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Abstract
Semidefinite relaxation methods transform a va-
riety of non-convex optimization problems into
convex problems, but square the number of vari-
ables. We study a new type of convex relaxation
for phase retrieval problems, called PhaseMax,
that convexifies the underlying problem without
lifting. The resulting problem formulation can
be solved using standard convex optimization
routines, while still working in the original, low-
dimensional variable space. We prove, using a ran-
dom spherical distribution measurement model,
that PhaseMax succeeds with high probability for
a sufficiently large number of measurements. We
compare our approach to other phase retrieval
methods and demonstrate that our theory accu-
rately predicts the success of PhaseMax.

1. Introduction
Semidefinite relaxation is the technique of replacing a broad
range of non-convex optimization problems involving a vec-
tor of (possibly discrete) variables with convex problems
involving matrices. The relaxed convex problem is then
solved to global optimality, and the solution is used to ex-
tract a global minimizer of the original non-convex problem.
Unfortunately, convexity comes at a steep cost: semidefinite
relaxation squares the dimensionality of the problem, re-
sulting in formulations that are convex but computationally
intractable in many situations. In fact, the increase in di-
mensionality, which is called lifting, often prevents the use
of this technique in machine learning and computer vision
applications involving thousands to millions of variables.

This article studies convex relaxation for phase retrieval,
a canonical non-convex problem that can be solved via
semidefinite relaxation. We present a relaxation approach
that convexifies the problem without lifting, i.e., it solves
the problem in its original, low-dimensional space.
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2. Phase Retrieval Problems
Phase retrieval deals with the recovery of an n-dimensional
signal x0 ∈ Hn, with H either R or C, from m ≥ n
magnitude measurements of the form (Candès et al., 2013)

bi = |〈ai,x0〉|, i = 1, 2, . . . ,m, (1)

where ai ∈ Hn, and i = 1, 2, . . . ,m are the (known) mea-
surement vectors. Because of the nonlinearity caused by
measuring the magnitude of the linear terms in (1), the phase
retrieval problem is non-convex.

A variety of algorithms exist for finding x0 in (1). Classical
methods, such as the Gerchberg-Saxton and Feinup algo-
rithms, search for a solution via alternating least-squares
steps that are efficient when the measurement ensemble {ai}
forms a tight frame (e.g., a collection of Fourier matrices).

More recently, there has been significant interest in con-
vex methods for phase retrieval that provably find global
solutions without the danger of getting trapped in local min-
ima. These methods, including PhaseLift (Candès et al.,
2013) and its dual formulation PhaseCut (Waldspurger et al.,
2015), rely on semidefinite relaxation and replace the un-
known n-dimensional vector x with a (much larger) n× n
matrix of unknowns that is recovered using semi-definite
programming. While such methods come with strong theo-
retical guarantees and do not get trapped in local minima,
they require lifting (semidefinite relaxation squares the num-
ber of unknowns), which makes this approach intractable
for real-world image processing applications involving thou-
sands or millions of variables. As a result, there has been
a flurry of interest in global convergence properties of non-
convex solvers that operate in the original feature space,
such as the methods in (Netrapalli et al., 2013; Schniter &
Rangan, 2015; Candès et al., 2015; Chen & Candès, 2015;
Wang et al., 2016). While these methods come with theoret-
ical guarantees, non-convexity makes it difficult to combine
them with commonly used regularizers, and typically pre-
cludes the use of sophisticated optimization methods that
can handle constraints, non-differentiable terms, etc.

We note that the PhaseMax formulation has also been pro-
posed by (Bahmani & Romberg, 2016) and was recently
analyzed by (Hand & Voroninski, 2016). We discuss and
compare these results in Section 8.2.
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3. A Word on Notation
Scalars are lower-case letters, and vector quantities are
boldface, lower-case letters. Matrices are boldface upper-
case letters, and sets are written using upper-case script
font. We denote the inner product between the vectors
x,y ∈ Hn as 〈x,y〉 = xTy, and xT is the transpose
in the real case or the Hermitian transpose in the com-
plex case. We denote the real part of the inner product
as 〈x,y〉< = <(xTy) and the imaginary part as 〈x,y〉=
so that 〈x,y〉 = 〈x,y〉< + j〈x,y〉= with j2 = −1. The
non-negative reals are denoted R+

0 .

