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Quantized Precoding for Massive MU-MIMO
Sven Jacobsson, Giuseppe Durisi, Mikael Coldrey, Tom Goldstein, and Christoph Studer

Abstract

Massive multiuser (MU) multiple-input multiple-output (MIMO) is foreseen to be one of the key

technologies in fifth-generation wireless communication systems. In this paper, we investigate the problem

of downlink precoding for a narrowband massive MU-MIMO system with low-resolution digital-to-analog

converters (DACs) at the base station (BS). We analyze the performance of linear precoders, such as

maximal-ratio transmission and zero-forcing, subject to coarse quantization. Using Bussgang’s theorem,

we derive a closed-form approximation of the achievable rate of the coarsely quantized system. Our

results reveal that the infinite-resolution performance can be approached with DACs using only 3 to 4 bits

of resolution, depending on the number of BS antennas and the number of user equipments (UEs). For the

case of 1-bit DACs, we also propose novel nonlinear precoding algorithms that significantly outperform

linear precoders at the cost of an increased computational complexity. Specifically, we show that nonlinear

precoding incurs only a 3 dB penalty compared to the infinite-resolution case for an uncoded bit error

rate of 10−3 in a system with 128 BS antennas that uses 1-bit DACs and serves 16 single-antenna UEs;

in contrast, the penalty is about 8 dB for linear precoders.
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I. INTRODUCTION

Massive multiuser (MU) multiple-input multiple-output (MIMO) wireless systems, where the base

station (BS) is equipped with several hundreds of antenna elements, promises significant improvements in

spectral efficiency, energy efficiency, reliability, and coverage compared to traditional cellular systems [1]–

[3]. Increasing the number of radio frequency (RF) chains at the BS could, however, lead to significant

increases in hardware complexity, system costs, and circuit power consumption. Therefore, practical

massive MU-MIMO systems may require low-cost and power-efficient hardware components at the BS.

In this paper, we consider the downlink of massive MU-MIMO system, where the BS is equipped

with low-resolution digital-to-analog converters (DACs) and transmits data to multiple, independent user

equipments (UEs) in the same time-frequency resource.

For the quantization-free case (infinite-resolution DACs), the capacity region of the MU downlink

Gaussian channel has been characterized in [4]–[7]. When channel state information (CSI) is known

noncausally at the BS, dirty-paper coding (DPC) [8] is known to achieve the sum-rate capacity [6]. Several

precoding algorithms to approach the DPC performance have been proposed (see, e.g., [9]–[12]). Most of

these precoding methods are, however, computationally demanding, and their complexity scales unfavorably

with the number of BS antennas, preventing their use for massive MU-MIMO. Linear precoding, on the

other hand, is an attractive low-complexity approach to massive MU-MIMO downlink precoding, which

offers competitive performance to DPC for large antenna arrays [13], [14].

These results assume that the RF circuitry connected to each antenna port at the BS is ideal. The impact

of RF hardware impairments at the transmit side has been investigated in, e.g., [15]–[18]. Some of these

results indicate that massive MU-MIMO exhibits a certain degree of resilience against RF impairments.

The crude aggregate models used for characterizing such hardware impairments, however, are unable to

accurately capture the distortion caused by low-resolution DACs.

A. What are the Benefits of Quantized Massive MU-MIMO?

One of the dominant sources of power consumption in massive MU-MIMO systems are the data

converters at the BS. In the downlink, the transmit baseband signal at each RF chain is generated by a

pair of DACs. The power consumption of these DACs increases exponentially with the resolution (in

bits) and linearly with the bandwidth [19], [20]. In traditional multi-antenna systems, each RF port is

connected to a pair of high-resolution DACs (e.g., 10-bit or more). For massive MU-MIMO systems with

hundred or even thousands of antenna elements, this would lead to prohibitively high power consumption

due to the large number of required DACs. Hence, the DAC resolution must be limited to keep the power

budget within tolerable levels. In addition, the use of low-resolution DACs enables one to reduce the
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linearity and noise requirements of the surrounding RF circuitry; this has the potential to further reduce

the power consumption and costs of the RF circuits at the BS. Furthermore, an often overlooked issue in

massive MU-MIMO is the vast amount of data that must be transmitted from the fronthaul link to the

baseband-processing unit. To make matters worse, in many deployment scenarios, these two units are

separated by a large distance. Hence, lowering the DAC resolution is a potential solution to mitigate the

data-rate bottleneck of the fronthaul link.

B. Relevant Prior Art

1) Quantized Receivers: Several recent contributions have studied the use of low-resolution analog-to-

digital converters (ADCs) for the massive MU-MIMO uplink. In particular, there has been a significant

interest in the 1-bit ADC case. For frequency-flat channels, the performance of 1-bit ADCs followed by

linear detectors was analyzed in, e.g., [21]–[23], where it was shown that large achievable sum rates are

supported. Similar conclusions were made in [24] for the frequency-selective case. Coarse quantization

and nonlinear detection algorithms for frequency-selective channels were studied in [25], where it was

found that 4 to 6 bits are sufficient to close the gap to the infinite-resolution case.

2) Low-PAR and Constant-Envelope Precoding: Hardware-aware precoding has previously been

considered for massive MU-MIMO, with the goal of reducing the linearity requirements at the BS.

In [26], the problem of joint MU precoding and peak-to-average power ratio (PAR) reduction was achieved

by solving a convex optimization problem. Constant-envelope precoding was studied in [27], [28], which

minimizes the PAR by transmitting constant-modulus signals only.

3) Quantized Precoding: In contrast to the uplink case, there has only been a small number of

contributions that consider the massive MU-MIMO downlink with low-resolution DACs at the BS. In [29],

the authors designed a linear-quantized precoder based on the minimum mean-square error (MMSE)

criterion, taking into account the distortion caused by the DACs. For DACs with 4 to 6 bits resolution,

the precoder proposed in [29] is shown to outperform conventional linear-quantized precoders for small-

to-moderate-sized MIMO systems at high signal-to-noise ratio (SNR). Massive MU-MIMO systems with

1-bit DACs are investigated in [30], where it is shown that maximal ratio transmission (MRT) precoding

results in manageable distortion levels. Still for the case of 1-bit DACs, zero-forcing (ZF) precoding for a

Rayleigh-fading channel is considered in [31]. Interestingly, the authors show that the received signal can

be made proportional to the transmitted signal when the number of BS antennas tend to infinity. This

shows that the severe per-antenna distortion caused by the 1-bit DACs averages out over the antenna array.

A linear precoder where the 1-bit quantized outcomes are rescaled in the analog domain was presented
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in [32]. There, the authors use the gradient projection algorithm to find a precoder that yields improved

performance over the one reported in [29].

C. Contributions

We consider quantized precoding for the massive MU-MIMO downlink in frequency-flat channels. In

contrast to [30]–[32], we do not restrict ourselves to 1-bit DACs and linear precoding. Specifically, we

consider both linear-quantized precoders, where a linear precoder is followed by a finite-resolution DAC,

and nonlinear precoders, where the data vector together with the CSI is used to directly generate the

DAC outputs. Our contributions can be summarized as follows.

