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High-Throughput Data Detection for Massive
MU-MIMO-OFDM using Coordinate Descent

Michael Wu, Chris Dick, Joseph R. Cavallaro, and Christoph Studer

Abstract—Data detection in massive multi-user (MU) multiple-
input multiple-output (MIMO) wireless systems is among the
most critical tasks due to the excessively high implementation
complexity. In this paper, we propose a novel, equalization-based
soft-output data-detection algorithm and corresponding reference
FPGA designs for wideband massive MU-MIMO systems that
use orthogonal frequency-division multiplexing (OFDM). Our
data-detection algorithm performs approximate minimum mean-
square error (MMSE) or box-constrained equalization using
coordinate descent. We deploy a variety of algorithm-level op-
timizations that enable near-optimal error-rate performance at
low implementation complexity, even for systems with hundreds
of base-station (BS) antennas and thousands of subcarriers. We
design a parallel VLSI architecture that uses pipeline interleaving
and can be parametrized at design time to support various
antenna configurations. We develop reference FPGA designs for
massive MU-MIMO-OFDM systems and provide an extensive
comparison to existing designs in terms of implementation
complexity, throughput, and error-rate performance. For a 128
BS antenna, 8 user massive MU-MIMO-OFDM system, our
FPGA design outperforms the next-best implementation by more
than 2.6× in terms of throughput per FPGA look-up tables.

Index Terms—Coordinate descent, equalization, FPGA design,
massive multi-user (MU) MIMO, orthogonal frequency-division
multiplexing (OFDM), soft-output data detection.

I. INTRODUCTION

MASSIVE multi-user (MU) multiple-input multiple-
output (MIMO) technology promises significant im-

provements in terms of spectral efficiency, coverage, and
range compared to traditional, small-scale MIMO [2]–[5].
In fact, massive MU-MIMO is commonly believed to be
one of the key technologies for future fifth-generation (5G)
wireless systems [6]. The idea underlying this technology is to
equip the base-station (BS) with hundreds of antenna elements
while communicating with tens of user terminals concurrently
and within the same time-frequency resource. However, the
large dimensionality of the data detection problem faced in
the uplink (where users communicate to the BS), results in
excessively high implementation complexity at the BS (see,
e.g., [7] and the references therein). Hence, to reduce the
implementation costs while enabling throughputs in the Gb/s
regime for practical wideband massive MU-MIMO systems
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with hundreds of antenna elements and thousands of subcarriers,
novel algorithms and dedicated hardware implementations on
field-programmable gate arrays (FPGAs) or application specific
integrated circuits (ASICs) are necessary.

During recent years, various data-detection algorithms [8],
[9] and dedicated hardware implementations have been pro-
posed for massive MU-MIMO systems [7], [10]–[13]. All of
the existing hardware implementations, however, are either
unable to achieve the high throughputs offered by future
wideband massive MU-MIMO systems [7], [12], [13], or
exhibit excessive hardware complexity [11]. Furthermore, the
hardware implementations in [7], [11] only support single-
carrier frequency-division multiple-access (SC-FDMA). As
demonstrated in [14], however, orthogonal frequency-division
multiplexing (OFDM) enables (often significantly) less complex
baseband processing1, which may be a critical design factor
for wideband massive MU-MIMO systems with hundreds of
BS antennas and thousands of subcarriers.

A. Contributions

We propose a new, low-complexity soft-output data-detection
algorithm and a corresponding high-throughput FPGA design
for massive MU-MIMO wireless systems that use OFDM. Our
algorithm, referred to as optimized coordinate descent (OCD),
performs approximate minimum mean-square error (MMSE)
or box-constrained equalization, which enables near maximum-
likelihood (ML) soft-output data detection performance in
massive MU-MIMO systems with a large BS-to-user-antenna
ratio. We develop a corresponding high-throughput VLSI
architecture with a deep and interleaved pipeline, which can
be parametrized at design time to support various BS and user
antenna configurations. The algorithmic regularity of OCD and
the fact that preprocessing can be implemented at minimum
hardware overhead enables high-throughput VLSI designs that
require lower complexity than state-of-the-art designs, even
for systems with hundreds of BS antennas and thousands of
subcarriers. To demonstrate the advantages of OCD compared
to existing massive MU-MIMO data-detector designs in terms

