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Abstract

Generation and evaluation of crowdsourced content is com-
monly treated as two separate processes, performed at different
times and by two distinct groups of people: content creators
and content assessors. As a result, most crowdsourcing tasks
follow this template: one group of workers generates content
and another group of workers evaluates it. In an educational
setting, for example, content creators are traditionally students
that submit open-response answers to assignments (e.g., a
short answer, a circuit diagram, or a formula) and content
assessors are instructors that grade these submissions. Despite
the considerable success of peer-grading in massive open on-
line courses (MOOCs), the process of test-taking and grading
are still treated as two distinct tasks which typically occur at
different times, and require an additional overhead of grader
training and incentivization. Inspired by this problem in the
context of education, we propose a general crowdsourcing
framework that fuses open-response test-taking (content gen-
eration) and assessment into a single, streamlined process that
appears to students in the form of an explicit test, but where ev-
eryone also acts as an implicit grader. The advantages offered
by our framework include: a common incentive mechanism for
both the creation and evaluation of content, and a probabilistic
model that jointly models the processes of contribution and
evaluation, facilitating efficient estimation of the quality of
the contributions and the competency of the contributors. We
demonstrate the effectiveness and limits of our framework via
simulations and a real-world user study.

1 Introduction
Crowdsourcing open-ended content—for example, seeking
an answer to “What is the best way to brew a cup of coffee?”—
requires both: finding people willing to contribute an original
answer and finding competent people to identify the correct
answer(s) among these contributions. Traditional crowdsourc-
ing mechanisms separate the two tasks into two stages: one
group of workers contribute the content, and another group
evaluates it. However, it is natural to assume that the same
workers who contribute “good” original content will also be
competent at evaluating the contributions of other workers on
the same topic, and vice versa. Consequently, if our ultimate
goal is to identify “good” content and competent contrib-
utors, it is natural to seek a statistical model that captures
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this intuition formally. In this work, we focus on the specific
instance of this problem in the context of education, although
our approach applies to general crowdsourcing tasks.

Recently, massive open online courses (MOOCs) brought
crowdsourcing into the realm of education, via a task known
as peer-grading. In its traditional form, peer-grading assigns
to each student a secondary role of a grader. Students are
responsible for validating the correctness of other students’
solutions in order to assign a score, typically in accordance
with a rubric provided by an instructor. The advantage of
peer-grading is its flexibility to students’ submissions, which
may range from short answers, to essays, diagrams, code, or
entire projects (Kulkarni et al. 2015). In a practical deploy-
ment, however, peer-grading, faces the same challenges as
crowdsourcing. First, each student differs in their ability to
grade, and the grades assigned by different students must be
reconciled in a reasonable way. Second, grading becomes an
additional burden on the students, and mechanisms must be
put in place that not only incentivize participation and effort,
but prevent students from “gaming” the process. Only re-
cently, research in peer-grading has started to address all these
challenges (Piech et al. 2013; Raman and Joachims 2014;
Wu et al. 2015).

The remainder of this paper will focus on the problem of
open-response assessment and grading in the context of edu-
cation. Nevertheless, the presented framework, model, and
algorithms are not limited to this context, and can be applied
to many crowdsourcing tasks where the goal is to identify
high-quality contributions made by competent contributors.

JAG: An alternative to Peer Grading
We present a novel, alternative approach to peer-grading that
naturally resolves the challenges of grade aggregation and
incentivization. We propose joint assessment and grading
(JAG), which fuses peer grading and assessment into a single,
streamlined process by re-framing grading as additional test-
ing. Our approach is motivated by the fact that a “grader” that
has no answer key, when presented with the listing of other
students’ answers, is no different than a test-taker facing a
multiple-choice question (with multiple possible correct or
incorrect answers). In other words: a student selecting what
they believe to be the correct answer in a multiple choice
question (MCQ) constructed from the open-response submis-
sions of other students is in effect simultaneously (i) grading



the other students and (ii) being assessed by their ability to
select the correct answer. In peer-grading, we already face the
challenge of noisy inputs from the (potentially unmotivated)
graders. By re-framing the act of grading as that of MCQ
testing, the source of the apparent noise in grading becomes
distributed according to the ability of the students in the class.