We denote the unit sphere embedded in Rn as Sn−1R , and
use Sn−1C for the sphere in complex space. To address both
of these cases at once, we will often write

Sn−1H = {x ∈ Hn | ‖x‖2 = 1},

whereH ∈ {R,C} is either the real or complex numbers.

4. Proposed Relaxation
We propose PhaseMax, a formulation of the phase retrieval
problem that avoids lifting. Put simply, PhaseMax relaxes
the non-convex equality constraints |〈ai,x〉| = bi into con-
vex inequality constraints of the form |〈ai,x〉| ≤ bi. The
resulting convex problem can then be solved using linear
programming in the real case or using second-order cone
programming in the complex case.

At first glance, the proposed relaxation seems too simplistic
to recover x0. Indeed, the relaxed system of inequalities
has a trivial solution: the all-zeros vector. To obtain a
meaningful solution, we need to force the solution vector to
lie on the boundary of the constraint set, where the inequality
constraints hold with equality. To force the solution to lie on
the boundary, we rely on some intelligent “guess” x̂ ∈ Hn
of the solution to (1); we will discuss methods for producing
such guesses in Section 8.1. We then find the feasible point
that lies as far in the direction of x̂ ∈ Hn as possible. This
results in the convex optimization problem

(PhaseMax)

{
maximize

x∈Hn
〈x, x̂〉<

subject to |〈ai,x〉| ≤ bi, i = 1, . . . ,m.

The key idea behind PhaseMax is that the objective forces
the solution vector to lie along the boundary of the constraint
set, where the constraints are active. Evidently, if all of the
constraints are active at this solution, then we have recovered
a solution to the original non-convex problem (1).

Quite surprisingly, the PhaseMax relaxation provably recov-
ers the true solution to (1) in many situations. In particular,
we have the following main result:
Theorem 1. Consider the case of recovering a signal
x ∈ Hn fromm measurements of the form (1) with measure-

ment vectors ai, i = 1, 2, . . . ,m, sampled independently
and uniformly from the unit sphere. Let

angle(x0, x̂) = arccos

( 〈x0, x̂〉<
‖x0‖2‖x̂‖2

)
be the angle between the true vector x0 and the “guess” x̂,
and define the constant

α = 1− 2

π
angle(x0, x̂)

that measures the accuracy of our guess. If H = C, then
whenever αm > 4n − 1, the probability that PhaseMax
recovers the true signal x0 is at least

1− exp
(
− (αm−4n)2

4m

)
. (2)

Similar results for the real case are derived below.

5. Formulation using Geometric Probability
Conditions for which PhaseMax enables exact recovery
can be formulated as a classical problem from geometric
probability involving random hemispheres, or “caps.” We
begin with a few simple definitions. Recall that we use
Sn−1H to denote the unit sphere embedded in Hn. Given a
vector a ∈ Sn−1H , the hemisphere cap centered at a is

CH(a) = {δ ∈ Sn−1H | 〈a, δ〉< ≥ 0}. (3)

This cap contains all vectors that form an acute angle with a.

We also need the concept of aligned vectors. A complex
vector a ∈ Sn−1H is said to be aligned with x ∈ Sn−1H if
〈x,a〉 ∈ R+

0 . In words, two vectors are aligned if their
inner product is real valued and non-negative. Given a
vector x and a measurement vector a, we have |〈ai,x〉| =
|〈ωai,x

0〉| for any unit-magnitude ω ∈ C. For this reason,
we will often consider the set {ãi} = {sign

(
〈ai,x0〉

)
ai}

of measurement vectors aligned with x0 without loss of
generality. Note that replacing {ai} with {ãi} in PhaseMax
does not change the feasible set, and thus does not impact
the recovered solution. Finally, observe that a solution x? to
(PM) must be aligned with x̂. This is because 〈ωx?, x̂〉 =
|〈x?, x̂〉|when ω = sign(〈x?, x̂〉) . It follows that x? cannot
be optimal unless sign(〈x?, x̂〉) = 1.

