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PhaseMax: Convex Phase Retrieval via Basis Pursuit
Tom Goldstein and Christoph Studer

Abstract

We consider the recovery of a (real- or complex-valued) signal from magnitude-only measurements,

known as phase retrieval. We formulate phase retrieval as a convex optimization problem, which we

call PhaseMax. Unlike other convex methods that use semidefinite relaxation and lift the phase retrieval

problem to a higher dimension, PhaseMax operates in the original signal dimension. We show that the

dual problem to PhaseMax is Basis Pursuit, which implies that phase retrieval can be performed using

algorithms initially designed for sparse signal recovery. We develop sharp lower bounds on the success

probability of PhaseMax for a broad range of random measurement ensembles, and we analyze the impact

of measurement noise on the solution accuracy. We use numerical results to demonstrate the accuracy of

our recovery guarantees, and we showcase the efficacy and limits of PhaseMax in practice.

I. INTRODUCTION

Phase retrieval is concerned with the recovery of an n-dimensional signal x0 ∈ Hn, with H either R

or C, from m ≥ n squared-magnitude, noisy measurements [1]

b2i = |〈ai,x0〉|2 + ηi, i = 1, 2, . . . ,m, (1)

where ai ∈ Hn, i = 1, 2, . . . ,m, are the (known) measurement vectors and ηi ∈ R, i = 1, 2, . . . ,m,

models measurement noise. Let x̂ ∈ Hn be an approximation vector1 to the true signal x0. We recover

the signal x0 by solving the following convex problem called PhaseMax:

(PM)

 maximize
x∈Hn

〈x, x̂〉<
subject to |〈ai,x〉| ≤ bi, i = 1, 2, . . . ,m.
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Here, 〈x, x̂〉< denotes the real-part of the inner product between the vectors x and x̂. The main idea

behind PhaseMax is to find the vector x that is most aligned with the approximation vector x̂ and satisfies

a convex relaxation of the measurement constraints in (1).

Our main goal is to develop sharp lower bounds on the probability with which PhaseMax succeeds in

recovering the true signal x0, up to an arbitrary phase ambiguity that does not affect the measurement

constraints in (1). By assuming noiseless measurements, one of our main results is as follows.

Theorem 1. Consider the case of recovering a complex-valued signal x ∈ Cn from m noiseless

measurements of the form (1) with measurement vectors ai, i = 1, 2, . . . ,m, sampled independently

and uniformly from the unit sphere. Let

angle(x0, x̂) = arccos

( 〈x0, x̂〉<
‖x0‖2‖x̂‖2

)
be the angle between the true vector x0 and the approximation x̂, and define the constant

α = 1− 2
π angle(x0, x̂)

that measures the approximation accuracy. Then, the probability that PhaseMax recovers the true signal x0,

denoted by pC(m,n), is bounded from below as follows:

pC(m,n) ≥ 1− exp

(
−(α(m− 1)− 4n+ 2)2

2(m− 1)

)
(2)

whenever α(m− 1) > 4n− 2.

In words, if m > (4n− 2)/α+ 1 and α > 0, then PhaseMax will succeed with non-zero probability.

Furthermore, for a fixed signal dimension n and an arbitrary approximation vector x̂ that satisfies

angle(x0, x̂) < π
2 , i.e., one that is not orthogonal to the vector x0, we can make the success probability

of PhaseMax arbitrarily close to one by increasing the number of measurements m. As we shall see, our

recovery guarantees are sharp and accurately predict the performance of PhaseMax in practice.

A. Convex Phase Retrieval via Basis Pursuit

It is quite intriguing that the following weighted Basis Pursuit problem [2], [3]

(BP)

 minimize
z∈Hm

‖Bz‖1

subject to x̂ = Az,

with B = diag(b1, b2, . . . , bm) and A = [a1,a2, . . . ,am] is the dual problem to (PM); see, e.g., [4,

Lem. 1]. As a consequence, if PhaseMax succeeds, then the phases of the solution vector z ∈ Hm to
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(BP) are exactly the phases that were lost in the measurement process in (1), i.e., we have

yi = phase(zi)bi = 〈ai,x0〉, i = 1, 2, . . . ,m,

with phase(z) = z/|z| for z 6= 0 and phase(0) = 1. This observation not only reveals a fundamental

connection between phase retrieval and sparse signal recovery, but also implies that Basis Pursuit solvers

can be used to recover the signal from the phase-less measurements in (1).

B. Relevant Prior Art

Phase retrieval is a well-studied problem with a long history [5], [6] and enjoys widespread use

in applications such as X-ray crystallography [7]–[9], microscopy [10], [11], imaging [12], and many

more [13]–[16]. Early algorithms, such as the Gerchberg-Saxton [5] or Fienup [6] algorithms, rely

on alternating projection to recover complex-valued signals from magnitude-only measurements. The

papers [1], [17], [18] sparked new interest in the phase retrieval problem by showing that it can be relaxed

to a semidefinite program. Prominent instances are PhaseLift [1] and PhaseCut [19]. These methods

come with recovery guarantees but require the problem to be lifted to a higher dimensional space, which

prevents their use for large-scale problems. More recently, a number of non-convex algorithms have been

proposed (see e.g., [20]–[24]) that directly operate in the original signal dimension and exhibit excellent

empirical performance. The algorithms in [20], [22]–[24] come with recovery guarantees that mainly rely

on accurate initializers, such as the (truncated) spectral initializer [20], [23], the Null initializer [25], or

the orthogonality-promoting method [24] (see Section VI for additional details). These initializers enable

non-convex phase retrieval algorithms to succeed, given a sufficiently large number of measurements;

see [26] for more details on the geometry of such non-convex problems.

C. Contributions and Paper Outline

In contrast to algorithms relying on semidefinite relaxation or non-convex problem formulations, we

propose PhaseMax, a novel, convex method for phase retrieval that directly operates in the original

signal dimension. In Section II, we establish a deterministic condition that guarantees uniqueness of the

solution to the (PM) problem. Using this condition, we borrow methods from geometric probability in

Section III in order to derive sharp lower bounds on the success probability for real- and complex-valued

systems. Section V generalizes our results to a broader range of random measurement ensembles and to

systems with measurement noise. We show in Section VI that randomly chosen approximation vectors

are sufficient to ensure faithful recovery. We numerically demonstrate the sharpness of our recovery

guarantees and showcases the practical limits of PhaseMax in Section VII. We conclude in Section VIII.
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D. Notation

Lowercase and uppercase boldface letters stand for column vectors and matrices, respectively. For a

complex-valued matrix A, we denote its transpose and Hermitian transpose by AT and A∗, respectively;

the real and imaginary parts are A< and A=. The ith column of the matrix A is denoted by ai and the

kth entry of the ith vector ai is [ai]k; for a vector a without index, we simply denote the kth entry by ak.

We define the inner product between two complex-valued vectors a and b as 〈a,b〉 = a∗b. We use j to

denote the imaginary unit. The `2-norm and `1-norm of the vector a are ‖a‖2 and ‖a‖1, respectively.