The proposed mechanism of JAG combines the advantages
of both worlds: the structure of multiple choice questions
and the flexibility to general response types offered by peer-
grading. First, by constructing the MCQs directly from stu-
dents’ open-response submissions, the questions naturally
capture the distribution of misconceptions present in the pop-
ulation of students being tested, requiring little to no instruc-
tor input. Second, our framework offers a mechanism for
automatically grading open-response submissions, thus facil-
itating greater student engagement and higher-order thinking
characteristic to open-response questions (Haladyna 1997).
Third, by re-framing the task of grading as that of testing,
the students are incentivized in the context of a familiar task:
namely by expending their effort towards correctly answer-
ing an MCQ, they are implicitly directing that effort towards
grading other students’ submissions. At the same time, the
students are not burdened with (what they may perceive as)
a “thankless” job of grading, but instead in the process of
answering the additional MCQs, they are provided with an
additional opportunity to demonstrate their knowledge.

In this paper, we formalize the process of JAG as a statisti-
cal estimation problem. At the heart of our approach is the
traditional Rasch model (Rasch 1993) that captures the inter-
action between student abilities and question difficulties in
determining the likelihood of a student answering a question
correctly. We develop an expectation maximization (EM) al-
gorithm for estimating the parameters of the proposed model
in an unsupervised setting (i.e., in absence of an answer key),
and demonstrate the effectiveness of our framework through
a real-world user-study conducted on Amazon’s Mechani-
cal Turk. Additionally, we investigate the key properties and
limitations of our approach via simulations.

2 Related Work
Our work builds on the recent progress in two distinct areas:
crowd-sourcing and peer-grading, that we unite and extend
within our JAG framework.

Crowdsourcing
An important task in crowdsourcing is known as label-
aggregation, and is concerned with the problem of optimally
recovering some underlying ground truth (e.g., image class
label) from a number of (unreliable) human judgements.
See (Hung et al. 2013) for a detailed review. In the con-
text of education, the task of automatically identifying the
correct answers from open-response submissions is closely
related to the task of label aggregation. Within the field
of crowd-sourcing, the work of (Dawid and Skene 1979;
Whitehill et al. 2009; Bachrach et al. 2012) are the most re-
lated to our approach. (Dawid and Skene 1979) was the first
to suggest an expectation maximization (EM) algorithm for
label aggregation, motivated by a clinical setting of making a

diagnosis. More recently, (Whitehill et al. 2009) extended this
approach to model the variation in task difficulty in the con-
text of image labeling. In the context of education, (Bachrach
et al. 2012) has proposed a statistical model for aggregating
answers from “noisy” students, with the goal of automatically
identifying the correct answers to MCQs. They deploy an ex-
pectation propagation (EP) algorithm for Bayesian inference,
and demonstrate the ability to infer correct answers accurately
in a setting of an IQ test. Our work can be seen as a gener-
alization of the method proposed in (Whitehill et al. 2009;
Bachrach et al. 2012), where we explicitly model the depen-
dence among question choices and students that generate
those choices in the context of answering open-response
questions.

Peer-grading
Much of the recent research in peer-grading addresses a re-
lated problem of aggregating a number of “noisy” grades
submitted by students in a statistically principled manner.
Models such as the ones in (Piech et al. 2013; Raman and
Joachims 2014) pose the problem of peer-grading as that of
statistical estimation. Since traditional grading assumes that
graders are in possession of a grading rubric, statistical mod-
els of peer-grading are concerned primarily with accounting
for the reliability and bias of graders in evaluating assign-
ments against a gold-standard. In contrast to such “explicit”
models of grading, we view grading as an implicit process
that results as a by-product of students’ genuine attempt to
answer MCQs constructed from the open-response submis-
sions of other students. As such, we do not require additional
“grader-specific” parameters, as grading in our framework
is subsumed by the response model (model of how students
answer questions as a function of their ability and question
difficulty). We note, however, that one of the proposed mod-
els in (Piech et al. 2013) explicitly couples grading and ability
parameters in an attempt to capture the intuition that better
students may also be better graders. This intuition can be
viewed as being taken to its extreme in our setting: removing
the boundary between grading and test-tasking ensures that
better students are more reliable graders by construction.