1SC-FDMA typically generates baseband signals with a lower dynamic
range, but the receiver must perform an additional frequency-to-time conversion
(compared to OFDM). This additional conversion step requires one to separate
equalization (that is usually carried out in the frequency domain per subcarrier)
and data detection (that must be carried out in the time domain). This separation
prevents the use of powerful, non-linear equalization methods [15], such as the
box-constrained detector proposed in this paper. OFDM, in contrast, causes
a slightly higher dynamic range, but requires only one time-to-frequency
conversion and enables non-linear data-detection methods that operate directly
in the frequency domain on a per-subcarrier basis [14].
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of throughput, hardware complexity, and error-rate performance,
we provide implementation results on a Xilinx Virtex-7 FPGA.

B. Notation
Boldface lowercase and boldface uppercase letters stand for

column vectors and matrices, respectively. For a matrix A,
we denote its hermitian transpose by AH . We use ak,` for
the entry in the kth row and `th column of the matrix A; the
kth entry of a column vector a is denoted by ak = [a]k. The
`2-norm of a vector a is defined as ‖a‖2 =

√∑
k |ak|2. The

real part of a complex number a is <{a}. Sets are denoted by
uppercase calligraphic letters; the cardinality of a set A is |A|.
The expectation operator is designated by E[·].

C. Paper Outline
The rest of the paper is organized as follows. Section II

introduces the massive MU-MIMO-OFDM system model and
describes data detection using MMSE and box-constrained
equalization. Section III details our OCD algorithm and shows
error-rate simulation results. Section IV and Section V describe
our VLSI architecture and shows FPGA implementation results,
respectively. We conclude in Section VI.

II. SYSTEM MODEL AND DATA DETECTION

This section introduces the considered OFDM-based uplink
model and summarizes efficient methods for linear MMSE and
box-constrained soft-output data detection.

A. OFDM-based Uplink System Model
We consider a massive MU-MIMO-OFDM uplink system,

where U single-antenna user terminals send data simultaneously
to a BS with B � U antennas over W subcarriers. Each user
i = 1, . . . , U encodes its own bit stream (using a forward
error-correction scheme) and maps the generated coded bits
onto constellation points in a finite set O (e.g., 64-QAM
using a Gray mapping rule), with unit average transmit power,
i.e., E

[
|s|2
]

= 1 with s ∈ O, and Q = log2 |O| bits per
constellation point. The resulting W frequency-domain symbols
{s(i)1 , . . . , s

(i)
W } are then transformed into the time domain (TD)

using an inverse discrete Fourier transform (DFT) [16]. After
prepending the cyclic prefix, all users transmit their TD signals
over the frequency-selective wireless channel at the same time.

After removing the cyclic prefixes, the TD signals received at
each BS antenna are transformed back to the FD using a DFT.
For the sake of simplicity, we assume a sufficiently long cyclic
prefix, perfect synchronization, and that perfect channel-state
information (CSI) has been acquired via pilot-based training.2

Under these assumptions, the FD input-output relation on the
wth subcarrier is commonly modeled as [17]

yw = Hwsw + nw, w = 1, . . . ,W, (1)

where yw ∈ CB is the associated received FD vector, Hw ∈
CB×U is the channel matrix, sw ∈ OU contains the symbols
transmitted by all U users, i.e., [sw]i = s

(i)
w refers to the symbol

transmitted by user i over subcarrier w, and nw ∈ CU models
thermal noise as i.i.d. complex circularly-symmetric Gaussian
vector with variance N0 per complex entry.

2These assumptions are common in the MIMO-OFDM literature [16].