II. UNIQUENESS CONDITION

There exist infinitely many vectors that satisfy the measurement constraints in (1). If x is a vector that

satisfies (1), then any vector x′ = ejφx for φ ∈ [0, 2π) also satisfies the constraints. In contrast, if x is a

solution to (PM), then ejφx with φ 6= 0 will not be another solution. In fact, consider any vector x in the

feasible set of (PM) with 〈x, x̂〉= 6= 0. By choosing ω = phase(〈x, x̂〉), we have

〈ω∗x, x̂〉< = |〈x, x̂〉| > 〈x, x̂〉<,

which implies that given such a vector x, one can always increase the objective function of (PM) simply

by aligning x with the approximation x̂ (i.e., modifying its phase so that 〈x, x̂〉 is real valued). The

following definition makes this observation rigorous.

Definition 1. A vector x is said to be aligned with another vector x̂, if the inner product 〈x, x̂〉 is

real-valued and non-negative.

From all the vectors that satisfy the measurement constraints in (1), there is only one that is a candidate

solution to the convex problem (PM), which is also the solution that is aligned with x̂. For this reason,

we adopt the following important convention throughout the rest of this paper.

The true vector x0 denotes a solution to (1) that is aligned with the approximation vector x̂.

Remark 1. There is an interesting relation between the convex formulation of PhaseMax and the

semidefinite relaxation method PhaseLift [1], [17], [18]. Recall that the set of solutions to any convex

problem is always convex. However, the solution set of the measurement constraints (1) is invariant under

phase rotations, and thus non-convex. It is therefore impossible to design a convex problem that yields

this set of solutions. PhaseMax and PhaseLift differ in how they remove the phase ambiguity from the
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problem to enable a convex formulation. Rather than trying to identify the true vector x0, PhaseLift

reformulates the problem in terms of the quantity x0(x0)H , which is unaffected by phase rotations in x0.

Hence, PhaseLift removes the rotation symmetry from the solution set, thus yielding a problem with a

convex set of solutions. PhaseMax does something much simpler: it pins down the phase of the solution

to an arbitrary quantity, thus removing the phase ambiguity and restoring convexity to the solution set.

This arbitrary phase choice is made when selecting the phase of the approximation x̂.

We are now ready to state a deterministic condition under which PhaseMax succeeds in recovering

the true vector x0. The result applies to the noiseless case, i.e., ηi = 0, i = 1, 2, . . . ,m. In this case, all

inequality constraints in (PM) are active at x0. The noisy case will be discussed in Section V-B.

Theorem 2. The true vector x0 is the unique maximizer of (PM) if, for any unit vector δ ∈ Hn that is

aligned with the approximation x̂,

∃i, [〈ai,x0〉∗〈ai, δ〉]< > 0.

Proof. Suppose the conditions of this theorem hold, and consider some candidate solution x′ in the

feasible set for (PM) with 〈x′, x̂〉 ≥ 〈x0, x̂〉. Without loss of generality, we assume x′ to be aligned

with x̂. Then, the vector ∆ = x′ − x0 is also aligned with x̂, and satisfies

〈∆, x̂〉 = 〈x′, x̂〉 − 〈x0, x̂〉 ≥ 0.

Since x′ is a feasible solution for (PM), we have

|〈ai,x0 + ∆〉|2 = |〈ai,x0〉|2 + 2[〈ai,x0〉∗〈ai,∆〉]< + |〈ai,∆〉|2 ≤ b2i , ∀i.

But |aTi x0|2 = b2i , and so

[〈ai,x0〉∗〈ai,∆〉]< ≤ −1
2 |〈ai,∆〉|2 ≤ 0, ∀i.

Now, if ‖∆‖2 > 0, then the unit-length vector δ = ∆/‖∆‖2 satisfies [〈ai,x0〉∗〈ai, δ〉]< ≤ 0 for all i,

which contradicts the hypothesis of the theorem. It follows that ‖∆‖2 = 0 and x′ = x0.

Theorem 2 has an intuitive geometrical interpretation. If x0 is an optimal point and δ is an ascent

direction, then one cannot move in the direction of δ starting at x0 without leaving the feasible set. This

condition is met if there is an ai such that x0 and δ both lie on the same side of the plane through the

origin orthogonal to the measurement vector ai.
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III. PRELIMINARIES: CLASSICAL SPHERE COVERING PROBLEMS AND GEOMETRIC PROBABILITY

In order to derive sharp conditions on the success probability of PhaseMax, we require a set of tools

from geometric probability. Many classical problems in geometric probability involve calculating the

likelihood of a sphere being covered by random “caps,” or semi-spheres, which we define below.

Definition 2. Consider the set Sn−1
H = {x ∈ Hn | ‖x‖2 = 1}, the unit sphere embedded in Hn. Given a

vector a ∈ Hn, the cap centered at a with central angle θ is defined as

CH(a, θ) = {δ ∈ Sn−1
H | 〈a, δ〉< > cos(θ)}. (3)

This cap contains all vectors that form an angle with a of less than θ radians. When θ = π/2, we have a

semisphere centered at a, which is simply denoted by

CH(a) = CH(a, π/2) = {δ ∈ Sn−1
H | 〈a, δ〉< > 0}. (4)

We say that a collection of caps covers the entire sphere if the sphere is contained in the union of the

caps. Before we can say anything useful about when a collection of caps covers the sphere, we will need

the following classical result, which is often attributed to Schläfli [27]. Proofs that use simple induction

methods can be found in [28]–[30].

Lemma 1. Consider a sphere Sn−1
R ⊂ Rn. Suppose we slice the sphere with k unique planes through

the origin. These planes divide the sphere into

r(n, k) = 2

n−1∑
i=0

(
k − 1

i

)
regions.

Classical results in geometric probability study the likelihood of a sphere being covered by random caps

with centers chosen independently and uniformly from the sphere’s surface. For our purposes, we need to

study the more specific case in which caps are only chosen from a subset of the sphere. While calculating

this probability is hard in general, it is quite simple when the set obeys the following symmetry condition.

Definition 3. We say that the set A is symmetric if, for all x ∈ A, we also have −x ∈ A.

We are now ready to prove fairly general results that state when the sphere is covered by random caps.

Lemma 2. Consider some non-empty symmetric set A ⊂ Sn−1
R . Choose some set of mA measure-
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ments {ai}mAi=1 uniformly from A. Then, the caps {CR(ai)} cover the sphere Sn−1
R with probability

pcover(mA, n) = 1− 1

2mA−1

n−1∑
k=0

(
mA − 1

k

)
.

This is the probability of turning up n or more heads when flipping mA − 1 fair coins.

Proof. Consider the following two-step process for constructing the set {ai}. First, we sample mA

vectors {a′i} independently and uniformly from A. Second, we define ai = cia
′
i, where {ci} are i.i.d.

Bernoulli variables that take value +1 or −1 with probability 1
2 . We can think of this second step as

randomly “flipping” a subset of uniform random vectors. Since A is symmetric and {a′i} is sampled

independently and uniformly, the random vectors {ai} also have an independent and uniform distribution

over A. This construction may seem superfluous since both {ai} and {a′i} have the same distribution,

but we will see below that this becomes useful.