3 Model
Fully observed setting
We start by reviewing the classic IRT Rasch model that will
serve as the foundation of our approach. Consider a set of
students S and a set of questions Q, where a student i ∈ S
is endowed with an ability parameter si ∈ R, and each ques-
tion j ∈ Q is endowed with a difficulty parameter qj ∈ R
(note that we capitalize all sets in our notation). To simplify
the notation, we will often overload si to refer to both, the
student index i and their ability, depending on the context;
the same applies to qj , which we use to refer to the question
itself as well as its difficulty. The well-established 1-PL IRT
Rasch model (Rasch 1993) expresses the probability that the
student si answers question qj correctly via the following
likelihood function:

P (zi,j | si, qj) =
1

1 + exp (−zij(si − qj))
, (1)



where zi,j ∈ {+1,−1} is the binary outcome of student si’s
attempt of question qj ; we use +1 and −1 to designate cor-
rect and incorrect responses, respectively. If we are in the
possession of an answer key for each question, then we also
know {zi,j}, ∀i, j (we will refer to this as the fully observed
setting). This allows us to estimate the ability of each stu-
dent and the difficulty of each question by maximizing the
likelihood of all outcomes under our model:

{si,∀i, qj ,∀j} = argmax
si,qi

∏
zi,j∈D

P (zi,j | si, qj), (2)

where D = {zij} is the set of outcomes (e.g., of a test).

Partially observed setting
Consider now the setting where some (or all) of the outcomes
zi,j ∈ D are not observed. In practice, this is the case, for
example, when the answer key to some of (or all) the ques-
tions is not available. In our setting, where the choices in the
multiple choice question are in fact other students’ submis-
sions, the correctness of these submissions are not known a
priori. Let Aj be the set of open-response answers submit-
ted by a subset of students in Sopen ⊆ S in response to the
question qj . At some later time, a student si ∈ Smcq ⊆ S
is presented with the same question qj , but in the form of a
multiple-choice question, with the options being exactly the
answers inAj (note that Smcq need not be disjoint with Sopen).
The student si is informed that there may be zero or more
correct answers in the set of options in Aj and they are in-
structed to select “all that apply.” The student si goes through
each option in Aj and submits a response to that option. Let
yi,j = {yki,j} be the set of such responses made by student
si on the set of answers Aj , where yki,j ∈ {+1,−1} is the
student sth

i selection on the kth answer (option) inAj . In other
words the variables yki,j are the observations of whether the
student si selected answer k to question j (i.e., that student
judged that particular answer to be correct). In what follows,
we describe the statistical model that relates the student and
question parameters which we are interested in estimating, to
the set of response observations. Our model consists of two
components: (i) the open-response component that models
the students (and their responses) that generate open-response
answers, and (ii) the multiple choice model component that
models the students (and their responses) that are presented
with the multiple choice version of each question.

Open-response model: Because we do not know whether
the submitted open-response answers are correct, we treat
the correctness of each submission as a hidden variable
zi,j ∈ {+1,−1}; this allows us to express the component of
the overall likelihood of our data, responsible for the open-
response answers only, as follows:

P ({zi,j} | Sopen, Q) =
∏
zi,j

P (zi,j | si, qj),

where P (zi,j | si, qj) is the Rasch likelihood given in (1).
Note that we drop the k-superscript notation for the zi,j vari-
ables because each student is assumed to provide at most one
open-response submission to each question (since k indexes

the answers to a specific question). The observed responses
to the multiple-choice version of each question (described
next) will provide the necessary data to estimate the parame-
ters in the model, including the hidden variables zi,j , i.e., the
correctness of each open-response submission.