We are now ready to formulate the following exact recovery
condition for PhaseMax.
Theorem 2. Consider the recovery of a vector x0 using
PhaseMax with guess x̂. Assume, without loss of generality,
that x̂ and the measurement ensemble {ai} are aligned
with x0. Let D = { δ |〈δ, x̂〉 ∈ R+

0 } be the set of unit
vectors aligned with x̂. Then, x0 is the unique solution of
PhaseMax if

D ⊂
m⋃
i=1

CH(ai). (4)
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Proof. Suppose the conditions of this theorem hold, and
let x? be a solution to (PM). Since x0 is in the feasible
set, x? must produce an objective value at least as large as
x0, and so 〈x?, x̂〉 ≥ 〈x0, x̂〉. We know that x? is aligned
with x̂. Since x0 is assumed to be aligned with x̂, the vector
∆ = x? − x0 is also aligned with x̂, and satisfies

〈∆, x̂〉 = 〈x?, x̂〉 − 〈x0, x̂〉 ≥ 0.

Since x? is a feasible solution for (PM), we have

|〈ai,x0 + ∆〉|2 = |〈ai,x0〉|2+
2[〈ai,x0〉∗〈ai,∆〉]< + |〈ai,∆〉|2 ≤ b2i , ∀i. (5)

Now, recall that |〈ai,x0〉|2 = b2i , and ai is aligned with x0.
Hence, we get

〈ai,∆〉< ≤ −
1

2
|〈ai,∆〉|2 ≤ 0, ∀i. (6)

If ‖∆‖2 > 0, then we see from (6) that the unit-length vec-
tor δ = ∆/‖∆‖2 satisfies δ 6∈ C(ai),∀i, which contradicts
the covering condition (4). It follows that ‖∆‖2 = 0 and
x? = x0.

6. Sphere Covering Results
Theorem 2 states that exact recovery of x0 occurs when
the measurement ensemble {ai} is aligned with x0, and the
set D is covered by the caps {CH(ai)}. We now study the
probability that this condition holds. To do so, we need a
few elementary sphere covering results. Our proof builds
on the following simple result.
Lemma 1. Suppose we slice the sphere Sn−1R ⊂ Rn using
k planes through the origin. Then we divide the sphere into
as most

r(n, k) = 2

n−1∑
i=0

(
k − 1

i

)
(7)

regions.

Proof. The proof is by induction. As a base case, we have
r(n, 1) = 2 and r(2, k) = 2k for k ≥ 1. Now suppose
we have a sphere Sn−1R in n dimensions sliced by k − 1
planes into r(n, k − 1) “original” regions. Consider the
effect of adding a kth plane, pk. The number of new regions
created is equal to the number of original regions that are
intersected by pk. To count the number of new regions, we
project the k − 1 original normal vectors into pk, and count
the minimal number of regions formed inside pk by the
resulting projected planes, which is at most r(n− 1, k− 1).
Adding this to the number of original regions yields

r(n, k) = r(n, k − 1) + r(n− 1, k − 1).

We leave it to the reader to verify that (7) satisfies this
recurrence relation.

Lemma 1 appears to have been first proved by (Schläfli,
1953), and simple induction arguments can be found in
(Wendel, 1962; Gilbert, 1965; Füredi, 1986).

Before we attack the problem of when (4) holds, we begin
with a simpler question: “how often is a sphere covered
by caps with centers chosen at random from the sphere?”
This question has been studied in detail by Gilbert (Gilbert,
1965) in the case n = 3. For our purposes, we need to study
the covering probability in the more general case when caps
are only chosen from a subset of the sphere, and the sphere
can have arbitrarily high dimension. We show below that
calculating this probability is easy when the caps are chosen
from a symmetric subset of the sphere. We say that the set
A is symmetric if, for all x ∈ A, we also have −x ∈ A.
A probability measure defined over A is symmetric if the
measure of a is the same as −a for every a ⊂ A.
Lemma 2. Consider some non-empty symmetric set A ⊂
Sn−1R . Choose some set of mA measurements {ai}mA

i=1 at
random from A using a symmetric measure. Then, the caps
{CR(ai)} cover the sphere Sn−1R with probability

pcover(mA, n) ≥ 1− 1

2mA−1

n−1∑
k=0

(
mA − 1

k

)
.