Given a particular set of coin flips {ci}, we can write the set of points that are not covered by the

caps {CR(ai)} as

⋂
i

CR(−ai) =
⋂
i

CR(−cia′i). (5)

Note that there are 2mA such intersections that can be formed, one for each choice of the sequence {ci}.
The caps {CR(ai)} cover the sphere whenever the intersection (5) is empty. Consider the set of planes{
{x | 〈a′i,x〉 = 0}

}
. From Lemma 1, we know that mA planes with a common intersection point divide

the sphere into

r(n,mA) = 2

n−1∑
k=0

(
mA − 1

k

)
non-empty regions. Each of these regions corresponds to the intersection (5) for one possible choice

of {ci}. Therefore, of the 2mA possible intersections, at most r(n,mA) of them are non-empty. Since

the sequence {ci} is random, each intersection is equally likely to be chosen, and so the probability of

covering the sphere is

pcover(mA, n) = 1− r(n,mA)

2mA
.

Remark 2. Several papers have studied the probability of covering the sphere using points independently

and uniformly chosen over the entire sphere. The only aspect that is unusual about Lemma 2 is the

observation that this probability remains the same if we restrict our choices to the set A, provided A is

symmetric. We note that this result was observed by Gilbert [29] in the case n = 3, and we generalize it
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to any n > 1 using a similar argument.

We now present a somewhat more complicated covering theorem. The next result considers the case

where the measurement vectors are drawn only from a semisphere. We consider the question of whether

these vectors cover enough area to contain not only their home semisphere, but another nearby semisphere

as well.

Lemma 3. Consider two vectors x,y ⊂ Sn−1
R , and the caps CR(x) and CR(y). Let α = 1− 2

π angle(x,y)

be a measure of the similarity between the vectors x and y. Draw some collection {ai ∈ CR(x)}mi=1 of m

vectors uniformly from CR(x) so that α(m− 1) > 2n. Then

CR(y) ⊂
⋂
i

CR(ai)

with probability at least

pcover(m,n; x,y) ≥ 1− exp

(
−(α(m− 1)− 2n)2

2(m− 1)

)
.

Proof. Due to rotational symmetry, we assume y = [1, 0, . . . , 0]T without loss of generality. Consider the

point x̃ = [x1,−x2, . . . ,−xn]T . This is the reflection of x over y. Suppose we have some collection {ai}
independently and uniformly distributed on the entire sphere. Consider the collection of vectors

a′i =


ai, if 〈ai,x〉 ≥ 0 (6)

ai − 2〈ai,y〉y if 〈ai,x〉 < 0, 〈ai, x̃〉 < 0 (7)

−ai if 〈ai,x〉 < 0, 〈ai, x̃〉 ≥ 0. (8)

The mapping ai → a′i maps the lower half sphere {a | 〈a,x〉 < 0} onto the upper half sphere {a | 〈a,x〉 >
0} using a combination of reflections and translations. Indeed, for all i we have 〈a′i,x〉 ≥ 0. This is clearly

true in case (6) and (8). In case (7), observe that 〈ai,x〉+ 〈ai, x̃〉 = 2[ai]1x1. We can then calculate

〈a′i,x〉 = 〈ai,x〉 − 2〈ai,y〉〈y,x〉 = 〈ai,x〉 − 2[ai]1x1 = −〈ai, x̃〉 ≥ 0.

Because the mapping ai → a′i is onto and (piecewise) isometric, {a′i} will be uniformly distributed over

the half sphere {a | 〈a,x0〉 > 0} whenever {ai} are independently and uniformly distributed over the

entire sphere.

Consider the “hourglass” shaped, symmetric set

A = {a | 〈a,x〉 ≥ 0, 〈a, x̃〉 ≥ 0} ∪ {a | 〈a,x〉 ≤ 0, 〈a, x̃〉 ≤ 0}.
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We now make the following claim: CR(y) ⊂ ⋂i CR(a′i) whenever

Sn−1
R ⊂

⋂
ai∈A

CR(ai). (9)

In words, if the caps defined by the subset of {ai} in A cover the entire sphere, then the caps {CR(a′i)}
(which have centers in CR(x)) not only cover CR(x), but also cover its neighbor cap CR(y). To justify

this claim, suppose that (9) holds. Choose some δ ∈ CR(y). This point is covered by some cap CR(ai)

with ai ∈ A. If 〈ai,x〉 ≥ 0, then ai = a′i and δ is covered by CR(a′i). If 〈ai,x〉 < 0, then

〈δ,a′i〉 = 〈δ,ai − 2〈ai,y〉y〉 = 〈δ,ai〉 − 2〈ai,y〉〈δ,y〉 ≥ δ〈a,ai〉 ≥ 0.

Note we have used the fact that 〈δ,y〉 is real and non-negative because δ ∈ CR(y). We have also used

〈ai,y〉 = [ai]1 = 1
2(〈ai,x〉+ 〈ai, x̃〉) < 0, which follows from the definition of x̃ and the definition of A.

Since δ〈a,a′i〉 ≥ 0, we have δ ∈ CR(a′i), which proves our claim.

We can now see that the probability that CR(y) ⊂ ⋂i CR(a′i) is at least as high as the probability that (9)

holds. Let pcover(m,n; x,y |mA) denote the probability of covering C(y) conditioned on the number mA

of points lying in A. From Lemma 2, we know that pcover(m,n; x,y |mA) ≥ pcover(mA, n). As noted in

Lemma 2, this is the chance of turning up n or more heads when flipping mA − 1 fair coins.

The probability pcover(m,n; x,y) is then given by

pcover(m,n; x,y) = EmA [pcover(m,n; x,y |mA)] ≥ EmA [pcover(mA, n)].

The expression on the right hand side is the probability of getting n or more heads when one fair coin is

flipped for every measurement ai that lies in A.

The region A is defined by two planes that intersect at an angle of β = angle(x, x̃) = 2 angle(x,y).

The probability of a random point ai lying in A is given by α = 2π−2β
2π = 1− 2β

π , which is the fraction

of the unit sphere that lies either above or below both planes. The probability of a measurement ai

contributing to the heads count is half the probability of it lying in A, or 1
2α. The probability of turning

up n or more heads is therefore given by

1−
n−1∑
k=0

(
1

2
α

)k (
1− 1

2
α

)m−k−1(m− 1

k

)
.

Using Hoeffding’s inequality, we obtain the following lower bound

pcover(m,n) ≥ 1−
n−1∑
k=0

(
1

2
α

)k (
1− 1

2
α

)m−k−1(m− 1

k

)
≥ 1− exp

(−(α(m− 1)− 2n)2

2(m− 1)

)
,
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which is only valid for α(m− 1) > 2n.

Remark 3. In the proof of Lemma 3 we obtained EmA [pcover(mA, n)] using an intuitive argument

about coin flipping probabilities. This expectation could have been obtained more rigorously (but with

considerably more pain) using the method of probability generating functions.

Lemma 3 contains most of the machinery needed for the proofs that follow. In the sequel, we prove a

number of exact reconstruction theorems for (PM). Most of the results rely of short arguments followed

by the invocation of Lemma 3.