• We formulate the MMSE-optimal linear-quantized precoding problem and present low complexity,

suboptimal linear-quantized precoders that yield approximate solutions to this problem. We use

Bussgang’s theorem to develop simple closed-form approximations for the rate achievable with

linear-quantized precoding and low-resolution DACs. Through numerical simulations, we validate the

accuracy of these approximations, and we show that only a small number of quantization bits are

sufficient to close the performance gap to the infinite-resolution case. For the special case of 1-bit

DACs, we develop a sharp lower bound on the achievable rate with linear precoding.

• For the 1-bit case, we develop a variety of low-complexity nonlinear precoders that achieve near-

optimal performance. We show that the MMSE-optimal downlink precoding problem can be relaxed to

a convex problem that can be solved in a computationally-efficient manner. We propose computationally

efficient algorithms based on semidefinite relaxation, squared-`∞ norm relaxation, and sphere decoding,

and we discuss advantages and limitations of each of these methods. Through numerical simulations,

we demonstrate the superiority of nonlinear precoding over linear-quantized precoding.

• We investigate the sensitivity of the proposed precoders to channel-estimation errors and demonstrate

that the proposed precoders are robust to imperfect CSI at the BS.

Our results reveal that massive MU-MIMO enables the use of low-resolution DACs at the BS without

a significant performance loss in terms of error-rate performance and information-theoretic rates.

D. Notation

Lowercase and uppercase boldface letters designate column vectors and matrices, respectively. For a

matrix A, we denote its complex conjugate, transpose, and Hermitian transpose by A∗, AT , and AH ,

respectively. The entry on the kth row and on the `th column is [A]k,`. For a vector a, the kth entry

is [a]k. We use A � 0 to indicate that the matrix A is positive semidefinite. The trace and the main

diagonal of A are tr(A) and diag(A), respectively. The M ×M identity and the all-zeros matrix are
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Fig. 1. Overview of the proposed quantized massive MU-MIMO downlink system. Left: B antenna massive MU-MIMO BS that
performs quantized precoding to enable the use of low-resolution DACs; Right: U single-antenna UEs.

denoted by IM and 0M×N , respectively. The real and imaginary parts of a complex vector a are <{a}
and ={a}, respectively. We use ‖a‖2 and ‖a‖∞ to denote the `2-norm and the `∞-norm of a, respectively.

We use sgn(·) to denote the signum function, which is applied entry-wise to a vector and defined

as sgn(a) = +1 for a ≥ 0 and sgn(a) = −1 for a < 0. We further use 1A(a) to denote the indicator

function, which is defined as 1A(a) = 1 for a ∈ A and 1A(a) = 0 for a /∈ A. The multivariate complex-

valued circularly-symmetric Gaussian probability density function (PDF) with covariance matrix K is

denoted by CN (0,K). We use f(·) to denote PDFs and Ex[·] to denote expectation in the random

vector x. The mutual information between two random vectors x and y is written as I(x;y).

E. Paper Outline

The rest of the paper is organized as follows. Section II introduces the system model and formulates

the MMSE-optimal quantized precoding problem. Section III investigates linear-quantized precoders

for massive MU-MIMO systems. Section IV deals with nonlinear precoding algorithms for the case of

1-bit DACs. Section V provides numerical simulation results and analyzes the robustness of the developed

algorithms to channel-estimation errors. We conclude the paper in Section VI.

II. SYSTEM MODEL AND QUANTIZED PRECODING

A. System Model

We consider the downlink of a single-cell massive MU-MIMO system as illustrated in Fig. 1. The

system consists of a BS with B antennas that serves U single-antenna UEs simultaneously and in the

same time-frequency resource. The input-output relation of the downlink channel is modeled as

y = Hx + n. (1)
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Here, the vector y = [y1, . . . , yU ]T contains the received signals at all users, where yu ∈ C is the signal

received at the uth UE. The matrix H ∈ CU×B models the downlink channel, and it is assumed to be

perfectly known to the BS.1 We shall also assume that the entries of H are independent circularly-symmetric

complex Gaussian random variables with unit variance, i.e., hu,b = [H]u,b ∼ CN (0, 1), for u = 1, . . . , U ,

and b = 1, . . . , B. The vector n ∈ CU in (1) models additive noise. We assume the noise to be i.i.d.

circularly-symmetric complex Gaussian with variance N0 per complex entry, i.e., nu ∼ CN (0, N0),

for u = 1, . . . , U . We shall also assume that the noise level is known perfectly at the BS.2

The precoded vector is denoted by x ∈ XB , where X represents the transmit alphabet; this set coincides

with the set C of complex numbers in the case of infinite-resolution DACs. In real-world BS architectures

with finite-resolution DACs, the set X is, however, a finite-cardinality alphabet. Specifically, we denote the

set of possible real-valued DAC outputs (quantization labels) as L = {`0, . . . , `L−1}. We refer to L = |L|
and Q = log2 L as the number of quantization levels and the number of quantization bits per real

dimension, respectively. For each BS antenna, we assume the same quantization alphabet for the real

and the imaginary parts. Hence, the set of complex-valued DAC outputs at each antenna is X = L × L.

Under these assumptions, the bth entry of the precoded vector x is xb = `R + j`I where `R, `I ∈ L.

B. Precoding

The goal of precoding is to transmit constellation points su ∈ O for u = 1, . . . , U to each UE u, where O
is the set of constellation points (e.g., QPSK). The BS uses the available CSI, namely the noncausal

knowledge of the realization of the channel matrix H, to precode the symbol vector s = [s1, . . . , sU ]T

into a B-dimensional precoded vector x = P(s,H). Here, the function P(·, ·) : OU × CU×B → XB

represents the precoder. The precoded vector x must satisfy the average power constraint

Es

[
‖x‖22

]
≤ P. (2)

We define ρ = P/N0 as the SNR.

Coherent transmission of data using multiple BS antennas leads to a array gain, which depends on the

realization of the fading channel. We shall assume that the uth UE is able to rescale the received signal yu

by a factor βu ∈ R to compute an estimate ŝu ∈ C of the transmitted symbol su ∈ O as follows:

ŝu = βuyu. (3)

1In Section V-B, we will relax this assumption by investigating the impact of imperfect CSI to the robustness of the proposed
quantized precoding algorithms.

2Knowledge of N0 at the BS can be obtained by explicit feedback from the UEs to the BS.



7

×s

P(H)

Q(·) x

(a) Linear-quantized precoders: the precoder uses H to
design a precoding matrix P. The transmit vector is the
quantized version of Ps, i.e., x = Q(Ps). Here, Q(·)
denotes the quantizers.

P(·, ·)s

H
x

(b) Nonlinear precoders: the precoder uses H to directly
compute the quantized transmit vector x ∈ XB as a nonlinear
function of s and H, i.e., x = P(s,H).

Fig. 2. Illustration of linear-quantized (a) and nonlinear (b) precoders.

The problem of downlink precoding has been studied extensively in the literature. Broadly speaking,

the goal is to increase the signal power to the intended UEs while simultaneously reducing MU

interference (MUI) [33]. There exist multiple formulations of this optimization problem based on different

performance metrics (sum-rate throughput, worst-case throughput, error probability, etc.). We refer the

interested reader to the tutorial [34] for a comprehensive overview.

Our goal is to design a precoder that minimizes the MSE between the estimated symbol vector ŝ =

[ŝ1, . . . , ŝU ]T and the transmitted symbol vector s under the power constraint (2). This problem has been

studied extensively for the case of infinite-resolution DACs (see, e.g., [35]–[37]).