B. Equalization-based Data Detection
For the model in (1), optimal data detection in terms of

minimizing the symbol error-rate is accomplished by solving
the maximum-likelihood (ML) problem [18]

s̃ML
w = arg min

z∈OU

‖yw −Hwz‖22. (2)

Unfortunately, solving (2) exactly for massive MU-MIMO
systems quickly results in prohibitive complexity, even with
the best-known sphere-decoding algorithms [19]. Equalization-
based data detection algorithms [18] enable one to find
approximate solutions to the ML problem at low computational
complexity. Virtually all linear as well as non-linear equaliza-
tion methods relax the finite-alphabet constraint z ∈ OU in (2),
which enables the efficient computation of an estimate s̃ that is
(hopefully) close to the ML solution. The estimate s̃ can then
either be sliced element-wise onto the nearest constellation
point in O as follows:

ŝi = arg min
z∈O

|[s̃]i − z|, i = 1, . . . , U, (3)

which is known as hard-output data detection, or used to
compute reliability information for each transmitted bit in the
form of log-likelihood ratio (LLR) values (see Section II-E),
which is known as soft-output data detection [20], [21].

C. Linear MMSE Equalization
The most common equalization-based data detection al-

gorithm is linear MMSE data detection [18], [20]. This
method was shown to enable FPGA and ASIC designs that
are able to achieve high throughput in massive MU-MIMO
systems [7]. Furthermore, for systems with large BS-to-user
antenna ratios δ = B/U (e.g., two or larger), linear detectors
are able to achieve near-ML error-rate performance [3]–[5].

The key idea of MMSE data detection is to relax the
constraint z ∈ OU in the ML problem (2) to the U -dimensional
complex space z ∈ CU , and to include a quadratic penalty
function. In particular, MMSE equalization solves the following
regularized least-squares problem [10], [22]:

s̃MMSE
w = arg min

z∈CU

‖yw −Hwz‖22 +N0‖z‖22. (4)

Since the objective function in (4) is quadratic in z, the MMSE
equalization problem has a closed-form solution.

An explicit solution to (4) can be computed as follows. First,
compute the regularized Gram matrix Aw = Gw +N0IU with
Gw = HH

wHw and the matched filter vector s̃MF
w = HH

wyw.
Then, the MMSE estimate in (4) is computed as

s̃MMSE
w = A−1w s̃MF

w . (5)

While this closed-form approach was shown to be efficient
for traditional, small-scale MIMO systems (e.g., with four
antennas at both ends of the wireless link) [21], computing the
regularized Gram matrix Aw and its inverse A−1w quickly
results in prohibitive complexity in massive MU-MIMO
systems with hundreds of BS antennas [11]. In Section III,
we present a computationally-efficient equalization algorithm
that directly solves (4) in a hardware efficient way, which
avoids expensive calculations such as the computation of the
regularized Gram matrix Aw and its inverse A−1w .
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D. Non-Linear Box-Constrained (BOX) Equalization

While linear equalization methods are the most common
approach in the MIMO literature, a few non-linear equalizers
have recently emerged and shown to outperform linear methods
in terms of error-rate performance [23]. A promising non-linear
equalization method, referred to as box-constrained equalization
(short BOX equalization) [24]–[26], relaxes the constraint
z ∈ OU to the convex polytope CO around the constellation
set O, which is formally defined as follows:

CO =


|O|∑
i=1

αisi | (αi ≥ 0, αi ∈ R,∀i) ∧
|O|∑
i=1

αi = 1

 . (6)

For example, the convex polytope CQPSK for QPSK with3

O = {+1 + j,+1− j,−1 + j,−1− j} (7)

is given by CQPSK = {xR + jxI : xR, xI ∈ [−1,+1]} with
j2 = −1; this is simply a box with radius 1 around the
square constellation (thus the name BOX equalization). For
higher-order QAM alphabets, such as 16-QAM or 64-QAM,
we have CO = {xR + jxI : xR, xI ∈ [−α,+α]}, where
α = maxa∈O <{a} is the radius of the tightest box around
the square constellation.