We finally state a result that bounds the probability of covering the sphere with caps of small central

angle from below. The following Lemma is a direct corollary of the results of Burgisser, Cucker, and

Lotz in [31]. A derivation that uses their results is given in Appendix A.

Lemma 4. Let n ≥ 9, and m > 2n. Then the probability of covering the sphere Sn−1
R with independent

uniformly sampled caps of central angle φ ≤ π/2 is lower bounded by

pcover(m,n, φ) ≥ 1− (em)n
√
n− 1

(2n)n−1
exp

(
−sinn−1(φ)(m− n)√

8n

)
cos(φ)− exp

(
−(m− 2n+ 1)2

2m− 2

)
.

IV. RECOVERY GUARANTEES

Using the uniqueness condition provided by Theorem 2 and the tools derived in Section III, we now

develop sharp lower bounds on the success probability of PhaseMax for noiseless real- and complex-valued

systems. The noisy case will be discussed in Section V-B.

A. The Real Case

We now study problem (PM) in the case that the unknown signal and measurement vectors are real

valued. Consider some collection of measurement vectors {ai} drawn independently and uniformly

from Sn−1
R . For simplicity, we also consider the collection {ãi} = {phase(〈ai,x0〉)ai} of aligned vectors

that satisfy 〈ãi,x0〉 ≥ 0 for all i. Using this notation, Theorem 2 can be rephrased as a simple geometric

condition.

Corollary 1. Consider the set {ãi} = {phase(〈ai,x0〉)ai} of aligned measurement vectors. Define the

half sphere of aligned ascent directions

DR = CR(x̂) = {δ ∈ Sn−1
R | 〈δ, x̂〉 ∈ R ≥ 0}.
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The true vector x0 will be the unique maximizer of (PM) if

DR ⊂
⋂
i

CR(ãi).

Proof. Choose some ascent direction δ ∈ DR. If the assumptions of this Corollary hold, then there

is some i with δ ∈ CR(ãi), and so 〈ãi, δ〉 ≥ 0. Since this is true for any δ ∈ DR, the conditions of

Theorem 2 are satisfied and exact reconstruction holds.

Using this observation, we can develop the following lower bound on the success probability of

PhaseMax for real-valued systems.

Theorem 3. Consider the case of recovering a real-valued signal x ∈ Rn from m noiseless measurements

of the form (1) with measurement vectors ai, i = 1, 2, . . . ,m, sampled independently and uniformly

from the unit sphere Sn−1
R . Then, the probability that PhaseMax recovers the true signal x0, denoted by

pR(m,n), is bounded from below as follows:

pR(m,n) ≥ 1− exp

(−(α(m− 1)− 2n)2

2(m− 1)

)
,

where α = 1− 2
π angle(x0, x̂) and α(m− 1) > 2n.

Proof. Consider the set of m independent and uniformly sampled measurements {ai ∈ Sn−1
R }mi=1. The

aligned vectors {ãi = phase(〈ai,x0〉)ai} are uniformly distributed over the half sphere CR(x0). Exact

reconstruction happens when the condition in Corollary 1 holds. To obtain a lower bound on the probability

of this occurrence, we can simply invoke Lemma 3 with x = x0 and y = x̂.

B. The Complex Case

We now prove Theorem 1 given in Section I, which characterizes the success probability of PhaseMax

for phase retrieval in complex-valued systems. For clarity, we re-state our result in shorter form.

Theorem 1. Consider the case of recovering a complex-valued signal x0 ∈ Cn from m noiseless

measurements of the form (1), with {ai}mi=1 sampled independently and uniformly from the unit sphere Sn−1
C .

Then, the probability that PhaseMax recovers the true signal x0 is bounded from below as follows:

pC(m,n) ≥ 1− exp

(
−(α(m− 1)− 4n+ 2)2

2(m− 1)

)
,

where α = 1− 2
π angle(x0, x̂) and α(m− 1) > 4n− 2.
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Proof. Consider the set {ãi} = {phase(〈ai,x0〉)ai} of aligned measurement vectors. Define the half

sphere of aligned ascent directions

DC = {δ ∈ Sn−1
C | 〈δ, x̂〉< ≥ 0, 〈δ, x̂〉= = 0}.

By Corollary 1, the true signal x0 will be the unique maximizer of (PM) if

DC ⊂
⋂
i

CC(ãi). (10)

Let us bound the probability of this event. Consider the set A = {δ | 〈δ,x0〉= = 0}. We now claim

that (10) holds whenever

CC(x̂) ∩ A ⊂
⋂
i

CC(ãi). (11)

To prove this claim, consider some δ ∈ DC. To keep notation light, we will assume without loss of

generality that ‖x0‖2 = 1. Form the vector δ′ = δ + j〈δ,x0〉= x0, which is the projection of δ onto A.

It is clear that δ′ ∈ A because

〈δ′,x0〉 = 〈δ,x0〉+ 〈j〈δ,x0〉= x0,x0〉 = 〈δ,x0〉 − j〈δ,x0〉=〈x0,x0〉 = 〈δ,x0〉 − j〈δ,x0〉= = 〈δ,x0〉<,

which is real valued. Furthermore, δ′ ∈ CC(x̂) because

〈δ′, x̂〉 = 〈δ, x̂〉+ 〈j〈δ,x0〉= x0, x̂〉 = 〈δ, x̂〉 − j〈δ,x0〉=〈x0, x̂〉.

The first term on the right is real-valued and non-negative (because δ ∈ DC), and the second term is

complex valued (because x0 is assumed to be aligned with x̂). It follows that 〈δ′, x̂〉< ≥ 0 and δ′ ∈ CC(x̂).

Since we already showed that δ′ ∈ CC(x̂), we have δ′ ∈ CC(x̂) ∩ A. Suppose now that (11) holds. The

claim will be proved if we can show that δ ∈ D is covered by one of the CC(ãi). Since δ′ ∈ CC(x̂) ∩A,
there is some i with δ′ ∈ CC(ãi). But then

0 ≤ 〈δ′, ãi〉< = 〈δ, ãi〉< + 〈j〈δ,x0〉= x0, ãi〉< = 〈δ, ãi〉<. (12)

We see that δ ∈ CC(ãi), and the claim is proved.

We now know that exact reconstruction happens whenever condition (11) holds. We can put a bound

on the frequency of this using Lemma 3. Note that the sphere Sn−1
C is isomorphic to S2n−1

R , and the

set A is isomorphic to the sphere S2n−2
R . The aligned vectors {ãi} are uniformly distributed over a half

sphere in CC(x0) ∩ A, which is isomorphic to the upper half sphere in S2n−2
R . The probability of these

vectors covering the cap CC(x̂) ∩ A is thus given by pcover(m, 2n− 1; x0, x̂) from Lemma 3.
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Remark 4. Theorems 1 and 3 guarantee exact recovery for a sufficiently large number of measurements m

provided that angle(x0, x̂) < π
2 . In the case angle(x0, x̂) > π

2 , our theorems guarantee convergence to

−x0 (which is also a valid solution) for sufficiently large m. Our theorems only fail for large m if

arccos(x0, x̂) = π/2, which happens with probability zero when the approximation vector x̂ is generated

at random. See Section VI for more details.