If the BS is equipped with finite-resolution DACs, then the UEs will experience additional distortion

compared to the infinite-resolution case, due to finite cardinality of the set XB of possible precoder outputs.

This implies that finding the MMSE-optimal precoder for BS architectures with finite-resolution DACs is

a formidable task. In what follows, we present novel algorithms that efficiently compute approximate

solutions to the quantized precoding problem. More specifically, we investigate two fundamentally distinct

approaches: linear-quantized precoding (in Section III) and nonlinear-quantized precoding for the special

case of 1-bit DACs (in Section IV). As illustrated in Fig. 2, linear-quantized precoders first perform linear

processing (matrix-vector multiplication) followed by quantization; in contrast, nonlinear precoders use

the transmit vector s together with the available CSI in order to directly compute the precoded vector x.

As it will be shown in Section V, nonlinear precoders outperform (often significantly) linear-quantized

precoders in terms of error-rate performance at the cost of higher computational complexity.

III. LINEAR–QUANTIZED PRECODERS

In the infinite-resolution case, linear precoders multiply the U -dimensional symbol vector s with

a precoding matrix P ∈ CB×U so that x = Ps. This approach is particularly attractive for massive
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MU-MIMO systems due to (i) the relatively low computational complexity and (ii) the fact that even the

simplest linear precoder, namely the MRT precoder, achieves virtually optimal performance in the large-

antenna limit; see, e.g., [1]. Linear-quantized precoders inherit the first of these two advantages. Indeed,

quantizing the precoded vector implies no additional computational complexity. For linear-quantized

precoders, the precoded vector x ∈ XB is given by

x = Q(Ps). (4)

Here, Q(·) : CB → XB denotes the quantizer-mapping function, which is a nonlinear function that

describes the joint operation of the 2B DACs at the BS.

The remainder of this section is organized as follows. We start by formulating the MMSE quantized

precoding problem for linear-quantized precoders. We then describe the operation of the DACs and

define the quantizer-mapping function. We then use Bussgang’s theorem [38] to derive a lower bound

on the sum-rate capacity for the case of 1-bit DACs at the BS. Finally, we derive a simple closed-form

approximation of the rate achievable with Gaussian inputs for the more general case of Q-bit DACs.

A. The Linear-Quantized Precoding Problem

By restricting ourselves to linear-quantized precoding (LQP), the MMSE quantized precoding problem

can be formulated as follows:

(LQP)


minimize

P∈CB×U , β∈R
Es

[
‖s− βHQ(Ps)‖22

]
+ β2UN0

subject to Es

[
‖x‖22

]
≤ P and β > 0.

(5)

The resulting precoding matrix PLQP and the associated scalar βLQP are referred to as the optimal solution

to the problem (LQP). Here, we have introduced the parameter β ∈ R to account for the array gain.

In (LQP), we have restricted ourselves to the case in which the precoder results in the same gain β ∈ R

for all UEs. For this case, the per-channel MSE between the transmitted symbols s and the estimated

symbols ŝ = βy can be written as

Es

[
‖ŝ− s‖22

]
= Es

[
‖s− βHx‖22

]
+ β2UN0. (6)

By replacing x = Q(Ps), we recognize (6) as the objective function in (5). Note that the array gain the

precoder attempts to achieve may differ from the actual array gain experienced by the uth UE. Therefore,

we let each UE scale the received signal by an individual factor βu, for u = 1, . . . , U (see Fig. 1).

Solving (5) in closed form is a challenging task due to the nonlinear operation of the DACs, captured by

the quantizer-mapping function Q(·). An approximate solution to (5) was presented in [29]. This solution
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is obtained by approximating the statistics of the distortion caused by the DACs. We shall consider a

different approach. Specifically, we design linear precoders that assume infinite-resolution DACs at the

BS, and then quantize the resulting precoded vector. Such linear-quantized precoders have the advantage

that the precoding matrix P does not depend on the resolution of the DACs. Furthermore, as we shall see

in Section V-A, the difference in error-rate performance between the precoders found using our approach

and the precoder presented in [29] is negligible. We next review a variety of linear precoding algorithms.

1) WF precoding: For the case when the BS is equipped with infinite-resolution DACs, the solution

to (5) is the Wiener filter (WF) precoder [36]:

PWF =
1

βWFH
H(HHH + UN0IU )−1 (7)

where

βWF =

√
1

P
tr((HHH + UN0IU )−1HHH(HHH + UN0IU )−1). (8)

We write the resulting precoded vector as xWF = Q
(
PWFs

)
.

2) ZF precoding: With ZF precoding, the BS nulls the multiuser interference by choosing as precoding

matrix the pseudo-inverse of the channel matrix. The ZF precoding matrix is obtained from (7) by

setting the noise variance N0 to zero, which yields PZF = 1
βZFH

†, where H† = HH(HHH)−1 is the

pseudo-inverse of the channel matrix H, and βZF =
√

1
P tr((HHH)−1). The resulting precoded vector

is xZF = Q
(
PZFs

)
.

3) MRT precoding: The MRT precoder maximizes the power directed towards each UE, ignoring MUI.

The precoding matrix can be obtained from (7) by letting the noise variance N0 tend to infinity, which yields

PMRT = 1
βMRTBH

H and βMRT = 1
B

√
1
P tr(HHH). The resulting precoded vector is xMRT = Q

(
PMRTs

)
.

B. Uniform Quantization of a Complex-Valued Vector

We shall model the DACs as symmetric uniform quantizers with step size ∆. When a signal is quantized,

the average power in the signal is in general not preserved. Therefore, we further assume that the output

of the quantizer is scaled by a constant α ∈ R, to ensure that the transmit power constraint (2) remains

to be satisfied. We start by defining a set of quantization labels L = {`0, . . . , `L} with entries

`i = α∆

(
i− L− 1

2

)
, i = 0, . . . , L− 1. (9)
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Furthermore, let T = {τ0, . . . , τL}, where −∞ = τ0 < τ1 < · · · < τL−1 < τL = ∞ specify the set

of L+ 1 quantization thresholds. For uniform quantizers, the quantization thresholds are given by

τi = ∆

(
i− L

2

)
, i = 1, . . . , L− 1. (10)

The quantizer-mapping function Q(·) can uniquely be described by the set of quantization labels L and

the set of quantization thresholds T . The DACs map z ∈ C with entries {zb} into the quantized output x

with entries {xb} in the following way: if <{zb} ∈ [τk, τk+1) and ={zb} ∈ [τl, τl+1), then xb = `k + j`l.

The step size ∆ of the quantizers should be chosen to minimize the distortion between the quantized and

nonquantized vector. Unfortunately, the optimal step size ∆ depends on the distribution of the input [39],

which in our case depends on the precoder and on the signaling scheme. We therefore simply set the

labels and thresholds so as they minimize the distortion under the assumption that the per-antenna input

to the quantizers is CN (0, P/B)-distributed. The optimal step size can then be found numerically (see

e.g., [40] for details).

In the extreme case of 1-bit DACs, the quantizer-mapping function reduces to

Q(z) =

√
P

2B

(
sgn(<{z}) + j sgn(={z})

)
. (11)

Here, we have chosen the set of possible complex-valued quantization outcomes per antenna to be X =

{
√
P/(2B) (±1± j)}, which ensures that the power constraint in (2) is satisfied with equality.