This is the probability of getting n or more heads when
flipping mA − 1 fair coins.

Proof. Let {a′i} be a collection of m i.i.d. vectors sampled
from A using a symmetric measure. Define ai = cia

′
i,

where {ci} are i.i.d. Bernoulli variables that take value +1
or −1 with probability 1

2 . Clearly, the random vectors {ai}
are i.i.d. with the same distribution as {a′i}.
Consider the set⋂

i

CR(−ai) =
⋂
i

CR(−cia′i), (8)

which contains all points not covered by the caps {CR(ai)}.
The caps {CR(ai)} cover the sphere whenever the intersec-
tion (8) is empty. There are 2mA such intersections that
can be formed, one for each choice of the sequence {ci}.
Now, from Lemma 1, we know that the mA random planes{
{x | 〈ai,x〉 = 0}

}
divide the sphere into at most r(n,mA)

non-empty regions. Each of these regions corresponds to the
intersection (8) for one possible choice of {ci}. Therefore,
of the 2mA possible intersections, at most r(n,mA) of them
are non-empty. Since each intersection is equally likely, the
probability of covering the sphere is at least

pcover(mA, n) ≥ 1− r(n,mA)
2mA

.



Submission and Formatting Instructions for ICML 2017

Remark: It can be shown that the bound in Lemma 1
is tight/exact when the slicing planes are chosen from a
continuous probability distribution. Similarly, the bound
in Lemma 2 is exact when the set {ai} is sampled from a
continuous distribution over A.
We are now ready to present our main result. Exact recovery
theorems for PhaseMax will follow immediately from the
following geometric theorem. The result considers the case
where the measurement vectors are drawn from only one
hemisphere.

Lemma 3. Consider two vectors x,y ⊂ Sn−1R , and the
caps CR(x) and CR(y). Let α = 1 − 2

π angle(x,y) be a
measure of the similarity between the vectors x and y.Draw
some collection {ai ∈ CR(x)}mi=1 of m vectors uniformly
from CR(x) so that α(m− 1) > 2n. Then,

CR(y) ⊂
⋃
i

CR(ai)

holds with probability at least

pcover(m,n;x,y) ≥ 1− exp

(
− (αm− α− 2n)2

2m− 2

)
.

Proof. To simplify notation, we assume y = [1, 0, . . . , 0]T .
Because of rotational symmetries this does not change the
generality of our proof. Consider the reflection of x over y
given by x̃ = [x1,−x2, . . . ,−xn]T . Suppose we have some
collection {ai} independently and uniformly distributed on
the entire sphere. Consider the collection of vectors

a′i =


ai, if 〈ai,x〉 ≥ 0 (9)
ai − 2〈ai,y〉y, if 〈ai,x〉 < 0, 〈ai, x̃〉 < 0 (10)
−ai, if 〈ai,x〉 < 0, 〈ai, x̃〉 ≥ 0. (11)

The mapping ai → a′i maps the half sphere {a | 〈a,x〉 < 0}
onto the half sphere {a | 〈a,x〉 > 0} using a combination
of reflections and translations (see Figure 1). This makes
the mapping ai → a′i onto and (piecewise) isometric, and
so {a′i} will be uniformly distributed over the half sphere
{a | 〈a,x0〉 > 0} whenever {ai} is independently and uni-
formly distributed over the entire sphere.

Consider the “hourglass” shaped, symmetric set

A = {a | 〈a,x〉 ≥ 0, 〈a, x̃〉 ≥ 0}
∪ {a | 〈a,x〉 ≤ 0, 〈a, x̃〉 ≤ 0}.