V. GENERALIZATIONS

Our theory thus far addressed the idealistic case in which the measurement vectors are independently

and uniformly sampled from a unit sphere and for noiseless measurements. We now extend our results to

more general random measurement ensembles and to noisy measurements.

A. Generalized Measurement Ensembles

The theorems of Section IV require the measurement vectors {ai} to be drawn independently and

uniformly from the surface of the unit sphere. This condition can easily be generalized to other sampling

ensembles. In particular, our results still hold for all rotationally symmetric distributions. A distribution D

is rotationally symmetric if the distribution of a/‖a‖2 is uniform over the sphere when a ∼ D. For such a

distribution, one can make the change of variables a← a/‖a‖2, and then apply Theorems 1 and 3 to the

resulting problem. Note that this change of variables does not change the feasible set for (PM), and thus

does not change the solution. Consequently, the same recovery guarantees apply to the original problem

without explicitly implementing this change of variables. We thus have the following simple corollary.

Corollary 2. The results of Theorem 1 and Theorem 3 still hold if the samples {ai} are drawn from a

multivariate Gaussian distribution with independent and identically distributed (i.i.d.) entries.

Proof. A multivariate Gaussian distribution with i.i.d. entries is rotationally symmetric, and thus the

change of variables a ← a/‖a‖2 yields an equivalent problem with measurements sampled uniformly

from the unit sphere.

What happens when the distribution is not spherically symmetric? In this case, we can still guarantee

recovery, but we require a larger number of measurements. The following result is, analogous to Theorem 1,

for the noiseless complex case.

Theorem 4. Suppose that mD measurement vectors {ai}mD

i=1 are drawn from the unit sphere with (possibly

non-uniform) probability density function D : Sn−1
C → R. Let `D ≤ infx∈Sn−1

C
D(x) be a lower bound

on D over the unit sphere and let α = 1 − 2
π angle(x0, x̂) as above. We use sn = 2πn

Γ(n) to denote the
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“surface area” of the complex sphere Sn−1
C , and set mU = bmDsn`Dc. Then, exact reconstruction is

guaranteed with probability at least

1− exp

(
−(α(mU − 1)− 4n+ 2)2

2mD − 2

)
whenever α(mU − 1) > 4n − 2 and `D > 0. In other words, exact recovery with mD non-uniform

measurements happens at least as often as with mU uniform measurements.

Proof. We compare two measurement models, a uniform measurement model in which mU measurements

are drawn uniformly from a unit sphere, and a non-uniform measurement model in which mD measurements

are drawn from the distribution D. Note that the sphere Sn−1
C has surface area sn = 2πn

Γ(n) , and the uniform

density function U on this sphere has constant value s−1
n . Consider some collection of measurements

{aUi }mU

i=1 drawn from the uniform model. The joint probability density of this measurement ensemble is

mU !s−mU
n .

Now consider some ensemble {aDi }mD

i=1 drawn with density D. The event that {aUi } ⊂ {aDi } has density

mD!

(mD −mU )!

mU∏
i=1

D(ai).

The ratio of the non-uniform density to the uniform density is(
mD

mU

)mU∏
i=1

snD(ai) ≥
(
mD

mU

)
(sn`D)mU ≥

(
mDsn`D
mU

)mU

, (13)

where we have used the bound
(
mD

mU

)
> (mD/mU )k to obtain the estimate on the right hand side. The

probability of exact reconstruction using the non-uniform model will always be at least as large as the

probability under the uniform model, provided the ratio (13) is one or higher. This holds whenever

mU ≤ mDsn`D. It follows that the probability of exact recovery using the non-uniform measurements is

at least the probability of exact recovery from a uniform model with mU = bmDsn`Dc measurements.

This probability is what is given by Theorem 1.

B. Noisy Measurements

We now analyze the sensitivity of PhaseLift to the measurement noise {ηi}. For brevity, we focus only

on the case of complex-valued signals. To analyze the impact of noise, we re-write the problem (PM) in
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the following equivalent form: maximize
x∈Hn

〈x, x̂〉<
subject to |〈ai,x〉|2 ≤ b̂2i + ηi, i = 1, 2, . . . ,m.

(14)

Here, b̂2i = |〈ai,x0〉|2 is the (unknown) true magnitude measurement and b2i = b̂2i + ηi. We are interested

in bounding the impact that these measurement errors have on the solution to (PM). Note that the severity

of a noise perturbation of size ηi depends on the (arbitrary) magnitude of the measurement vector ai. For

this reason, we assume the vectors {ai} have unit norm throughout this section.

We will begin by proving results only for the case of non-negative noise. We will then generalize our

analysis to the case of arbitrary bounded noise. The following result gives a geometric characterization of

the reconstruction error.

Theorem 5. Suppose the vectors {ai ∈ Cn} in (14) are normalized to have unit length, and the noise

vector η is non-negative. Let r be the maximum relative noise, defined by

r = max
i=1,2,...,m

{
ηi
bi

}
, (15)

and let DC = {δ ∈ Sn−1
C | 〈δ, x̂〉< ≥ 0, 〈δ, x̂〉= = 0} be the set of aligned descent directions. Choose

some error bound ε > r/2, and define the angle θ = arccos(r/2ε). If the caps {CC(ãi, θ)} cover DC,

then the solution x? of (PM), and equivalently of the problem in (14), satisfies the bound

‖x? − x0‖2 ≤ ε.

Proof. We first reformulate the problem (14) as maximize
∆∈Cn

〈x0 + ∆, x̂〉<
subject to |〈ãi, (x0 + ∆)〉|2 ≤ b̂2i + ηi, i = 1, 2, . . . ,m,

(16)

where ∆ = x?−x0 is the recovery error vector and {ãi} = {phase(〈ai,x0〉)ai} are aligned measurement

vectors. In this form, the recovery error vector ∆ appears explicitly. Because we assume the errors {ηi}
to be non-negative, the true signal x0 is feasible for (14). It follows that the optimal objective of the

perturbed problem (14) must be at least at large as the optimal value achieved by x0, i.e., 〈∆, x̂〉< ≥ 0.

Furthermore, the solution x0 + ∆ must be aligned with x̂, as is the true signal x0, and so 〈∆, x̂〉 ∈ R.

For the reasons just described, we know that the unit vector δ = ∆/‖∆‖2 ∈ DC.

Our goal is to put a bound on the magnitude of the recovery error ∆. We start by reformulating the
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constraints in (16) to get

|〈ãi, (x0 + ∆)〉|2 = |〈ãi,x0〉|2 + 2[〈ãi,x0〉∗〈ãi,∆〉]< + |〈ãi,∆〉|2 ≤ b̂2i + ηi.

Subtracting |〈ãi,x0〉|2 = b̂2i from both sides yields

2[〈ãi,x0〉∗〈ãi,∆〉]< + |〈ãi,∆〉|2 ≤ ηi.