C. Signal Decomposition using Bussgang’s Theorem

Quantizing the precoded signal causes a distortion Q(Ps)−Ps that is correlated with the input of the

quantizer. However, for Gaussian inputs, Bussgang’s theorem [38] allows us to decompose the quantized

signal into linear function of the input to the quantizers and a distortion term that is uncorrelated with

the input to the quantizers [41]. This will allow us to characterize the achievable rates with Gaussian

inputs. We start by stating Bussgang’s theorem [38], [41].

Theorem 1: Consider two zero-mean jointly complex Gaussian random variables x and y. Assume

that x is passed through a nonlinear function g(·) : C → C that acts independently on the real and

imaginary components of x. Then, the covariance between g(x) and y is given by

E[g(x)y∗] =
E[g(x)x∗]

E[xx∗]
E[xy∗] . (12)

Bussgang’s theorem has recently been used to analyze massive MU-MIMO uplink systems with 1-bit

ADCs (see, e.g., [23], [24]). It was also used in [30] to approximate the resulting distortion levels caused
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by MRT precoding and 1-bit quantization in the massive MIMO downlink. We shall use Theorem 1 to

characterize the performance of linear precoding subject to quantization with Q-bit uniform DACs. As a

first step, we establish the following result, whose proof is given in Appendix A.

Theorem 2: Let x = Q(Ps) denote the output from a set of uniform quantizers described by the

quantizer-mapping function Q : CB → XB . Assume that P ∈ CB×U and s ∼ CN (0, IU ). Then, the

quantized vector x can be decomposed as

x = GPs + d, (13)

where the distortion d and the signal s are uncorrelated. Furthermore, G ∈ RB×B is the following

diagonal matrix:

G =
α∆√
π

diag
(
PPH

)−1/2
L−1∑
i=1

exp

(
−∆2

(
i− L

2

)2

diag
(
PPH

)−1

)
. (14)

Here, L and ∆ denote the number of levels and the step size of the DACs, respectively.

The following corollary is a well-known result for the case of 1-bit quantization (see, e.g., [23], [24]).

The proof follows from setting in (14) L = 2 and α∆ =
√

2P/B to satisfy the power constraint in (2).

Corollary 3: For the case of 1-bit DACs, the matrix G in (14) reduces to

G =

√
2P

πB
diag

(
PPH

)−1/2
. (15)

Let now hTu denote the uth row of the channel matrix H and pu the uth column of the precoding

matrix P. Using (13), we can express the received signal yu at UE u as follows:

yu = hTu (GPs + n) = hTuGpusu +
∑

v 6=u h
T
uGpvsv + hTud︸ ︷︷ ︸

=eu

+hTun︸︷︷︸
=ñu

= hTuGpusu + eu + ñu. (16)

Here, the error term eu captures both the MUI and the distortion caused by the finite-resolution DACs.

Note that eu and su are uncorrelated. Indeed,

Es[eus
∗
u] =

∑
v 6=u h

T
uGpv Es[svs

∗
u] + hTu Es[ds

∗
u] = 0. (17)

We shall next use the decomposition in (16) to analyze the performance of linear-quantized precoders.
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D. Achievable Rate Lower Bound for 1-bit DACs

We assume that each UE is able to scale its received signal yu by βu = (hTuGpu)−1 to obtain the

following estimate:

ŝu = βuyu = su + βu(eu + ñu). (18)

Learning βu requires each UE to be able to estimate accurately its channel gain. This is a reasonable

assumption provided that the channel coherence interval is sufficiently long [42].

The nonlinear operation of the DACs prevents one to characterize the probability distribution of the

error term eu in closed form, which makes it difficult to compute the achievable rates. One can, however,

lower-bound the achievable rate using the so called "auxiliary-channel lower bound" [43, p. 3503], which

gives the rates achievable with a mismatched decoder (see [44, ch. 1] for a recent review on the subject).

As auxiliary channel, we take the one with output

s̃u = su + βu(ẽu + ñu), (19)

where ẽu ∼ CN
(
0,Es

[
|eu|2

])
has the same variance as the actual error term eu but is Gaussian distributed.

This auxiliary channel is relevant for the case of nearest-neighbor decoding (also known as minimum

distance decoding). Then, by standard manipulations of the mutual information, we can bound the

achievable rate Ru for UE u = 1, 2, . . . , U as follows:

Ru = EH[ I(su; ŝu |H)] (20)

= Esu,ŝu,H
[
log2

(
fŝu|su,H(ŝu|su,H)

fŝu |H(ŝu |H)

)]
(21)

≥ Esu,ŝu,H
[
log2

(
fs̃u|su,H(ŝu|su,H)

fs̃u |H(ŝu |H)

)]
(22)

= EH[log2(1 + γu)] (23)

where

γu =

∣∣hTuGpu
∣∣2∑

v 6=u|hTuGpv|2 + hTuCddh∗u +N0

(24)

is the signal-to-interference-noise-and-distortion ratio (SINDR) at the uth UE.3 Here, Cdd = Es

[
ddH

]
denotes the covariance of the distortion d, which can be written as

Cdd = Cxx −GPPHGH (25)

3One can establish (23) also by noting that Gaussian noise is the worst noise for Gaussian inputs [45].
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where Cxx = Es

[
xxH

]
is the covariance of the quantized signal x = Q(Ps). In the special case of

1-bit DACs, Cxx can be written in closed-form as [46], [47]

Cxx =
P

πB

(
sin−1

(
diag(PPH)−

1

2<{PPH}diag(PPH)−
1

2

)
+j sin−1

(
diag(PPH)−

1

2={PPH}diag(PPH)−
1

2

))
. (26)

Thus, using (25) and (26), the SINDR in (24) can be computed exactly for the case of 1-bit DACs.

Substituting (24) in (23), one obtains a lower bound on the per-user achievable rate with Gaussian signaling

for the 1-bit DAC case. Unfortunately, no closed-form expression for Cxx is available in the multi-bit

DAC case. We address this problem in the next section.

E. Asymptotic Achievable Rate Approximation for Multi-Bit DACs

In this section, we provide for the multi-bit DAC case, an approximation of (24) derived under the

assumption that both B and U are large, and relying on standard random matrix theory arguments.

Specifically, let

G = α∆

√
B

πP

L−1∑
i=1

exp

(
−B∆2

P

(
i− L

2

)2
)

(27)

where

α =

(
2B∆2

((
L− 1

2

)2

− 2

L−1∑
i=1

(
i− L

2

)
Φ

(√
2B∆2

(
i− L

2

))))−1/2

(28)

ensures that the power constraint (2) is satisfied. In (27), the function Φ(x) =
∫ x
−∞

1√
2π
e−t

2/2 dt is the

cumulative distribution function of a Gaussian random variable. Let also ρ̄ be defined as follows:

ρ̄ =
G2ρ

(1−G2)ρ+ 1
. (29)

Following the same approach as in [48]–[50], one can show that, for the three linear-quantized precoders

(WF, ZF, and MRT) introduced in Section III-A, the SINDR γu in (24) can be approximated for large B

and U by

γ̄WF =
ρ̄

2

(
B

U
− 1

)
+

1

2

√
ρ̄2

(
B

U
− 1

)2

+ 2ρ̄

(
B

U
+ 1

)
+ 1− 1

2
(30)

γ̄ZF = ρ̄

(
B

U
− 1

)
(31)

γ̄MRT =
ρ̄B

ρ̄(U − 1) + U
. (32)
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Substituting (30)-(32) into (23), one gets a large B and U approximation of the achievable rate with

Gaussian signaling and nearest-neighbor decoding. In Section V, we will verify through numerical

simulations that this approximations is accurate already for realistic values of B and U .