We claim that CR(y) ⊂
⋃
i CR(a′i) whenever

Sn−1R ⊂
⋃

ai∈A
CR(ai). (12)

In words, if the caps defined by the subset of {ai} in A
cover the entire sphere, then the caps {CR(a′i)} (which have

xx̃
y

Sn�1
R

ha,xi < 0 ha, x̃i < 0

ha,xi < 0

ha, x̃i < 0

and

Figure 1. An illustration showing the construction of x, y, and x̃
in the proof of Lemma 3.

centers in CR(x)) not only cover CR(x), but also cover the
nearby cap CR(y). To justify this claim, suppose that (12)
holds. Choose some δ ∈ CR(y). This point is covered by
some cap CR(ai) with ai ∈ A. If 〈ai,x〉 ≥ 0, then ai = a′i
and δ is covered by CR(a′i). If 〈ai,x〉 < 0, then

〈δ,a′i〉 = 〈δ,ai − 2〈ai,y〉y〉
= 〈δ,ai〉 − 2〈ai,y〉〈δ,y〉 ≥ 〈δ,ai〉 ≥ 0.

Note we have used the fact that 〈δ,y〉 is real-valued and non-
negative because δ ∈ CR(y). We have also used 〈ai,y〉 =
[ai]1 = 1

2 (〈ai,x〉 + 〈ai, x̃〉) < 0, which follows from the
definition of x̃ and the definition of A. Since 〈δ,a′i〉 ≥ 0,
we have δ ∈ CR(a′i), which proves our claim.

We can now see that the probability that CR(y) ⊂
⋃
i CR(a′i)

is at least as high as the probability that (12) holds. Let
pcover(m,n;x,y |mA) denote the probability of covering
C(y) conditioned on the number mA of points lying in A.
From Lemma 2, we know that pcover(m,n;x,y |mA) ≥
pcover(mA, n). As noted in Lemma 2, this is the chance of
turning up n or more heads when flippingmA−1 fair coins,
which is one coin for every measurement ai in A. This
probability pcover(m,n;x,y) is

pcover(m,n;x,y) = EmA [pcover(m,n;x,y |mA)]
≥ EmA [pcover(mA, n)].

Let’s evaluate this expectation. The region A is defined by
two planes that intersect at an angle of β = angle(x, x̃) =
2 angle(x,y). The probability of a random point ai lying in
A is given by α = 2π−2β

2π = 1− 2β
π , which is the fraction

of the unit sphere that lies either above or below both planes.
The probability of a measurement ai contributing to the
heads count is half the probability of it lying in A, or 1

2α.



Submission and Formatting Instructions for ICML 2017

The probability of turning up n or more heads is therefore
given by

pcover(m,n;x,y) = (13)

1−
n−1∑
k=0

(
1

2
α

)k (
1− 1

2
α

)m−k−1(
m− 1

k

)
.

Our final result is obtained by applying Hoeffding’s inequal-
ity to (13).

7. Recovery Guarantees for PhaseMax
Using the covering result of Lemma 3, together with the
covering formulation of the exact recovery condition (4),
proving exact recovery of PhaseMax is now rather straight-
forward. We begin with the real-valued case.

Theorem 3. Consider the case of recovering a real-valued
signal x0 ∈ Rn from m measurements of the form (1) with
i.i.d. and uniform vectors {ai ∈ Sn−1R }. PhaseMax recovers
the true signal x0, with probability at least

pR(m,n) ≥ 1− exp

(−(αm− α− 2n)2

2m− 2

)
,

where α = 1− 2
π angle(x0, x̂) and α(m− 1) > 2n.

Proof. Consider the set of m independent and uniformly
sampled measurements {ai ∈ Sn−1R }mi=1. The aligned vec-
tors {ãi = phase(〈ai,x0〉)ai} are uniformly distributed
over the half sphere CR(x0). Exact reconstruction happens
when the condition in Lemma 2 holds. To bound this proba-
bility, we invoke Lemma 3 with x = x0 and y = x̂.

We have an analogous result in the complex case.