BOX equalization solves the following relaxed version of
the ML problem in (2):

s̃BOX
w = arg min

z∈CUO
‖yw −Hwz‖22. (8)

Since this equalization problem (8) is convex, it can be solved
exactly using well-established numerical methods from convex
optimization [27]. Furthermore, as shown recently in [23], [26],
the BOX equalizer exhibits near-ML error-rate performance in
the large-antenna limit, where we fix the BS-to-user antenna
ratio δ = B/U so that δ > 1/2 and by letting B → ∞. In
addition, the BOX equalizer does only need knowledge of the
transmit constellation O but not of the noise variance N0.

Unfortunately, solving (8) exactly with conventional interior-
point methods results in prohibitive complexity and requires
high numerical precision, which prevents efficient hardware
designs that use finite precision (fixed-point) arithmetic. In
order to solve (8) at low complexity and in a hardware efficient
way, we propose a new algorithm in Section III.

E. Soft-Output Data Detection

From MMSE and BOX equalization, hard-output estimates
can easily be obtained by element-wise slicing of the entries of
s̃MMSE
w and s̃BOX

w onto the nearest constellation point as in (3),
respectively. In systems that use forward error-correction, how-
ever, one is generally interested in soft-output detection [28].
From MMSE equalization where s̃w = s̃MMSE

w , LLR values are
typically computed via the max-log approximation [21]

Lw,i,b = ρw,i

(
min
a∈O0

b

∣∣∣∣ [s̃w]i
µw,i

− a
∣∣∣∣2−min

a∈O1
b

∣∣∣∣ [s̃w]i
µw,i

− a
∣∣∣∣2
)
, (9)

3We note that this constellation is not normalized to unit expected power.

where the sets O0
b and O1

b contain the constellation symbols
for which the bth bit is 0 and 1, respectively. For explicit
MMSE detection, i.e., the approach discussed in Section II-C
that computes A−1w , the post-equalization signal-to-noise-and-
interference-ratio (SINR) ρw,i and the channel gain µw,i can
be calculated exactly and in the following efficient way [21].
The SINR is calculated as ρw,i = µw,i/(1 − µw,i) and the
channel gain is µw,i = [Aw]Hi [Gw]i, where [Aw]i is the ith
row of A−1w and [Gw]i is the ith column of Gw.

However, for BOX equalization in Section II-D, as well
as for data detection algorithms that implicitly solve the
MMSE detection problem (4), no efficient methods that
exactly compute the SINR ρw,i are known—this prevents
a straightforward computation of the LLR values in (9). In
Section III-C, we propose an approximate way to generate ρw,i

and µw,i, which enables us to compute approximate LLR values
for such linear and non-linear equalizers.

III. FAST EQUALIZATION VIA COORDINATE DESCENT

While the solution to the implicit MMSE problem (4)
can be computed (exactly or approximately) at moderate
complexity using iterative conjugate gradient (CG) or Gauss-
Seidel (GS) methods, see, e.g., [9], [13], [22], corresponding
VLSI designs [10], [13] are unable to achieve high throughput,
mainly due to a fairly complex algorithm structure, stringent
data dependencies, or the need for high arithmetic precision. We
next propose an alternative method to solve both the MMSE
equalization (4) and BOX equalizaton (8) problems at low
complexity and in a hardware friendly way.

A. Coordinate Descent (CD)

Coordinate descent (CD) [29] is a well-established iterative
framework to exactly or approximately solve a large number
of convex optimization problems using a series of simple,
coordinate-wise updates. We first define the following function:

f(z1, . . . , zU ) = f(z) = ‖yw −Hwz‖22 + g(z), (10)

where g(z) is a convex regularizer. It is now important to
realize that both equalization problems (4) and (8) are special
cases when minimizing (10). In fact, by setting gMMSE(z) =
N0‖z‖22, minimizing (10) is equivalent to solving the MMSE
equalization problem (4). By setting gBOX(z) = χ(z ∈ CO),
where χ(z ∈ CO) denotes the characteristic function that is
zero if z ∈ CO and infinity otherwise, minimizing (10) is
equivalent to solving the BOX equalization problem (8). CD-
based equalization simply minimizes the function f(z1, . . . , zU )
in (10) sequentially for each variable (or coordinate) zu, u =
1, . . . , U , in a round-robin fashion.4 For more details on CD,
see [29], [30] and the references therein. We next detail the
CD algorithms for MMSE and BOX equalization.