IV. NONLINEAR PRECODERS FOR 1-BIT DACS

We now investigate nonlinear precoders that seek approximate solutions to the MMSE-optimal problem

detailed in Section II-B. We shall focus on the extreme case of 1-bit DACs, for which the problem

simplifies and efficient numerical algorithms can be developed.

We start by noting that, in the 1-bit case, all DAC outcomes have equal amplitude, and that ‖x‖22 = P if

one sets α∆ =
√

2P/B in (9). This observation allows us to formulate the 1-bit quantized precoding (QP)

problem as follows:

(QP)


minimize
x∈XB , β∈R

‖s− βHx‖22 + β2UN0

subject to β > 0.
(33)

Here, X =
{√

P/(2B) (±1± j)
}

. The resulting precoded vector xQP and the associated precoding

factor βQP are referred to as the optimal solution to the problem (33).

Compared to the problem (LQP) in (5), where we minimize the MSE averaged over the symbol vector s

(for a given H), in (QP) we minimize the MSE for every realization of the symbol vector s. By solving

the optimization problem on a per-symbol basis, the resulting β depends on the instantaneous value of

the precoded vector x, and, hence, on s. This is in contrast to the linear-quantized case, where β is

independent of the current symbol realization and depends only on H.4.

We note that (QP) in (33) resembles an `2-norm regularized closest-vector problem (CVP), with the

unique feature that the discrete set of vectors is parametrized by the continuous precoding factor β. This

prevents the straightforward use of conventional algorithms to approximate CVPs [51], [52]. Since the

objective function in (33) is a quadratic function in β, we can compute the optimal value of β as

β̂(x) =
<{sHHx}

xH
(
HHH + UN0

P IB
)
x

=
<{sHHx}
‖Hx‖22 + UN0

(34)

which depends on x. Inserting (34) into the objective function in (33), we obtain the following equivalent

formulation of the QP problem

minimize
x∈XB

∥∥∥s− β̂(x)Hx
∥∥∥2

2
+ β̂(x)2UN0. (35)

4We shall discuss the impact of the dependence of β on s on the receive-side processing in Section IV-D
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In order to obtain βQP, we can then simply evaluate (34) for the optimal vector xQP. We emphasize that

a straightforward exhaustive search to solve (QP) requires the evaluation of |X |B = 4B candidate vectors,

a quantity that grows exponentially with the number of BS antennas B. For a system with B = 128

antennas at the BS, this approach would require us to evaluate the objective function more than 1077

times (more than 10 quattuorvigintillions times). In fact, for a fixed value of β, the problem (QP) is a

closest vector problem that is NP-hard [53]. This implies that there are no known algorithms to solve such

problems efficiently for large values of B.5 Hence, alternative algorithms that solve a lower complexity

version of the QP problem are required for massive MU-MIMO systems.

In order to develop such computationally-efficient algorithms, we start by defining the auxiliary

vector b = βx and rewrite (33) in the following equivalent form

minimize
b∈BB

‖s−Hb‖22 +
UN0

P
‖b‖22 (36)

where B =
{√

P/(2B) (±β ± jβ) , for all β > 0
}

. Here, we have used the fact that β2 = ‖b‖22 /P . Let

bQP be the solution to (36). The resulting precoding vector is obtained by scaling each entry of bQP so

that it belongs to the set X . Clearly, 1/βQP is the scaling parameter.

It turns out convenient to transform the complex-valued problem (36) into an equivalent real-valued

problem using the following standard definitions:

bR =

<{b}
={b}

, sR =

<{s}
={s}

, and HR =

<{H} −={H}
={H} <{H}

. (37)

These definitions enable us to rewrite (36) as

minimize
bR∈B2B

R

‖sR −HRbR‖22 +
UN0

P
‖bR‖22 (38)

where BR =
{
±
√
P/(2B)β, for all β > 0

}
is the set of scaled antipodal outcomes per 1-bit DAC.

We shall next develop a variety of nonlinear precoding methods that find approximate solutions to the

problem (38).

A. Semidefinite Relaxation

Semidefinite relaxation (SDR) is a well-established technique to develop approximate algorithms for a

variety of discrete programming problems [54]. For example, SDR is commonly used to find near-ML

5As we will show in Section IV-C, we can—in some cases—design branch-and-bound methods (such as sphere-decoding
methods) that allow us to solve the quantized precoding problem efficiently for moderately-sized problems. For massive MU-MIMO
systems with hundreds of antennas, however, such methods still exhibit prohibitive computational complexity.
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solutions for the MU-MIMO detection problem (see, e.g., [54], [55]). For the case when the BS is

equipped with infinite-resolution DACs, SDR has been used for downlink precoding in [56], [57]. We

next show how SDR can be used to find approximate solutions to (33).

In our context, SDR involves relaxing (38) to a semidefinite program (SDP) as follows. We start by

writing the real-valued problem (38) in the following equivalent form [54]:

minimize
bR∈R2B , ψ∈{±1}

‖ψsR −HRbR‖22 +
UN0

P
‖bR‖22

subject to [bR]21 = [bR]2b for b = 2, . . . , 2B.

(39)

If ψ = 1 then bR is the solution to (39); if ψ = −1 then −bR is the solution. Next, let the (2B+1)×(2B+1)

matrix TR be defined as follows:

TR =

HT
RHR + UN0

P I2B −HT
RsR

−sTRHR ‖sR‖22

. (40)

Also, let BR = [bTR ψ]T [bTR ψ]. Following steps similar to those in [54], we rewrite the objective function

in (39) as

‖ψsR −HRbR‖22 +
UN0

P
‖bR‖22 = [bTR ψ]TR[bTR ψ]T = tr(TRBR) . (41)

Here, in the last step, we used basic properties of the trace operator. The problem (39) can now be

reformulated as

minimize
BR∈S2B+1

tr(TRBR)

subject to [BR]1,1 = [BR]b,b for b = 2, . . . , 2B,

[BR]2B+1, 2B+1 = 1, BR � 0, and rank(BR) = 1.

(42)

Here, S2B+1 denotes the set of real and symmetric (2B + 1) × (2B + 1) matrices. To see why (39)

and (42) are equivalent, remember that BR = [bTR ψ]T [bTR ψ], which implies that BR has rank 1 and

that [BR]b,b = [bR]2b for b = 1, . . . , 2B, and that [BR]2B+1,2B+1 = ψ2 = 1.

Unfortunately, the rank-1 constraint in (42) is nonconvex, which makes this problem just as hard to

solve as the original QP problem in (33). Nevertheless, we can use SDR to relax the problem in (42) by

omitting the rank-1 constraint, which results in the following SDP:

(SDR-QP)


minimize
BR∈S2B+1

tr(TRBR)

subject to [BR]1,1 = [BR]b,b for b = 2, . . . , 2B

[BR]2B+1, 2B+1 = 1 and BR � 0.