Theorem 4. Consider the case of recovering a complex-
valued signal x0 ∈ Rn from m measurements of the form
(1) with i.i.d. and uniform vectors {ai ∈ Sn−1R }. PhaseMax
recovers the true signal x0, with probability at least

pC(m,n) ≥ 1− exp

(−(αm− 4n)2

4m

)
,

where α = 1− 2
π angle(x0, x̂) and αm > 4n+ 1.

Proof. Let {ãi} = {phase(〈ai,x0〉)ai} be aligned mea-
surement vectors. Define the half sphere of aligned ascent
directions

DC = {δ ∈ Sn−1C | 〈δ, x̂〉 ∈ R+
0 }.

By Lemma 2, PhaseMax recovers x0 if

DC ⊂
⋃
i

CC(ãi). (14)

Let us bound the probability of this event. Consider the
set A = {δ | 〈δ,x0〉= = 0}. We now claim that (14) holds
whenever

CC(x̂) ∩ A ⊂
⋃
i

CC(ãi). (15)

To prove this claim, consider some δ ∈ DC. To keep no-
tation light, we will assume without loss of generality that
‖x0‖2 = 1. Form the vector δ′ = δ + j〈δ,x0〉= x0, which
is the projection of δ onto A. Suppose now that (15) holds.
Since δ′ ∈ CC(x̂) ∩ A, there is some i with δ′ ∈ CC(ãi).
But then

0 ≤ 〈δ′, ãi〉< = 〈δ, ãi〉< + 〈j〈δ,x0〉= x0, ãi〉< (16)
= 〈δ, ãi〉<. (17)

We have used the fact that 〈j〈δ,x0〉= x0, ãi〉 =
j〈δ,x0〉=〈ãi,x0〉, which is imaginary valued and thus has
no real component. We see that δ ∈ CC(ãi), and the claim
is proved.

We now know that exact reconstruction happens when-
ever condition (15) holds. Note that the sphere Sn−1C is
isomorphic to S2n−1

R , and the set A is isomorphic to the
sphere S2n−2

R . The aligned vectors {ãi} are uniformly dis-
tributed over a half sphere in CC(x0) ∩ A, which is isomor-
phic to the upper half sphere in S2n−2

R . The probability of
these vectors covering the cap CC(x̂) ∩ A is thus given by
pcover(m, 2n− 1;x0, x̂) from Lemma 3, which is at least

1− exp

(−(αm− α− 4n+ 2)2

4m− 4

)
.

We can simplify this by using the fact that α < 1. We
also throw away the small constants in the numerator and
denominator, which weakens the bound very slightly but
tidies up the result.

8. Experiments and Discussion
8.1. Initialization Methods

A variety of methods exist for generating the initial
guess x0. The simplest approach is to use a random vec-
tor; see (Goldstein & Studer, 2016) for a corresponding
analysis and exact recovery proof in this case. A more pow-
erful method is the truncated spectral initializer (Chen &
Candès, 2015), which is a refinement of the method put
forward in (Netrapalli et al., 2013). A detailed analysis of
such initializers is provided in (Lu & Li, 2017). As proved
in Prop. 8 of (Chen & Candès, 2015), for any δ <

√
2,

there is a constant c0 such that, with probability exceeding
1 − exp(−c0m), a unit-length version of the approxima-
tion vector x̂ computed by the truncated spectral initializer
satisfies 1 − δ2

2 ≤ |〈x0, x̂〉|, provided that m > c1n for
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Table 1. Comparison of theoretical recovery guarantees for noiseless phase retrieval.