Multiple choice model: Now consider the setting where
each question is presented in the form of an MCQ. Recall that
a student answering a multiple choice question is presented
with multiple options, each generated by some (other) student
in the set Sopen, and where several options (or even no options)
may be correct. The intuition that we want to capture in our
model is that a student of great relative ability (i.e., si � qj)
will select (yki,j = +1) the option (i.e., judge it as being
correct) if that option is actually correct (zkj = +1). The
same student will not select that option (ykij = −1) if that
option is incorrect (zkj = −1). At the same time, a student
of poor relative ability (i.e., si � qj) will not not be able to
identify the correct answer, regardless of whether the option
is correct, i.e., they will guess. This intuition can be captured
by the following function that parametrizes the likelihood of
student si selecting the option k to question qj :

P
(
yki,j | si, qj , zkj

)
=

1

2

(
1

1 + exp
(
−ykijzkj (si − qj)

) + 1

)
. (3)

One can easily verify that this likelihood satisfies the re-
quirements outlined above by considering every combination
of the assignment to yki,j and zkj , and taking the limits of
si − qj →∞ (high relative ability) and qi − sj →∞ (poor
relative ability). Note that this time we drop the index i (in-
dex of the student who generated the option k in question qj)
in zkj , as in the above, we use si to refer to the student an-
swering the multiple choice version of the question. Note that
the above likelihood follows the same intuition as proposed
by (Bachrach et al. 2012), but in a setting with an arbitrary
number of choices and one correct answer.

If we make a leap of assuming conditional independence
between the student sth

i responses to each option in a multiple
choice question (conditional on si, qj and zkj ), then we can
express the likelihood of observing every response to every
multiple choice question as follows:

P ({Yj} | Smcq,Q, {Zj})
=

∏
si∈Smcq

∏
qj∈Q

∏
yk
i,j∈Yj

zk
j ∈Zj

P (yki,j | si, qj , zkj ).

The assumption of conditional independence requires some
additional justification in our setting. Intuitively, we are justi-
fied in claiming conditional independence when we believe
that the set of conditioning variables accounts for everything
that may be shared across observations, such that the only
remaining source of the variance is noise. For example, obser-
vations of different students answering the same question on
the test are conditionally independent given the difficulty of
that question. In modeling the likelihood of a student select-
ing each option in a multiple choice question, however, we



overlook the potential for the options to be related. In an ex-
treme example, two options may be identical or paraphrases
of each other, which we expect to be common-place when
these options are generated by students in a large classroom.
In this case, conditional independence no longer holds with-
out an introduction of additional conditioning variables that
group the related options in some way. This problem can, to
some extent, be mitigated by pre-processing and clustering
similar answers before displaying them as options in a MCQ.
We consider this strategy in our work.

To complete our model, we combine the open-response
and the multiple-choice components:

P (y, z | s, q) = P (y | z, s, q)︸ ︷︷ ︸
multiple choice

P (z | s, q)︸ ︷︷ ︸
open response

, (4)

where we adopt vector notation for the variables and parame-
ters in our model to facilitate the development of the learning
algorithm in Section 4. In order to give the dimensions for
each of the variables in (4), assume that each student in Sopen
provides an open-response answer to each of the questions
in Q and that each student in Smcq also answers each ques-
tion in Q (which entails providing a response to each option
contained in a given question). Under these assumptions
then, z ∈ {+1,−1}|Sopen||Q|, y ∈ {+1,−1}|Sopen||Smcq||Q|,
s ∈ R|Smcq∪Sopen|, and q ∈ R|Q|.

4 Parameter Learning
We now derive the expectation maximization (EM) algorithm
for obtaining an approximate maximum likelihood estimate
(MLE) of the parameters s and q of the model in (4). We
briefly outline the key steps in obtaining the algorithm.

