλ array
is stored in a register array and initialized as zero. The projection unit
compares the real and imaginary parts of the addition of x̂i and λi and



TABLE I: Throughput and latency of ADMIN for K iterations and
64-QAM, and 16 BS antennas and 16 users

K=1 K = 2 K = 3 K = 4 K = 5
Max. throughput (Mb/s) 685 440 324 256 212
Latency (µs) 0.14 0.21 0.29 0.37 0.45

outputs ẑ. The subtraction of ẑ from x̂i is multiplied with the scaling
parameter γ. A shimming register is used after x̂i to synchronize
with ẑ. Similarly another shimming register is used to synchronize λi
to add with γ(x̂i − ẑ) that results in an updated λi+1. The updated
λi+1 is stored back in the same register array designated for λi and
they are used for the next iteration. The subtraction of ẑ and λi+1 is
multiplied with the penalty parameter β. The output is added with
the corresponding matched filter value yMF

i for an updated yui . The
updated matched filter values yu are stored in a register array and
sent back to the VM unit to compute for the next ADMIN iteration.

V. IMPLEMENTATION RESULTS

The ADMIN architecture is designed and optimized in VHDL on
register-transfer level (RTL). The architecture is synthesized using
Synopsys DC with a 28 nm CMOS standard cell library. ADMIN
achieves a maximum clock frequency of 500 MHz and takes an area
of 0.061 mm2 which equals to 186.11 k gate equivalents. The critical
path goes through the multiplier array to the temporary register, t. The
MFU unit takes a small area compared to the VM unit. The majority
of the area in the VM unit is consumed by the complex multiplier
array. The throughput and latency of different ADMIN iterations for
16-users and 64-QAM modulation scheme is provided in Table I.

The throughput decreases linearly with respect to the number of
iterations K because the number of operations remains the same in
each iteration of ADMIN. ADMIN needs five iterations to achieve the
desired PER shown in Fig. 1. In the first 70 cycles, the architecture
computes the first ADMIN iteration that provides the MMSE estimates.
Here, 16 cycles are used for storing the inputs to H and L̃ memory.
The architecture needs 226 cycles to compute five ADMIN iterations
that results in a throughput of 212.38 Mb/s.

A plethora of ASIC designs for small-scale MIMO detection is
available in the literature. Their effectiveness is still unexplored for
large scale MU-MIMO systems. A few FPGA designs for large scale
MU-MIMO detection can be found in [4]–[6]. Yin et al. proposed a
high-throughput ASIC for a Neumann series based large scale MU-
MIMO detector in [3]. However, the FPGA and ASIC implementations
support 8-user MU-MIMO and not comparable with our 16-user
architecture. In Table II, we compare our ADMIN architecture with
TASER [7], which is—to the best of our knowledge—the only ASIC
that supports 16-user large MU-MIMO detection. Three separate
TASER designs were presented in [7] to support different numbers
of users for BPSK and QPSK MU-MIMO systems. We compare our
results with the 16-user BPSK TASER and QPSK TASER. ADMIN
provides higher throughput and superior hardware efficiency (measured
throughput per cell area) than both TASER designs supporting 16-users.
Furthermore, ADMIN achieves superior PER performance compared
to the well-known MU-MIMO detectors. It should be noted that
ADMIN and TASER designs do not include preprocessing circuitry,
whereas the Neumann-series detector [3] includes the preprocessing
circuitry.

VI. CONCLUSIONS

We have proposed ADMIN, a novel data-detection algorithm and
a corresponding VLSI architecture. The algorithm outperforms linear
MMSE equalization in terms of PER by a large margin when the

TABLE II: Comparison of data detection ASICs for 16-user large scale
MIMO systems

Detection algorithm ADMIN TASER TASER
Modulation Scheme 64-QAM BPSK QPSK
Preprocessing Not included Not included Not Included
Iteration 5 5 5

Technology [nm] 28 40 40
Supply Voltage [V] 1 1.1 1.1

Clock freq. [MHz] 500 598 560
Throughputa [Mb/s] 212.38 74.8 (105.36a) 72.6 (103.09a)
Core areaa [mm2] 0.061 0.482 (.236a) 1.382 (0.676a)
Cell areab [kGE] 186.11 471.23 1427.96

Throughput/
areaa[b/(s×GE)]

1141.15 222.9 72.02

a Technology scaling to 28 nm assuming A ∼ 1/s2 and t ∼ 1/s.
b Excluding the gate count of memories.

ratio between BS antenna and number of user is rather small (two
or less). ADMIN architecture also provides promising results for
16-user MIMO detectors in terms of throughput and energy efficiency.
Thus, ADMIN enables a realistic large-scale MU-MIMO detector
implementation for next generation communication systems.
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