Since ηi is non-negative, we have

ηi ≥ 2[〈ãi,x0〉∗〈ãi,∆〉]< + |〈ãi,∆〉|2

= 2〈ãi,x0〉〈ãi,∆〉< + |〈ãi,∆〉|2

≥ 2〈ãi,x0〉〈ãi,∆〉< + |〈ãi,∆〉<|2. (17)

The final lower bound can only be less than ηi if

〈ãi,∆〉< ≤ −〈ãi,x0〉+
√

(〈ãi,x0〉)2 + ηi ≤
ηi

2〈ãi,x0〉 =
ηi

2b̂i
≤ r

2
. (18)

Now suppose that ‖∆‖2 > ε. From (18) we have

〈ãi, δ〉< ≤ 〈ãi,∆/‖∆‖2〉< <
r

2ε
,

Therefore δ 6∈ CC(ãi, θ) where θ = arccos(r/2ε). If the caps {CC(ãi, θ)} cover DC, then δ 6∈ DC, which

is a contradiction. It follows that ‖∆‖2 ≤ ε if the caps {CC(ãi, θ)} cover DC.

Using this result, we can bound the reconstruction error in the noisy case. For brevity, we present

results only for the complex-valued case.

Theorem 6. Suppose the vectors {ai} in (14) are independenly and uniformly distributed in Sn−1
C , and

the noise vector η is non-negative. Let r be the maximum relative error defined in (15). Choose some

error bound ε > r/2, and define the angle φ = arccos(r/2ε)− angle(x0, x̂). Then, the solution x? to

(PM) satisfies

‖x? − x0‖ ≤ ε.

with probability at least

pcover(m, 2n−1, φ) ≥ 1−(em)2n−1
√

2n− 2

(4n− 2)2−2
exp

(
−sin2n−2(φ)(m− n)√

16n− 8

)
cos(φ)−exp

(
−(m− 4n+ 3)2

2m− 2

)
when n ≥ 5 and m > 4n− 2.
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Proof. Define the following two sets:

D = {δ ∈ Sn−1
C | 〈δ, x̂〉 ∈ R, 〈δ, x̂〉 ≥ 0}

D0 = {δ ∈ Sn−1
C | 〈δ,x0〉 ∈ R, 〈δ,x0〉 ≥ 0}.

We now claim that the conditions of Theorem 5 hold whenever

D0 ⊂
⋂
i

CC(ãi, φ) (19)

where {ãi = phase(〈ai,x0〉)ai} is the set of aligned measurement vectors. To prove this claim, choose

some δ ∈ D and assume that (19) holds. Since the half-sphere D0 can be obtained by rotating D by

a principle angle of angle(x̂,x0), there is some point δ0 ∈ D0 with angle(δ, δ0) ≤ angle(x̂,x0). By

property (19), there is some cap CC(ãi, φ) that contains δ0. By the triangle inequality for spherical

geometry it follows that:

angle(δ, ãi) ≤ angle(δ, δ0) + angle(δ0, ãi) ≤ angle(x0, x̂) + φ ≤ θ.

Therefore, δ ∈ CC(ãi, θ), and the claim is proved.

It only remains to put a bound on the probability that (19) occurs. Note that the aligned vectors {ãi} are

uniformly distributed in D0, which is isomorphic to a half-sphere in S2n−2
R . The probability of covering

the half sphere S2n−2
R with uniformly distributed caps drawn from that half sphere is at least as great as

the probability of covering the whole sphere S2n−2
R with caps drawn uniformly from the entire sphere.

This probability is given by Theorem 4 as pcover(m, 2n− 1, φ).

We now consider the case of non-negative noise. In this case, we bound the error by converting the

problem into an equivalent problem with non-negative noise, and then apply Theorem 6.

Theorem 7. Suppose the vectors {ai} in (14) are normalized to have unit length. Define the following

measures of the noise

s2 = min
i=1,2,...,m

{
b̂2i + ηi

b̂2i

}
= min

i=1,2,...,m

{
b2i
b̂2i

}
and r =

1

s
max

i=1,2,...,m

{
b̂2i − s2b̂i +

ηi

b̂i

}
.

Choose some error bound ε > r/2, and define the angle φ = arccos(r/2ε) − angle(x0, x̂). Then, we

have the bound

‖x? − x0‖2 ≤ ε+ (1− s)‖x0‖2.
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with probability at least

pcover(m, 2n−1, φ) ≥ 1−(em)2n−1
√

2n− 2

(4n− 2)2−2
exp

(
−sin2n−2(φ)(m− n)√

16n− 8

)
cos(φ)−exp

(
−(m− 4n+ 3)2

2m− 2

)
when n ≥ 5 and m > 4n− 2.

Proof. Consider the “shrunk” version of problem (14) maximize
x∈Hn

〈x, x̂〉<
subject to |〈ai,x〉|2 ≤ s2b̂2i + ζi, i = 1, 2, . . . ,m.

(20)

for some real-valued “shrink factor” s > 0. Clearly, if x0 is aligned with x̂ and satisfies |〈ai,x0〉| = bi for

all i, then sx0 is aligned with x̂ and satisfies |〈ai, sx0〉| = sbi. We can now transform the problem (20)

into an equivalent problem with non-negative noise by choosing

s2 = min
i=1,2,...,m

{
b̂2i + ηi

b̂2i

}
and ζi = b̂2i − s2b̂2i + ηi ≥ 0.

We then have (sbi)
2 + ζi = b2i + η2

i , and so problem (20) is equivalent to problem (14). However, the

noise ζi in problem (20) is non-negative, and thus we can apply Theorem 6. This theorem requires the

constant r for the shrunken problem, which is now

rshrunk = max
i=1,2,...,m

{
ζi

sb̂i

}
=

1

s
max

i=1,2,...,m

{
b̂2i − s2b̂i + ηi/b̂i

}
.

The solution to the shrunk problem (20) satisfies ‖x? − sx0‖2 ≤ ε, with probability pcover(m, 2n− 1, φ),

where φ = arccos(rshrunk/2ε)− angle(x0, x̂). If this condition is fulfilled, then we have

‖x? − x0‖2 ≤ ‖x? − sx0 + sx0 − x0‖2 ≤ ‖x? − sx0‖2 + ‖sx0 − x0‖2 ≤ ε+ (1− s)‖x0‖2,

which concludes the proof.

VI. HOW TO COMPUTE APPROXIMATION VECTORS?

There exist a variety of algorithms that compute approximation vectors, such as the (truncated) spectral

initializer [20], [23], the Null initializer [25], or the orthogonality-promoting method [24]. We next

show that even randomly generated approximation vectors guarantee the success of PhaseMax with high

probability given a sufficiently large number of measurements. We then show that more sophisticated

methods guarantee success with high probability if the number of measurements depends linearly on n.
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A. Random Initialization

Consider the use of approximation vectors x̂ drawn randomly from the unit sphere Sn−1
R . Do we

expect such approximation vectors to be accurate enough to recover the unknown signal? To find out, we

analyze the inner product between two real-valued random vectors on the unit sphere. Note that we only

care about the magnitude of this inner product—if the inner product is negative, then PhaseMax simply

recovers −x0 rather than x0. Our analysis will make use of the following result.