E-step: We compute the expectation of the log-likelihood
(the logarithm of Equation 4) with respect to the unobserved
variables z which yields a function f(s, q) of the parameters
s and q only. The expectation is performed with respect to
the posterior distribution of z given a previous estimate of s
and q (or an initial guess).

M-step: We obtain an updated estimate of parameters s
and q by maximizing f(s, q) obtained in the E-step.

The above procedure iterates until convergence. Below we
give both steps explicitly in the context of the joint assessment
and grading (JAG) framework.

E-step: Let ŝ and q̂ be an intermediate estimate of the
parameters. Conditioning on these estimates, the posterior
of zkj (correctness of answer (option) k to question qj) is
a Bernoulli random variable with the probability of being
correct given by (up to a normalizing constant):

P (zkj = 1 | ŝ, q̂j) ∝
P (zkj = 1 | ŝi′ , q̂j)︸ ︷︷ ︸

open response

∏
si∈Smcq

P
(
yki,j | ŝi, q̂j , zkj = 1

)
︸ ︷︷ ︸

multiple choice responses

. (5)

The posterior over the answer correctness zkj naturally inte-
grates two sources of information: (i) the likelihood that the
student who generated the answer was correct, and (ii) the
likelihood that the students answering the multiple choice ver-
sion of the question selected this answer as correct (note that

si′ ∈ Sopen and si ∈ Smcq). Each likelihood is parametrized
by the model’s current estimate of the students’ abilities and
question difficulties, and as a consequence gives more weight
to the signal coming from the more able students.

M-step: The expectation of the log-likelihood with re-
spect to z yields an expression that is a weighted linear com-
bination of (log-) Rasch-likelihoods (given in (3) and (1)
respectively), and can be easily maximized with a small mod-
ification to an existing Rasch solver to account for the con-
stants. We use the L-BFGS algorithm (Zhu et al. 1997) in
order to perform this optimization step.

Initialization: Note that while the M-step is convex, the
joint optimization problem in z, s, and q is not convex, and
in general the EM algorithm will only yield an approximate
solution and may get trapped in local optima. The problem
becomes more pronounced in datasets with few interactions,
e.g., small classrooms. As such, initialization plays an impor-
tant role in determining the quality of the obtained solution.
A natural heuristic for initializing the posteriors over z is with
the fraction of “votes” given to the answer (i.e., fraction of
students that identified the answer as correct). This heuristic
was also suggested in (Dawid and Skene 1979).

5 Experiments with Synthetic Data
In order to understand the behavior of our framework in a
hypothetical classroom, we evaluate the model on a series of
synthetically generated datasets. As our model attempts to
infer the correctness of each answer entirely from the choices
made by students in answering multiple choice questions, an
important concern is the limitation of inference on difficult
questions. Difficult questions are questions where we can
expect the majority of students to be unable to identify the
correct answers, and present a challenge to any model that
relies on aggregating judgements. The model’s ability to re-
cover the correct answer despite the majority being incorrect,
fundamentally requires the model to leverage its estimates of
students’ abilities so as to weigh the judgements of better stu-
dents proportionally higher. Also note that we are concerned
with questions of great relative difficulty (with respect to the
ability of the students in the class), not absolute difficulty.

We can simulate an entire spectrum of regimes that present
a varying degree of difficulty to inference, and evaluate the
model’s performance in correctly inferring the correct an-
swers in each regime. We accomplish this by generating a
synthetic population of students and questions with a fixed
expected relative competency (i.e., E[s − q] = k, where
s ∼ p(s) and q ∼ p(q)), performing inference with our
model on the generated observations, and computing the frac-
tion of correctly inferred correct answers (accuracy) for differ-
ent E[s−q]. Note that E[s−q] is a quantity that conveniently
summarizes the classroom in terms of its “competency” rela-
tive to the testing material. Large values of E[s− q] indicate
that the students are well-prepared, and most will answer the
questions correctly.