(43)
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This problem can be solved efficiently using standard methods from convex optimization [58]. If the

solution matrix BSDR-QP
R has rank one, then SDR finds the exact solution to the problem (QP) in (38).

If, however, the rank exceeds one, we have to extract a precoding vector that belongs to the discrete

set XB . As commonly done, one can obtain such a vector by first performing an eigenvalue-decomposition

of BSDR-QP
R and by then quantizing the first 2B entries of the leading eigenvector uR,

[
xSDR-QP
R

]
b

=

√
P

2B
sgn([uR]2B+1) sgn([uR]b) , b = 1, . . . , 2B. (44)

The multiplication by sgn([uR]2B+1) takes into account the potential sign change caused by ψ. The

resulting complex-valued precoded vector is obtained as follows:

[
xSDR-QP]

b
=
[
xSDR-QP
R

]
b

+ j
[
xSDR-QP
R

]
B+b

, b = 1, . . . , B. (45)

We refer to this approach as SDR with a rank-one approximation (SDR1). Alternatively, we can obtain a

precoding vector in XB using more sophisticated randomized procedures; see the survey article [54] for

more details. We refer to this approach as SDR with randomization (SDRr).

SDR enables the computation of approximate solutions to the NP-hard problem (QP) in polynomial time.

Specifically, the worst-case complexity scales with B4.5 [54]. However, SDR lifts the problem to a higher

dimension: from 2B dimensions to (2B + 1)2 dimensions. Furthermore, implementing the corresponding

numerical solvers entails high hardware complexity [59]. Recently, a hardware-friendly approximate SDR

solver for problems of dimension up to B = 16 was proposed in [59]. However, the associated complexity

still prevents its use for massive MU-MIMO systems with hundreds of antennas. Hence, we conclude that

SDR is a suitable technique only for small to moderately-sized systems (e.g., 16 BS antennas or less).

For larger antenna arrays, alternative methods are necessary. One such method is described next.

B. Squared `∞-Norm Relaxation

We next present a novel method to approximately solving (33), which avoids lifting the problem to

a higher dimension and requires low complexity. We start by rewriting the real-valued optimization

problem (38) as

minimize
bR∈R2B

‖sR −HRbR‖22 +
2BUN0

P
‖bR‖2∞

subject to [bR]21 = [bR]2b for b = 2, , . . . , 2B
(46)

where we used that ‖bR‖22 = 2B‖bR‖2∞ under the constraint that [bR]21 = [bR]2b for b = 2, . . . , 2B. By

dropping the nonconvex constraints [bR]21 = [bR]2b for b = 2, . . . , 2B, we obtain the following convex
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relaxation of (46):

(`2∞-QP) minimize
bR∈R2B

‖sR −HRbR‖22 +
2BUN0

P
‖bR‖2∞ (47)

which, as we shall see, can be solved efficiently. To extract a feasible precoding vector x`
2
∞-QP ∈ XB

from the solution b
`2∞-QP
R to the problem (47), we quantize the entries of the vector to the quaternary

set X by computing [
x
`2∞-QP
R

]
b

=

√
P

2B
sgn
([

b
`2∞-QP
R

]
b

)
, b = 1, . . . , 2B. (48)

As in (45), we then obtain the complex-valued precoded vector as follows:[
x`

2
∞-QP

]
b

=
[
x
`2∞-QP
R

]
b

+ j
[
x
`2∞-QP
R

]
B+b

, b = 1, . . . , B. (49)

There exist several numerical optimization methods that are capable of solving problems of the form

of (`2∞-QP) in (47) in a computationally efficient manner. The most prominent methods are forward-

backward splitting (FBS) [60], [61] and Douglas-Rachford (DR) splitting [62], [63]. In what follows, we

develop a DR splitting method, which we refer to as squared-infinity norm Douglas-Rachford splitting

(SQUID). We define the two convex functions g(bR) = ‖sR −HRbR‖22 and f(bR) = 2BUN0

P ‖bR‖2∞, and

solve

minimize
bR∈R2B

g(bR) + f(bR). (50)

Let

proxh(w) = arg min
bR∈R2B

h(bR) + 1
2‖bR −w‖22 (51)

define the proximal operator for the function h(·) [60]. By initializing b
(0)
R = 02B×1 and c

(0)
R = 02B×1,

SQUID performs the following iterative procedure for t = 1, 2, . . . until convergence or until a maximum

number of iterations has been reached:

a
(t)
R = proxg(2b

(t−1)
R − c

(t−1)
R ) (52)

b
(t)
R = proxf (c

(t−1)
R − a

(t)
R − b

(t−1)
R ) (53)

c
(t)
R = c

(t−1)
R + a

(t)
R − b

(t−1)
R . (54)
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Algorithm 1 Proximal operator for the `2∞-norm
1: inputs: z ∈ RN , λ ∈ (0,∞)
2: a← abs(z)
3: s← sort(a,‘descending’)
4: for k = 1, . . . , N do
5: ck ← 1

2λ+k

∑k
i=1 si

6: end for
7: α← max

{
0,maxk{ck}

}
8: for k = 1, . . . , N do
9: uk ← min{ak, α} sgn(zk)

10: end for
11: return u

The proximal operator proxg(·) in (52) has the following simple6 expression:

proxg(w) = (HT
RHR + 1

2I2B×2B)−1(HT
RsR + 1

2w). (55)

While the proximal operator for the `∞-norm is well known in the literature [60], the proximal

operator proxf (·) for the squared `∞-norm, needed in (53), appears to be novel. The following theorem

details an efficient procedure for computing this proximal operator. The proof is given in Appendix B.

Theorem 4: Let λ > 0. Then, the squared `∞-norm proximal operator

u = proxλ`2∞(z) = arg min
u∈RN

λ‖u‖2∞ + 1
2‖z− u‖22 (56)

can be computed using the procedure summarized in Algorithm 1.

In summary, SQUID enables us to solve the relaxed problem in (47) in a computationally efficient

manner. Indeed, each iteration requires only simple matrix and vector operations, and the evaluation of

the proximal operator in Algorithm 1. The performance of SQUID is investigated in Section V where we

demonstrate that this low-complexity algorithm achieves performance that is comparable to the performance

of SDR, which is far more demanding in terms of computational complexity.

C. Sphere Precoding

Sphere decoding (SD) is a common method to solve CVPs exactly but at lower average computational

complexity than a naïve exhaustive search [51], [52], [64]. The idea of SD is to constrain the search for

possible optimal solutions to a hypersphere of radius r. By transforming the optimal CVP into a tree-search

problem, one can then perform a depth-first branch-and-bound procedure and prune branches that exceed

6One can further accelerate the evaluation of this proximal operator by using the Woodbury matrix identity (which reduces the
dimension of the matrix inverse), and by precomputing certain constant quantities, such as HT

R sR.
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the radius constraint to reduce the number of candidate vectors. While SD reduces (often significantly) the

average complexity (compared to an exhaustive search), it was shown to exhibit exponential complexity

in the number of variables for data detection in multi-antenna wireless systems [65], [66].