Lemma 5. Consider the angle β = angle(x,y) between two random vectors x,y ∈ Sn−1
H sampled

independently and uniformly from the unit sphere. Then, the expected magnitude of the cosine distance

between the two random vectors satisfies√
2

πn
≤ E[| cos(β)|] ≤

√
2

π(n− 1
2)
, for H = R (21)

√
1

πn
≤ E[| cos(β)|] ≤

√
4

π(4n− 1)
, for H = C. (22)

Proof. We first consider the real case. The quantity cos(β) = 〈x,y〉/(‖x‖2‖y‖2) is simply the sample

correlation between two random vectors, whose distribution function is given by [32]

f(z) =
(1− z2)

n−3

2

2n−2B
(
n−1

2 , n−1
2

) , (23)

where B is the beta function and z ∈ [−1,+1]. Hence, the expectation of the magnitude of the inner

product is given by

E[| cos(β)|] = 2

∫ 1
0 z(1− z2)

n−3

2 dz
2n−2B

(
n−1

2 , n−1
2

) .
The integral in the numerator was studied in [33, Eq. 31] and evaluates to 1

2B(1, n−1
2 ). Plugging this

expression into (23) and simplifying yields

E[| cos(β)|] =
Γ(n2 )√
π Γ(n+1

2 )
.

Finally, by using bounds on ratios of Gamma functions [34], we obtain the bounds in (21) for real-valued

vectors. The bounds in (22) for complex-valued vectors are obtained by noting that Sn−1
C is isomorphic

to S2n−1
R and by simply replacing n← 2n in the bounds for the real-valued case.

For such randomly-generated approximation vectors, we now consider the approximation accuracy α

that appears in Theorems 1 and 3. Note that E[|β|] ≤ π
2 − E[| cos(β)|], and, thus

E[α] = 1− 2

π
E[|β|] ≥ 2

π
E[| cos(β)|] ≥

√
8

π3n
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for the real case. Plugging this expected value for α into Theorem 3, we see that, for an average randomly-

generated approximation vector, the probability of exact reconstruction goes to 1 rapidly as n goes to

infinity, provided that the number of measurements satisfies

m > cn3/2 for any c >

√
π3

2
.

For the complex case, Theorem 1 guarantees successful recovery from an average random approximation

vector with high probability, provided that

m > cn3/2 for any c >
√

2π3.

Note that such random approximation vectors require O(n3/2) measurements rather than the O(n) required

by other phase retrieval methods, e.g., [17], [17], [24] (see also Section VII). Hence, it may be more

practical for PhaseMax to use approximation vectors obtained from more sophisticated methods.

B. Truncated Spectral Initializer

The truncated spectral initializer [23] is a refinement of the method put forward in [20] and enables

the computation of an approximation vector x̂ that exhibits strong theoretical properties. Specifically,

the result in [23, Prop. 8] states the following. Fix some 0 < δ <
√

2 and assume that ‖x0‖2 = 1.

Then, with probability exceeding 1 − exp(−c0m) for some constant c0 > 0, a unit-length version of

the approximation vector x̂ computed by the truncated spectral initializer satisfies 1 − δ2

2 ≤ |〈x0, x̂〉|,
provided that m > c1n for some constant c1 > 0. This implies that the approximation accuracy satisfies

α = 1− 2
π angle(x0, x̂) ≥ 1− 2

π arccos
(
1− δ2

2

)
> 0.

By combining this result with, for example, Theorem 1, we see that the truncated spectral initializer enables

PhaseMax to succeed with high probability provided that m > c2n for any constant c2 > max{4/α, c1}.

VII. DISCUSSION

This section briefly compares our theoretical results to that of existing algorithms. We furthermore

demonstrate the sharpness of our recovery guarantees and show the practical limits of PhaseMax.
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TABLE I
COMPARISON OF THEORETICAL RECOVERY GUARANTEES FOR NOISELESS PHASE RETRIEVAL

Algorithm Sample complexity Lower bound on pC(m,n)

PhaseMax m > (4n− 1)/α+ 1 1− e−(α(m−1)−4n+2)2/(2m−2)

PhaseLift [17] m ≥ c0n 1− c1e−c2m

TWF [17] m ≥ c0n 1− c1e−c2m

TAF [24] m ≥ c0n 1− (m+ 5)e−n/2 − c1e−c2m − 1/n2

Bahmani and Romberg [35] m > 32
sin4(α)

log
(

8e
sin4(α)

)
n 1− 8e

− sin4(α)
(
M− 32

sin4(α)
log
(

8e
sin4(α)

)
N
)
/16

A. Comparison with Existing Recovery Guarantees

Table I compares our noiseless recovery guarantees in a complex system to that of PhaseLift [17],

truncated Wirtinger flow (TWF) [17], and truncated amplitude flow (TAW) [24].2 We see that PhaseMax

requires the same sample complexity (number of required measurements) as compared to PhaseLift, TWF,

and TAW, when used together with the truncated spectral initializer [17]. While the constants c0, c1,

and c2 in the recovery guarantees for all of the other methods are generally very large, our recovery

guarantees contain no unspecified constants, explicitly depend on the approximation factor α, and are

surprisingly sharp. We next demonstrate the accuracy of our results via numerical simulations.

After the original version of our manuscript was submitted to a journal, a very recent paper [35] appeared

on arXiv proposing an algorithm equivalent to PhaseMax, but with substantially different theoretical

results. For completeness, the recovery guarantees from [35] are included in Table I. We emphasize that

our recovery guarantees are considerably tighter. For example, in the complex-valued noiseless case with

angle(x̂,x0) = 45◦, the analysis in [35] requires over 105n measurements to guarantee recovery with

nonzero probability, whereas our results require just over 8n measurements.

B. Accuracy of our Recovery Guarantees

We compare the empirical success probability of PhaseMax in a noiseless and complex-valued scenario

with measurement vectors taken independently and uniformly from the unit sphere. We use a custom

ADMM-based solver [36] and declare success whenever the relative reconstruction error satisfies

RRE =
‖x0 − x‖22
‖x0‖22

< 10−5. (24)

2Since AltMinPhase [20] requires an online measurement model that differs significantly from the other algorithms considered
here, we omit a comparison.
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Fig. 1. Comparison between the empirical success probability (solid lines) and our theoretical lower bound (dashed lines)
for varying angles β between the true signal and the approximation vector. Our theoretical results accurately characterize the
empirical success probability of PhaseMax. Furthermore, PhaseMax exhibits a sharp phase transition for larger dimensions.

We compare empirical rates of success to the theoretical lower bound in Theorem 1. Figure 1 shows

results for n = 100 and n = 500 measurements, where we artificially generate an approximation x̂ for

different angles β = angle(x̂,x0) measured in degrees. Clearly, our theoretical lower bound accurately

predicts the real-world performance of PhaseMax. For large n and large β, the gap between theory and

practice becomes extremely tight. We furthermore observe a sharp phase transition between failure and

success, with the transition getting progressively sharper for larger dimensions n.