Simulation procedure
We let p(s) = N (µs, σ = 2) and p(q) = N (µq, σ = 2).
We generate a synthetic classroom with the following pa-
rameters |Sopen| = 10, |Smcq| = 10, and |Q| = 15, where



−4 −3 −2 −1 0 1 2

E[s− q]

0.5

0.6

0.7

0.8

0.9

1.0
A

cc
ur

ac
y

(c
or

re
ct

an
sw

er
s)

Model
Majority

Figure 1: Accuracy in predicting the correct answers on syn-
thetic data, as a function of the average relative competency
in the classroom (measured in the multiples of standard devia-
tions of the distributions). The simple majority-vote baseline
performs comparably with our model for class distributions
with large relative competency (since the majority of the
students answer most questions correctly). The model signifi-
cantly outperforms the baseline in the regime of lower relative
competency (i.e., when most questions are too difficult for
the majority of the students).

every student in Sopen submits an open-response answer
to every question in Q, every student in Smcq responds to
every question (which entails providing a response to ev-
ery option) and |Smcq ∩ Sopen| = ∅. We then sample hid-
den (z) and observed (y) variables from Bernoulli distribu-
tions parametrized by (2) and (3) respectively. Note that in
these simulations and in the real-world experiments described
in the next section, we assume that Smcq and Sopen are disjoint
(i.e., |Smcq ∩ Sopen| = ∅). This assumption drastically sim-
plifies the design of real-world experiments, as the process
of administering open-response and multiple-choice ques-
tions can be done in separate stages. Note, however, that
this does not affect the generality of the model; in fact, this
regime is more challenging from the perspective of parame-
ter estimation, since each student generates only one type of
observation (i.e., open-response or multiple choice answer,
but never both).

Figure 1 illustrates the performance of the model as a
function of the expected relative competency of the students
(E[s− q]). We compare the performance of our model to a
simple majority baseline (i.e., label the answer as correct if
the majority of the students select it). As expected, the ma-
jority baseline works best when the relative competency of
the class is high (since most students will correctly identify
the correct answers). The performance degrades significantly
in the regime where the relative competency is negative (i.e.,
most students are expected to answer the questions incor-
rectly). Observe that the model is able to maintain a signifi-
cant performance margin (>10%) over the baseline even in
the regime of low relative competency.

6 Real-World Experiments
We emulate a classroom setting on the Amazon Mechani-
cal Turk platform by soliciting Mechanical Turk workers
to participate in a reading comprehension task. The study
was conducted in two separate phases with a different set
of workers in each: (i) the open-response task and (ii) the
multiple choice task. In each task, a worker was presented
with an article1, followed by a set of 15 questions. In the
open-response task, the questions were displayed in an open-
response format, and the workers were asked to type in their
response. In the multiple choice task, the same 15 questions
were presented in a multiple-choice format, with the choices
aggregated from the open-response submissions obtained in
the open response task. The answers collected in the open
response task were clustered semi-automatically before being
displayed as choices in the multiple choice task. The clus-
tering step aggregated identical answers or answers within a
few characters in difference (for example due to spelling er-
rors), and semantically identical answers were then grouped
manually (e.g., paraphrases). Clustering answers is a critical
pre-processing step as it ensures that a reasonable number
of choices is shown as part of the multiple choice question,
as well as that the conditional independence assumption dis-
cussed in Section 3 holds.

In total, 15 workers participated in the open-response task
and 82 workers participated in the multiple choice task. A
total of 225 open-response submissions were generated in
response to the total of 15 comprehension questions, resulting
in 101 distinct choices after clustering.