4The performance of CD can often be improved by using a carefully-selected
variable-update order [29]; our own experiments have shown that for MMSE
and BOX equalization, a simple round-robin update scheme performs well
and is easier to implement.
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1) CD-based MMSE Equalization: Assume we want to
find the uth optimum value zu for the MMSE equalization
problem (4), i.e., we seek to compute the solution to

ẑu = arg min
zu∈C

‖yw −Hwz‖22 +N0‖z‖22, (11)

where we hold all other values zj , ∀j 6= u, fixed. Since this
is a quadratic problem, we can solve it in closed form by
setting the gradient of the function (10) with respect to the uth
component to zero:

0 = ∇uf(z) = hH
u (Hz− y) +N0zu. (12)

By decomposing Hz = huzu +
∑

j 6=u hjzj , we can solve (12)
for zu to obtain the following closed-form expression:

ẑu =
1

‖hu‖22 +N0
hH
u

y −
∑
j 6=u

hjzj

. (13)

This expression is exactly the CD update rule for the uth entry
of z. For every iteration, we can compute (13) sequentially
for each user u = 1, . . . , U , where we immediately re-use the
new result ẑu for the uth user in subsequent steps. We repeat
this procedure for a total number of K iterations in order to
obtain an estimate for s̃MMSE = z(K), where z(K) is the end
result of the above-described iterative process.

2) CD-based BOX Equalization: Analogously to CD-based
MMSE equalization, we can derive the update rule for the
BOX equalization problem (8). Even though the characteristic
function gBOX(z) = χ(z ∈ CO) is not differentiable, a similar
approach that uses subgradients (instead of gradients) enables
one to derive the following closed-form expression [30]:

ẑu = projCO

 1

‖hu‖22
hH
u

y −
∑
j 6=u

hjzj

. (14)

Here, projCO (·) is the orthogonal projection onto the convex
polytope CO and is given by

projCO (w) =

{
w if w ∈ CO
arg minq∈CO |w − q| if w /∈ CO. (15)

In words, if the argument w ∈ C is within the set CO, then the
projection outputs w; if w is outside the set CO, the projection
outputs the value q that is closest to w within the set CO in
terms of the Euclidean distance. We emphasize that for many
practically-relevant constellation sets O, the projection (15)
can be carried out efficiently. For any QAM constellation,
for example, we independently clip the real and imaginary
part of w onto the interval [−α,+α], where α is the radius
of the tightest box that covers the QAM constellation (see
Section II-D for the details). For BPSK with O = {−1,+1},
we clip the real part of w onto the interval [−1,+1] and set
the imaginary part to zero.5

5Orthogonal projections for PSK constellations sets are also possible. The
development of efficient algorithms for PSK systems is left for future work.

Algorithm 1 Optimized Coordinate Descent (OCD)
1: inputs: y, H, and N0

2: initialization:
3: r = y and z(0) = 0U×1

4: MMSE mode: α = N0 and C = C
5: BOX mode: α = 0 and C = CO
6: preprocessing:
7: d−1u = (‖hu‖22 + α)−1, u = 1, . . . , U
8: pu = d−1u ‖hu‖22, u = 1, . . . , U
9: equalization:

10: for k = 1, . . . ,K do
11: for u = 1, . . . , U do
12: z

(k)
u = projC

(
d−1u hH

u r + puz
(k−1)
u

)
13: ∆z

(k)
u = z

(k)
u − z(k−1)u

14: r← r− hu∆z
(k)
u

15: end for
16: end for
17: outputs: s̃ = [z

(K)
1 , . . . , z

(K)
U ]T

B. Optimized Coordinate Descent (OCD)

Instead of blindly computing the updates (13) and (14)
for MMSE and BOX equalization, respectively, we perform
preprocessing and algorithm restructuring in order to minimize
the amount of (recurrent) operations during each of the k =
1, . . . ,K iterations. These optimizations entail no performance
loss, i.e., both methods, OCD and CD, deliver exactly the same
results. We refer to the resulting method as the optimized CD
algorithm (short OCD), which is summarized in Algorithm 1.
OCD supports both BOX and MMSE equalization and the
individual optimization steps are as follows.6

1) Preprocessing: To reduce the computational complexity,
OCD precomputes certain key quantities that can be re-used
during each of the k = 1, . . . ,K iterations. This preprocessing
step not only results in significant complexity savings during
the iterative process (compared to CD), but also simplifies
our hardware implementation (see Section IV). In particular,
we precompute so-called (regularized) inverse squared column
norms of H, i.e., d−1u = (‖hu‖22 + α)−1 for u = 1, . . . , U ,
with α ≥ 0, as well as regularized gains pu = d−1u ‖hu‖22 for
u = 1, . . . , U . In MMSE mode, the regularization parameter is
given by α = N0; in BOX mode, the regularization parameter
is given by α = 0, which yields pu = 1, u = 1, . . . , U .

2) Equalization: In order to avoid recurrent operations
during the equalization process, OCD performs incremental
updates and re-uses intermediate quantities during each of the
k = 1, . . . ,K iterations. In essence, we perform sequential
updates on the so-called residual approximation vector, which
is defined as

r = y −
U∑

j=1

hjz
(k)
j (16)

6The OCD algorithm proposed in the conference version of this paper [1]
differs from the one presented here. The operations in OCD as proposed
here have been restructured in order to (i) support MMSE as well as BOX
equalization and (ii) reduce the hardware complexity.
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Fig. 1. Packet error rate (PER) for a massive MU-MIMO-OFDM system (“fp” denotes fixed-point performance). Optimized coordinate descent (OCD) with
box-constrained equalization achieves close-to-MMSE PER performance and outperforms the other three approximate equalization methods [7], [10], [13].
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Fig. 2. Packet error rate (PER) for a massive MU-MIMO-OFDM system. BOX equalization outperforms MMSE equalization, especially for systems with a
smaller BS-to-user antenna ratio. Furthermore, both approximate equalization methods achieve near-exact MMSE performance for a small number of iterations.

at every algorithm iteration k = 1, . . . ,K and for each user
u = 1, . . . , U . Note, however, that we do not recompute this
residual approximate vector for every iteration and user from
scratch. In contrary, we update the residual approximation
vector in every iteration and for each user by first computing
the symbol estimates z(k)u on line 12 of Algorithm 1. We then
compute a so-called delta value ∆z

(k)
u on line 13, which enables

us to update the residual r on line 14 without calculating the
residual (16) explicitly.

As mentioned above, OCD delivers exactly the same results
as CD, but does so at significantly lower computational
complexity. In fact, the original CD algorithm in Section III-A
requires one complex-valued inner product and U − 1 complex
scalar-by-vector multiplications per iteration k, whereas the
proposed OCD algorithm requires only one inner product and
one complex scalar-by-vector multiplication. More precisely,
for MMSE equalization, CD requires 4BU2 + 2U real-valued
multiplications7 per iteration k, whereas OCD requires only
8BU + 4U real-valued multiplications. Hence, for a large

7We count 4 real-valued multiplications per complex-valued multiplication.

number of BS antennas B, OCD requires roughly U/2 times
lower complexity than CD per iteration.