C. Performance Limits of PhaseMax

We briefly compare PhaseMax to a select set of phase retrieval algorithms in terms of the relative

reconstruction error. We emphasize that this comparison is by no means intended to be exhaustive and

serves the sole purpose of demonstrating the efficacy and limits of PhaseMax (see, e.g., [15], [19] for

more extensive phase retrieval algorithm comparisons). We compare the Gerchberg-Saxton algorithm [5],

the Fienup algorithm [6], the truncated Wirtinger flow [23], and PhaseMax—all of these methods use the

truncated spectral initializer [23]. We also run simulations using the semidefinite relaxation (SDR)-based

method PhaseLift [1] implemented via FASTA [37]; this is, together with PhaseCut [19], the only convex

alternative to PhaseMax, but lifts the problem to a higher dimension.

Figure 2 reveals that PhaseMax requires larger oversampling ratios m/n to enable faithful signal

recovery compared to non-convex phase-retrieval algorithms that operate in the original signal dimension.

This is because the truncated spectral initializer requires oversampling ratios of about six or higher to
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Fig. 2. Comparison of the relative reconstruction error. We use the truncated spectral initializer for Gerchberg-Saxton (GS),
Fienup, truncated Wirtinger flow (TWF), truncated amplitude flow (TAF), and PhaseMax. PhaseMax does not achieve exact
recovery for the lowest number of measurements among the considered methods, but is convex, operates in the original dimension,
and comes with sharp performance guarantees. PhaseLift only terminates in reasonable computation time for n = 100.

yield sufficiently accurate approximation vectors x̂ that enable PhaseMax to succeed. While PhaseMax

does not achieve exact reconstruction with the lowest number of measurements, it is convex, operates

in the original signal dimension, can be implemented via solvers for Basis Pursuit, and comes with

sharp performance guarantees that do not sweep constants under the rug (cf. Figure 1). The convexity of

PhaseMax enables a natural extension to sparse phase retrieval [38], [39] or other signal priors (e.g., total

variation or bounded infinity norm) that can be formulated with convex functions. Such non-differentiable

priors cannot be efficiently minimized using simple gradient descent methods (which form the basis

of Wirtinger or amplitude flow, and many other methods), but can potentially be solved using standard

convex solvers when combined with the PhaseMax formulation.

VIII. CONCLUSIONS

We have proposed a novel, convex phase retrieval algorithm, which we call PhaseMax. We have

provided accurate bounds on the success probability that depend on the signal dimension, the number of

measurements, and the angle between the approximation vector and the true vector. Our analysis covers a

broad range of random measurement ensembles and characterizes the impact of general measurement

noise on the solution accuracy. We have demonstrated the sharpness of our recovery guarantees and

studied the practical limits of PhaseMax via simulations.

There are many avenues for future work. We believe that the development of new algorithms that

compute more accurate approximation vectors is of significant practical interest, not only for PhaseMax.
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Furthermore, extending our results to include useful signal priors (such as the `1-norm) is an interesting

open research topic. Finally, our bounds for the noisy case can be sharpened.

APPENDIX A

PROOF OF LEMMA 4

In this section, we prove Lemma 4. This Lemma is a direct corollary of the following result of Burgisser,

Cucker, and Lotz [31]. For a complete proof this result, see Theorem 1.1 of [31], and the upper bound on

the constant “C” given in Proposition 5.5.

Theorem 8. Let m > n ≥ 2. Then the probability of covering the sphere Sn−1
R with independent and

uniform random caps of central angle φ ≤ π/2 is bounded by

pcover(m,n, φ) ≥ 1−
(
m

n

)
C

∫ ε

0
(1− t2)(n2−2n−1)/2(1− λ(t))m−n dt− 1

2m−1

n−1∑
k=0

(
m− 1

k

)

where λ(t) = Vn−1

Vn

∫ arccos(t)
0 sinn−2(φ) dφ, Vn = Vol(Sn−1

R ) = 2πn/2

Γ(n/2) , C = n
√
n−1

2n−1 , and ε = cos(φ).

While Theorem 8 provides a bound on pcover(m,n, φ), the formulation of this bound does not provide

any intuition of the scaling of pcover(m,n, φ) or its dependence on m and n. For this reason, we derive

Lemma 4, which is a weaker but more intuitive result. We restate Lemma 4 here for clarity.

Lemma 4. Let n ≥ 9, and m > 2n. Then the probability of covering the sphere Sn−1
R with caps of

central angle φ ≤ π/2 is lower bounded by

pcover(m,n, φ) ≥ 1− (em)n
√
n− 1

(2n)n−1
exp

(
−(1− ε2)(n−1)/2(m− n)√

8n

)
cos(φ)− exp

(
−(m− 2n+ 1)2

2m− 2

)
.

Proof. Let us simplify the result of Theorem 8. If we assume m > 2n, then Hoeffding’s inequality yields

1

2m−1

n−1∑
k=0

(
m− 1

k

)
≤ exp

(
−(m− 2n+ 1)2

2m− 2

)
.

Next, we derive a lower bound as follows:

λ(t) =
Γ(n/2)

Γ((n− 1)/2)
√
π

∫ arccos(t)

0
sinn−2(φ) dφ

≥
√

(n/2− 1)/π

∫ arccos(t)

0
sinn−2(φ) cos(φ) dφ

=
√

(n/2− 1)/π
1

n− 1
sinn−1 arccos(t)

≥ 1√
8n

(1− t2)(n−1)/2.



25

We have used the fact that
√

(n/2− 1)/π 1
n−1 > 1√

8n
for n ≥ 4, and also the “Wallis ratio” bound

Γ(n/2)
Γ((n−1)/2) ≥

√
n/2− 1 [40], [41]. Finally, we plug in the inequality

(
m
n

)
≤ (em)n

nn . We now have

(
m

n

)
C

∫ ε

0
(1− t2)(n2−2n−1)/2(1− λ(t))m−n dt

≤ (em)n
√
n− 1

(2n)n−1

∫ ε

0
(1− t2)(n2−2n−1)/2

(
1− 1√

8n
(1− t2)(n−1)/2

)m−n
dt. (25)

Now we simplify the integral. Using the identity (1 − x)a < e−ax, which holds for x ≤ 1, we can

convert each term in the integrand into an exponential. We do this first with x = t2 and then with

x = 1√
8n

(1− t2)(n−1)/2 to obtain

(1− t2)(n2−2n−1)/2

(
1− 1√

8n
(1− t2)(n−1)/2

)m−n
≤ exp

(
− t

2(n2 − 2n− 1)

2
− (1− t2)(n−1)/2(m− n)√

8n

)
. (26)

We then apply the Cauchy-Schwarz inequality to get∫ ε

0
exp

(
− t

2(n2 − 2n− 1)

2
− (1− t2)(n−1)/2(m− n)√

8n

)
dt

≤
[∫ ε

0
exp

(
−t2(n2 − 2n− 1)

)
dt
]1/2 [∫ ε

0
exp

(
−(1− t2)(n−1)/2(m− n)√

2n

)
dt
]1/2

≤ [ε]
1/2

[
ε exp

(
−(1− ε2)(n−1)/2(m− n)√

2n

)]1/2

= ε exp

(
−(1− ε2)(n−1)/2(m− n)√

8n

)
.

Replacing the integral with this bound yields the result.
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