To adapt SD to 1-bit quantized precoding (we call this adaptation sphere precoding (SP)), we proceed

as follows. Assume that the optimal precoding factor β is known. Then, we can rewrite the objective

function in (35) as follows:

‖s− βHx‖22 + β2UN0
(a)
= ‖s− βHx‖22 + β2UN0

P
‖x‖22

(b)
=
∥∥s̄− βHx

∥∥2

2
. (57)

In (a), we used that ‖x‖22 = P in the 1-bit case; in (b) we set s̄ = [sT 0TB]T and H = [HT
√
UN0/P IB]T .

Hence, we can write the precoding problem as

minimize
x∈XB

∥∥s̄− βHx
∥∥

2
(58)

which can be solved using SD. More specifically, by computing the QR factorization H = QR, where

Q ∈ C(U+B)×B with QHQ = IB and R ∈ CB×B is upper triangular with non-negative diagonal entries,

we obtain the equivalent problem

(SP) minimize
x∈XB

∥∥QH s̄− βRx
∥∥

2
. (59)

The triangular structure of this problem allows us to deploy standard SD methods, as the one in [51].

In practice, the optimal precoding factor β is unknown. We therefore propose the following alternating

optimization approach. At iteration t = 1, we initialize the algorithm with the precoding factor obtained

from WF precoding. Specifically, we use (34) and set β1 = β̂(xWF). We then solve (SP) to obtain xSP
t and

compute an improved precoding factor βt+1 = β̂(xSP
t ) using (34). We repeat this procedure for t = 2, 3, . . .

until convergence or until a maximum number of iterations is reached. Our simulations have shown that

this procedure usually converges in only 1-to-3 iterations and achieves near-optimal performance for small

to moderately-sized systems MIMO systems (in Section V-A, we present numerical results for the case

of B = 8 antennas). We note that a plethora of SD-related methods can be used to solve SP. However,

the exponential complexity of SD prevents its use for massive MIMO systems with hundreds of antennas.

D. Decoding at the UEs

As for the case of linear-quantized precoders, we assume that each UE is able to scale the received

signal by βu. Note that the scaling factor βu can not be chosen to be equal to β, since β depends in the

nonlinear case on the transmit vector s. It is worth noting that for the special case in which the entries

of s are points of a constant-modulus constellation (e.g., M -PSK) and the receiver employs symbol-wise
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(b) B = 128 and U = 16.

Fig. 3. Uncoded BER with QPSK signaling for 1-bit DACs as a function of the SNR, ρ, for the precoders introduced in Section III
and in Section IV. The performance of the WFQ precoder proposed in [29] is also illustrated for comparison.

nearest-neighbor decoding (i.e., each UE maps its estimate ŝu in (3) to the nearest constellation point,

which implies that the residual MUI and quantization errors are treated as Gaussian noise, although they

are non-Gaussian), the scaling value chosen by the receiver does not affect performance, because the

decision regions are circular sectors. In the simulation results in Section V, we shall focus exactly on

this setup.

V. NUMERICAL RESULTS

We will now present numerical simulation results for the quantized precocers introduced in Section III

and Section IV. Due to space constraints, we shall focus on a limited set of system parameters.7

A. Error-Rate Performance

We start by comparing the performance of the developed precoders in terms of uncoded bit error

rate (BER). In what follows, we assume that the UEs perform symbol-wise nearest-neighbor decoding.

In Fig. 3, we compare the BER with QPSK signaling and 1-bit DACs for the linear precoders

presented in Section III (namely, WF, ZF and, MRT) and the nonlinear precoding algorithms presented in

Section IV (namely, SDR1, SDRr, SQUID and SP). For comparison, we also report the performance of

the WF-quantized (WFQ) precoder proposed in [29], and the performance of the WF precoder for the

infinite-resolution case.

7Our simulation framework will be made available for download from GitHub after (possible) acceptance of the paper. This
will enable interested readers to perform simulations with different system parameters and also to evaluate alternative precoding
algorithms.
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Fig. 4. Uncoded BER with QPSK signaling and WF precoding with multi-bit DACs; B = 128 and U = 16. Here, L denotes
the number of quantization levels. The markers correspond to simulated values and the solid lines correspond to closed-form
approximations.

In Fig. 3a, we consider the case B = 8 BS antennas and U = 2 UEs (moderately-sized MIMO system).

For this case, one can find the optimal solution to (QP) in (33) by exhaustive search. We find that the

gap between the performance of the optimal nonlinear precoder and the performance of infinite-resolution

WF precoder is remarkably small: about 4 dB for a target BER of 10−3. Furthermore, the SP algorithm

achieves near-optimal performance, as does SDRr. SQUID and SDR1 closely follow the optimal curve up

to a BER of 10−2 but then their performance degrades. The linear-quantized precoders, on the other hand,

are adversely impacted by the coarse 1-bit quantization. Indeed, the BER for linear-quantized precoding

saturates at 10−2 or above. Hence, in contrast to recently reported findings [31], our results suggest that

nonlinear precoding offers significant advantages in terms of BER compared to linear-quantized precoding.

In Fig. 3b, we consider a massive MIMO system with B = 128 BS antennas and U = 16 UEs.

Exhaustive search and SP are not viable in this setup due to the exponential complexity in B that these

methods entail. We note that the increased number of antennas yields a performance improvement for the

linear-quantized precoders. Indeed, with ZF, WF, or WFQ, one can support error probabilities below 10−3.

However, the nonlinear precoders still significantly outperform the linear-quantized precoders. The gap to

the infinite-resolution BER with SQUID is about 3 dB for a target BER of 10−3; with WFQ precoding,

the gap is about 8 dB for the same BER target.

In Fig. 4, we show the uncoded BER for WF precoding as a function of the SNR and the number of

DAC levels L for a system with U = 16 UEs and B = 128 BS antennas. The simulated BER values

in Fig. 4 are compared with closed-form approximations obtained by approximating the uncoded BER

by 1− Φ
(√

γ̄WF
)

where γ̄WF is given in (30). We observe that this approximation is accurate for the
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Fig. 5. Uncoded BER with QPSK signaling for 1-bit DACs as a function of the channel-estimation error, ε.

entire range of SNR values. We further observe that low BER probabilities can be attained with very

coarse DACs. Interestingly, by only adding a zero-level in the DACs (so that L = 3), the performance is

drastically improved compared to the 1-bit case (L = 2). Furthermore, with only 3-bit DACs (L = 8) the

performance gap to the infinite-resolution case is negligible. This suggests that it is possible to significantly

reduce the number of bits in the high-resolution DACs used in today’s systems.

B. Robustness to Channel-Estimation Errors

So far, we have assumed that the BS has access to perfect CSI. In this section we shall relax this

assumption to investigate the robustness of the developed algorithms to channel estimation errors. More

specifically, we shall assume that the BS has access to a noisy version of H modelled as

Ĥ =
√

1− εH +
√
εZ. (60)

Here, ε ∈ [0, 1] and Z has CN (0, 1) entries. We refer to ε as the channel-estimation error: ε = 0 corresponds

to perfect CSI and ε = 1 corresponds to no CSI; intermediate values corresponds to partial CSI.

In Fig. 5, we show, for the 1-bit case, the uncoded BER with QPSK signaling as a function of the

channel-estimation error ε for a system with B = 128 BS antennas and U = 16 UEs. Interestingly, the

nonlinear precoders still outperform the linear-quantized precoders for ε ≤ 0.5. This implies that nonlinear

precoders can be used also when only imperfect CSI is available to the BS.