Algorithm Sample complexity Lower bound on pC(m,n)

PhaseMax m > (4n− 1)/α+ 1 1− e−(α(m−1)−4n+2)2/(2m−2)

PhaseLift (Candès & Li, 2014) m ≥ c0n 1− c1e
−c2m

TWF (Candès & Li, 2014) m ≥ c0n 1− c1e
−c2m

TAF (Wang et al., 2016) m ≥ c0n 1− (m+ 5)e−n/2 − c1e
−c2m − 1/n2

(Bahmani & Romberg, 2016) m > 32
sin4(α)

log
(

8e
sin4(α)

)
n 1− 8e

− sin4(α)
(
M− 32

sin4(α)
log

(
8e

sin4(α)

)
N
)
/16

(Hand & Voroninski, 2016)a m > c0n 1− 6e−c2m

aThe theory only guarantees recovery for real-valued measurements.

some constant c1 > 0. This implies that the approximation
accuracy satisfies

α =1− 2

π
angle(x0, x̂)

≥ 1− 2

π
arccos

(
1− δ2

2

)
> 0 (18)

with high probability.

This motivates the following process that recovers x0 using
a number of measurements that grows linearly with n. First,
choose some δ <

√
2 and calculate α from (18). Next,

generate a spectral initializer x̂ using c1 random Gaussian
measurements. This initializer has accuracy α with high
probability. Finally, using 5n/α (the constant in this expres-
sion must be larger than 4 to guarantee recovery with high
probability) additional random Gaussian measurements, re-
cover the vector x0 using PhaseMax. This recovery step
succeeds with high probability when n is large. This pro-
cess recovers x0 using (5/α+ c1)n measurements, which
is linear in n.

A simpler recovery approach only samples max{5/α, c1}n
measurements, and then uses the same set of measurements
for both the initialization and recovery. This process works
well in practice, and is used in the experiments below. Tech-
nically, our results assume the measurements {ai} are inde-
pendent of x̂, and so our theory does not formally guarantee
convergence in this case. For an analysis that considers
the case where {ai} and x̂ are dependent, we refer to the
analysis in (Bahmani & Romberg, 2016).

8.2. Comparison to Other Phase Retrieval Methods

We compare PhaseMax with other recovery methods, in-
cluding lifted convex methods and non-convex approaches.
Table 1 lists the sample complexity (measurements needed
to achieve exact recovery with 0.5 probability) of various
phase retrieval methods as a function of the number of un-
knowns n. We also list the probability of reconstruction

from m measurements. We see that PhaseMax requires the
same sample complexity (O(n)) as compared to PhaseLift,
TWF, and TAW, when used together with the truncated spec-
tral initializer proposed in (Candès & Li, 2014).

The recovery bounds for all other methods require unspec-
ified constants (ci in Table 1) that are generally extremely
large and require a lower bound on the initialization accu-
racy. In contrast, the bounds for PhaseMax contain no un-
specified constants, explicitly depend on the approximation
factor α, and our new analytical approach yields extremely
sharp bounds (see below for the details).

We also compare in Table 1 to a different analysis of the
PhaseMax formulation by (Bahmani & Romberg, 2016) that
appeared shortly before our own, and to a later analysis by
(Hand & Voroninski, 2016). By using methods from ma-
chine learning theory, (Bahmani & Romberg, 2016) produce
exact reconstruction bounds that, for a specified value of α,
are uniform with respect to the initialization x̂, and thus
guarantee exact signal recovery in the case that x̂ is depen-
dent on the measurement vectors. The analysis presented
here is weaker in the sense that is does not have this uni-
formity property, but stronger in the sense that it produces
tighter bounds without unspecified constants. The bounds
by (Hand & Voroninski, 2016) require unspecified constants,
but the authors show that PhaseMax can be analyzed using
standard concentration of measure arguments.

8.3. Tightness of Guarantees

By using strong concentration bounds for the unit sphere,
our analysis produces sharp recovery guarantees that lie
close to behavior observed in practice. In Figure 2, we use
random Gaussian test problems and the accelerated gradient-
based solver described in (Goldstein et al., 2014) to plot
the empirical and theoretical probabilities of exact signal
recovery for n = 100 and n = 500 measurements while
varying the accuracy β = angle(x̂,x0) of the initial guess.
We declared exact recovery when the relative error of the
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Figure 2. Comparison between the empirical success probability (solid lines) and our theoretical lower bound (dashed lines) for varying
angles β between the true signal and the approximation vector. Our theoretical results accurately characterize the empirical success
probability of PhaseMax. Furthermore, PhaseMax exhibits a sharp phase transition for larger dimensions.

recovered signal fell below 10−5.