C. LLR Approximation for OCD

To compute the LLR values (9) for MMSE and BOX
equalization using OCD, we must resort to an approximation
as we never explicitly compute the inverse A−1w . To this
end, we use the approximation put forward in [11], [22]
for SC-FDMA-based systems. For OFDM, this approach
simplifies significantly and corresponds to approximating the
channel gains by µ̃w,i = d−1w,igw,i, where d−1w,i is the ith
regularized inverse squared column norm of Hw and gi,w
is the entry in the ith main diagonal of the Gram matrix Gw

at subcarrier w. Furthermore, the approach from [11], [22]
applied to OFDM systems results in the following SINR
approximation: ρ̃w,i = µ̃w,i/(1− µ̃w,i). We refer the interested
reader to [22] for more details. As we will show next, this LLR
approximation enables near-optimal performance in massive
MU-MIMO systems with large BS-to-user-antenna ratios.
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D. Error-Rate Performance

In order to assess the error-rate performance for the proposed
OCD-BOX algorithm, we perform Monte-Carlo simulations
in a coded 20 MHz MIMO-OFDM uplink system with 2048
subcarriers, where 1200 are used for data transmission as in
LTE Advanced (LTE-A) [31]. We use 64-QAM with Gray
mapping and a rate-3/4 turbo code. To account for spatial and
frequency correlation, we generate channel matrices using the
WINNER-Phase-2 model [32] with 7.8 cm antenna spacing as
in [11], [22]. For channel decoding, we use a log-MAP turbo
decoder. We report the packet error-rate, which is obtained by
coding over one OFDM symbol with 1200 data subcarriers.
The signal-to-noise-ratio (SNR) per bit in decibels, defined as

10 log10

(
Eb

N0

)
= 10 log10

(
E
[
‖s‖2

]
QE[‖n‖2]

)
. (17)

Figures 1 and 2 compare the packet error rate (PER) for
OCD-BOX with other exact and approximate data-detection
methods for massive MU-MIMO systems with various antenna
configurations. In particular, we show PER results for Neumann-
series detection [7], CG-based detection [10], and Gauss-Seidel
(GS)-based detection [13]. We also include an exact linear
MMSE equalizer as a reference. For all considered antenna
configurations, OCD-BOX outperforms Neumann, CG, and GS
detection for the same iteration count. We see that OCD with
BOX equalization (OCD-BOX for short) achieves near-exact
MMSE performance for only three iterations (K = 3) for
64 and 128 BS antennas, whereas K = 4 is required for the
“not-so-large” system with 32 BS antennas; lower values of K
result in a high error floor. These results confirm that for larger
BS-to-user-antenna ratios, approximate linear data detectors
approach the performance of the MMSE detector. We note
that for the considered antenna configurations, linear MMSE
detection achieves near-ML performance [7].

Figures 2(a), 2(b), and 2(c) compare the PER for OCD-BOX
against OCD with MMSE equalization (short OCD-MMSE).
The performance of OCD-BOX is superior than that of OCD-
MMSE, especially in the 32 BS antenna, 8 user case. In general,
the performance difference is more pronounced for smaller
BS-to-user-antenna ratios. This observation is in accordance to
recent theoretical results [23], and can be addressed to the fact
that the box constraint around the constellation is more accurate
than the quadratic penalty gMMSE(z) = N0‖z‖22 imposed by
MMSE equalization.

We conclude by noting that for many modern wireless
communication standards (such as LTE-A [31]) achieving a
target PER of 10% is sufficient. The proposed OCD detector
is able to meet this target performance at only a small SNR
loss compared to the exact MMSE-based data detector.

IV. VLSI ARCHITECTURE

We now detail our VLSI architecture for OCD-based
MMSE and BOX equalization. The architecture was designed
and optimized using Xilinx Vivado HLS (version 2015.2),
which allows us to conveniently simulate, parameterize, and
generate different OCD designs that support various antenna
configurations at design time. At run-time, the proposed designs

can be configured in terms of the numbers of supported users U
and maximum number of iterations K.