Results
We evaluate the effectiveness of our JAG framework on the
data collected via Amazon’s Mechanical Turk using two per-
formance metrics: (i) accuracy in predicting the correctness
of each answer and (ii) quality of the predicted ranking of
the students. We evaluate our algorithm in a semi-supervised
setting where we provide a set of partially labeled items, i.e.,
we label correctness for a subset of the answers. This rep-
resents a practical use-case of our framework—instead of
being entirely hands-off, an instructor may choose to manu-
ally grade a subset of the students’ answers to improve the
performance of automatic inference. We evaluate two ver-
sions of our model: EM +open and EM -open in addition to
the majority baseline described in Section 5:
• EM +open: The full model as described in Section 3 and

Section 4.
• EM -open: A subset of the EM +open model lacking the

open-response component described in Section 3. In other
words, during inference the model does not leverage any
information about the ability of the answer generator, and
relies entirely on the multiple choice responses to infer the
correctness of the answers.

Predicting answer correctness Figure 2 depicts accuracy
as function of the amount of labeled data (accuracy was
computed with respect to a gold-standard annotation of cor-
rectness for each answer, performed by one of the authors of

1Unit 7.2 (Language) from the OpenStax Psychology textbook.



the paper). From it we conclude that (i) the full model (EM
+open) significantly outperforms both the majority baseline
and EM -open, (ii) the EM +open performs very well with-
out any labeled data (≈ 86% accuracy), (iii) adding labeled
data improves performance, and (iv) the open-response com-
ponent of the model (one that is lacking in the EM -open
model) is critical in significantly boosting performance, i.e.,
incorporating information about the answer creator is valu-
able in inferring the correctness of each answer.

Predicting student ranking Although predicting the cor-
rectness of each answer is itself a valuable intermediate out-
put, a motivating use-case of our framework is to assess the
students’ competency. A ranking of the students by their ex-
pertise is one example of summative assessment, and may
be valuable in identifying students that excel or are in need
of additional help. We evaluate the quality of the rankings
produced by our model in the following way: (i) use the
gold-standard annotation for the correctness of each answer
to fit a standard Rasch model, identifying the abilities sgold
of each student (both in Sopen and Smcq), (ii) obtain the abil-
ity parameters using our model (EM +open and EM -open)
(trained with a varying amount of labeled data) and (iii) rank
the students according to each set of parameters and com-
pute rank correlation. We use Kendall-Tau as a metric of
rank correlation. Kendall Tau returns a quantity in the range
[−1,+1], where +1 indicates perfect correlation (every pair
of students in both rankings are in a consistent order), −1
when the rankings are inverted, and 0 when the rankings are
not correlated.

Figure 3 and Figure 4 depict rank correlation as a function
of the amount of labeled answers for the students in sets Sopen
(workers in the open response task) and Smcq (workers in
the multiple choice task) respectively. We observe that (i)
incorporating partially labeled set of answers improves rank
correlation, (ii) the EM +open model performs superior to
or on par with the majority baseline (note that EM -open is
not relevant when ranking the students in the Sopen set).

7 Conclusion
In this work, we have developed a novel framework for crowd-
sourced content generation and evaluation, referred to as joint
assessment and grading (JAG). In the context of education,
JAG offers a powerful alternative to classical peer-grading,
as it naturally fuses test-taking and grading into a unified,
streamlined process with a common incentive mechanism.
Furthermore, our framework is general enough to be applied
to many different crowdsourcing tasks where the goal is to
generate and identify high-quality contributions.
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Figure 2: Accuracy in predicting the correct answers in the
dataset collected on Mechanical Turk. The model that in-
corporates both the open-response and multiple choice com-
ponents (EM +open) significantly outperforms the model
that only incorporates the multiple choice component (EM
-open) and a simple majority-vote baseline.
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Figure 3: Rank correlation (kendall-tau) for students sub-
mitting open-response answers (Sopen) between the model-
inferred ranking (EM +open) and the ranking obtained using
the gold-standard correctness labels for each answer.
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Figure 4: Rank correlation (kendall-tau) for students sub-
mitting multiple choice answers (Smcq) between the model-
inferred ranking (EM +open and EM -open) and the ranking
obtained using the gold-standard labels for each answer.
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