Our theoretical bounds tend to agree fairly closely with
observations, and generally require fewer than 50% more
measurements than is needed in practice. We also observe
a sharp phase transition between inaccurate and accurate
recovery, as predicted by our theory.

8.4. Performance Limits of PhaseMax

To compare PhaseMax to other phase retrieval methods, we
observe the accuracy of signal reconstruction as a function
of the number of measurements. We emphasize that this
comparison is only done in the random Gaussian problem
setting, and results may differ with different types of signal,
measurement, and noise models. The sole purpose of this
experiment is to explore the efficacy and limits of PhaseMax,
and to test the tightness of the predicted recovery guarantees.
For an extensive comparison between existing methods, see
(Waldspurger et al., 2015; Jaganathan et al., 2015)). We com-
pare the Gerchberg-Saxton algorithm (Gerchberg & Saxton,
1972), the Fienup algorithm (Fienup, 1982), the truncated
Wirtinger flow (Chen & Candès, 2015), and PhaseMax. All
methods were initialized using the truncated spectral initial-
izer (Chen & Candès, 2015).

We also run simulations using the semidefinite relaxation
method PhaseLift (Candès et al., 2013) implemented using a
proximal gradient solver. PhaseLift, and its equivalent dual
formulation PhaseCut (Waldspurger et al., 2015), is the only
convex alternative to PhaseMax. However, unlike Phase-
Max, PhaseLift/PhaseCut “lifts” the problem to a higher
dimension and squares the number of unknowns.

Figure 3 reveals that PhaseMax requires larger oversam-
pling ratios m/n to enable faithful signal recovery com-
pared to non-convex phase-retrieval algorithms that oper-
ate in the original signal dimension. This is because the
truncated spectral initializer requires oversampling ratios
of about six or higher to yield sufficiently accurate ap-
proximation vectors x̂ that enable PhaseMax to succeed.
While PhaseMax does not achieve exact reconstruction with
the lowest number of measurements, it is convex, operates
in the original signal dimension, can be implemented via
solvers for Basis Pursuit, and comes with sharp perfor-
mance guarantees that do not sweep constants under the rug
(cf. Figure 2).

The convexity of PhaseMax enables a natural extension
to sparse phase retrieval (Jaganathan et al., 2013; Shecht-
man et al., 2014) or other signal priors (e.g., total variation,
group sparsity, or bounded infinity norm) that can be for-
mulated with convex functions. Such non-differentiable
priors cannot be efficiently minimized using simple gradient
descent methods (which form the basis of Wirtinger or am-
plitude flow, and many other methods), but can potentially
be solved using standard convex solvers when combined
with the PhaseMax formulation.

9. Conclusions
We have proposed a convex relaxation for phase retrieval
problems called PhaseMax that does not require lifting. Us-
ing methods from geometric probability, we have provided
tight bounds on the probability of correct signal recovery.

The proposed problem and its analysis also represents a
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Figure 3. Comparison of the relative reconstruction error. We use the truncated spectral initializer for Gerchberg-Saxton (GS), Fienup,
truncated Wirtinger flow (TWF), truncated amplitude flow (TAF), and PhaseMax. PhaseMax does not achieve exact recovery for the
lowest number of measurements among the considered methods, but is convex, operates in the original dimension, and comes with sharp
performance guarantees. PhaseLift only terminates in reasonable computation time for n = 100.

radical departure, both in theory and algorithms, from con-
ventional methods for convex or semidefinite relaxation. By
providing a convex relaxation for phase retrieval in the na-
tive parameter space, our approach opens the door for using
a broad range of convex optimization routines, regularizers,
and priors to solve phase retrieval or related problems in
machine learning, computer vision, or signal processing.

Finally, the new analytical methods used in this paper have
recently been used to prove tight reconstruction bounds
for bi-convex problems outside the field of phase retrieval
(Aghasi et al., 2017), and may be broadly applicable to a
wide range of signal processing problems.
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