C. Achievable rate

Next, we validate the analytic results on the achievable rate with linear-quantized precoders reported in

Section III by numerical simulations.
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In Fig. 6, we show the achievable sum-rate with Gaussian signaling and WF precoding as a function of

the SNR and the number of DAC levels. The rate approximation computed using (30) is illustrated together

with the rate lower bound (23) for the 1-bit case. We also show the achievable rate computed numerically

using (21) by simulating many noise and interference realizations for each channel realization and by

mapping the resulting ŝu to a rectangular grid in the complex plane to estimate the probability density

functions required to compute (21) (see, e.g., [67] for details). We note that the asymptotic approximation

matches well the numerical results, confirming its accuracy. We further note that, analogously to the

uplink scenario [22], [23], high sum-rate throughputs can be achieved despite having low-resolution DACs

at the BS.

VI. CONCLUSIONS

We have presented novel algorithms for the problem of downlink precoding for massive MIMO systems

equipped with low-resolution DACs at the BS. To handle the challenges imposed by the finite-cardinality

outputs from the DACs, we have considered two distinct approaches, namely linear-quantized precoding

for Q-bit DACs, and nonlinear precoding algorithms for 1-bit DACs.

We have simulated the performance for a downlink massive MIMO system operating over a frequency-

flat Rayleigh-fading channel, whose realizations are known perfectly at the BS. We have shown that,

with linear-quantized precoding, DACs with 3-to-4 bits resolution are sufficient to close the gap to the

performance (measured in terms of both BER and achievable rate) obtained with infinite-resolution DACs.

Furthermore, we have developed an asymptotic approximation of the effective SINDR, which can be used

to predict the system performance accurately using simple closed-form expressions.
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Linear-quantized precoders are, however, far from optimal. For the case of 1-bit DACs, we have

shown that the error-rate performance can be significantly improved by allowing for nonlinear precoding

algorithms. For example, we showed that for a system with 128 BS antennas serving 16 UEs, the gap to

infinite-resolution performance is about 3 dB for a target BER of 10−3. Nonlinear precoding, however,

entails increased signal-processing complexity. For small-to-moderate sized systems (e.g., 16 BS antennas

or less), SDR- and SP-based precoders offer near-optimal BER-performance at tolerable complexity. For

massive MIMO systems, SQUID is an efficient and hardware-friendly algorithm to find a near-optimal

solution to the 1-bit quantized precoding problem.

APPENDIX A

PROOF OF THEOREM 2

Let z = Ps ∈ CB . It follows from Theorem 1 that the covariance matrices Cxz = Es

[
xzH

]
and Czz = Es

[
zzH

]
are related as follows:

Cxz = GCzz (61)

where G is a B ×B diagonal matrix with

[G]b,b =
1

σ2
b

E[Q(zb)z
∗
b ] (62)

where zb = [z]b and σ2
b = E

[
|zb|2

]
for b = 1, . . . , B. Note now that

Czz = Es

[
zzH

]
= PEs

[
ssH

]
PH = PPH . (63)

It follows from (61) that we can write the quantized signal as x = Gz + d, where the distortion d is

uncorrelated with z. Indeed, note that

Es

[
dzH

]
= Es

[
(x−Gz)zH

]
= Cxz −GCzz = 0B×B (64)

where the last equality follows from (61). We next evaluate (62). Note that, since the real and imaginary

components of the symbol vector s are independent and identically distributed, so are the real and

imaginary components of the precoded vector z. Therefore, it holds that E[Q(zb)z
∗
b ] = 2E[Q(z)z], where

we have introduced the random variable z ∼ N (0, σ2
b/2). For a uniform DAC, the quantizer-mapping

function can be expressed as

Q(z) =
α∆

2
(1− L) + α∆

L−1∑
i=1

1[∆(i−L

2 ),∞)(z). (65)
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Hence, we have that

[G]b,b =
2α∆

σ2
b

L−1∑
i=1

∫ ∞
∆(i−L

2 )

z√
πσ2

b

exp

(
− z

2

σ2
b

)
dz =

α∆√
πσ2

b

L−1∑
i=1

exp

(
−∆2

σ2
b

(
i− L

2

)2
)
. (66)

The desired result (14) follows from (66) by using that σ2
b = [PPH ]b,b.

APPENDIX B

PROOF OF THEOREM 4

We start by rewriting the proximal operator in (56) as

u = arg min
x∈RN , α∈R

λα2 +
1

2
‖x− y‖22 subject to x2

k ≤ α2, k = 1, . . . , N (67)

and use the Karush-Kuhn-Tucker (KKT) conditions [58] to compute its solution. The Lagrangian of the

optimization problem in (67) is given by

L(x, α,u) = λα2 +
1

2
‖x− y‖22 +

N∑
k=1

uk(x
2
i − α2) (68)

which yields the following two stationarity conditions:

λ−
N∑
k=1

ui = 0 (69)

xk − yk + 2xkuk = 0, k = 1, . . . , N. (70)

The stationarity condition (70) reveals that xk = yk/(1 + 2uk), which implies that if uk = 0, then xk = yk.

Complementary slackness yields uk(x2
k − α2

k) = 0, which implies that if uk 6= 0, then x2
k = α2 for a

given k. Hence the values of xk must either be |xk| = α or xk = yk so that |xk| < α. In words, the

proximal operator in (67) clips to xk = sgn(yk)α the values yk whose magnitude exceeds α and leaves

the remaining values unaffected. Hence, we only need to determine the optimal clipping threshold α∗ > 0.

Assume xk 6= 0 without loss of generality (in the case yk = 0, we have xk = 0). Then, the stationarity

condition in (70) reveals that uk = 1
2

(
yk
xk
− 1
)
. Together with the stationarity condition (69), we have

N∑
k=1

uk =
1

2

N∑
k=1

(
yk
xk
− 1

)
= λ (71)

which implies that

N∑
k=1

yk
xk

= 2λ+N. (72)
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We now partition the indices k = 1, . . . , N into two disjoint sets Ω and Ωc, The set Ω contains the indices

of the entries yk for which |yk| ≥ α; the set Ωc contains the indices of the entries uk for which |yk| < α.

Since xk = sgn(yk)α for k ∈ Ω and xk = yk for k ∈ Ωc, it follows from (72) that

∑
k∈Ω

|yk|
α

+
∑
k∈Ωc

1 = 2λ+N. (73)

Hence,

∑
k∈Ω

|yk|
α

= 2λ+N − |Ωc| = 2λ+ |Ω|. (74)

We see from (74) that the clipping threshold α must satisfy

α =

∑
k∈Ω |yk|

2λ+ |Ω| . (75)

To solve (67), it is convenient to sort the values |yk| in descending order. Specifically, let us denote these

values by r1 ≥ r2 ≥ · · · ≥ rN . Then one computes α` =
∑`

k=1 rk/(2λ + `) for ` = 1, 2, . . . , N and

chooses α∗ as the only α` that satisfies r`+1 < α` ≤ r`. Simple algebraic manipulations reveal that this

is equivalent to setting α∗ = max` α`. We then use α∗ to perform element-wise clipping. Algorithm 1

implements exactly this procedure in a computationally efficient manner.
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