A. Architecture Overview
Figure 3 shows two high-level block diagrams of the pro-

posed OCD architecture. The inputs of our architecture are
the channel matrix Hw, the residual error vector r (which is
initialized to the received vector yw), and the regularization
parameter α, which we initialized to N0 and 0 for MMSE and
BOX equalization, respectively. Our architecture supports two
operation modes: (a) preprocessing (lines 6–8 of Algorithm 1)
and (b) OCD-based qualization (lines 10–16). Preprocessing
and equalization are carried out in a B-wide vector pipeline,
i.e., we process B-dimensional vectors at a time. In the
preprocessing mode, we compute the regularized inverse
squared column norms d−1u , u = 1, . . . , U , as well as the
regularized gains pu, u = 1, . . . , U . In the equalization mode,
we perform the iterations on lines 12–13 of Algorithm 1. In
order to support these two operation modes without the need of
redundant computation units, the processing pipeline shares the
key building blocks used in both modes. In particular, both of
the supported modes share the inner-product unit and the right-
shift unit (highlighted in red in Figure 3). The inner product
unit consists of B parallel complex-valued multipliers followed
by a balanced adder tree. We use multiplexers at the input of
the inner product unit, which enables us to switch between
preprocessing and equalization on a per-clock cycle basis.

One of the main implementation challenges of the proposed
OCD algorithm are data dependencies between successive
iterations, which prevent traditional architecture pipelining.
In particular, as it can be seen on line 14 of Algorithm 1,
each OCD iteration updates the temporary vector r and the
vector z

(k+1)
u given the previous vectors r and z

(k)
u . Hence,

in order to achieve high throughput, we deploy pipeline
interleaving [33], i.e., we simultaneously process multiple
subcarriers in a parallel and interleaved manner within the
same architecture. For example, after performing an OCD
iteration for the first subcarrier, we start an OCD iteration for
the second subcarrier in the next clock cycle; we repeat this
interleaving process until all pipeline stages are fully occupied.
Our final architecture uses a total number of 24 pipeline stages,
which enables our design to achieve up to 260 MHz in a Xilinx
Virtex-7 FPGA (see Section V for more details). We note
that it is possible to achieve even higher clock frequencies
by increasing the number of pipeline stages (especially for
smaller small B); this approach, however, results in a significant
hardware overhead.

B. Architecture and Fixed-point Optimization
In order to optimize the hardware efficiency of our archi-

tecture, we use fixed-point arithmetic throughout our design.
We achieved a negligible implementation loss with 16 bit
precision with 11 fractional bit for most internal signals;
see Figure 1 for the fixed-point (fp) performance. Our design
has an implementation loss of less than 0.2 dB SNR (measured
at a target PER of 10%) compared to floating-point performance
for the considered scenarios, which is a result of the following
two optimizations.
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Fig. 3. High-level block diagram of the proposed OCD-based preprocessing and equalization pipeline. The pipeline is reconfigurable for various BS-antenna
configurations at design time, and is able to perform preprocessing as well as MMSE or BOX equalization. The shared computation units between preprocessing
and equalization are highlighted in red.

1) Inner-product unit: This unit first computes entry-wise
products of two B-dimensional vectors and then, generates the
final sum of these products. We use a balanced adder tree to
compute the final sum and 36 bit adders to achieve sufficiently
high arithmetic internal precision. During preprocessing, the
inner-product unit computes ‖hu‖22 (line 7 of Algorithm 1);
during equalization, the same unit computes hH

u (r) (line 12).
As both of these terms are close to B (for large values of
B), we shift these terms by b = dlog2(B)e bits to the right
in order to reduce the dynamic range. Since we shift ‖hu‖22
by b to the right, when we compute the reciprocal value,
d−1u = (‖hu‖22 + α)−1, we effectively shift the reciprocal
value d−1u by b bits to the left. In the inner-product unit, we
also shift the term hH

u r by b bits to the right. Consequently,
we do not need to undo both of these shifts, as they cancel
out during the multiplication on line 12 of Algorithm 1.

2) Reciprocal unit: This unit consists of two parts. The first
part normalizes the input value to the range [0.5, 1], which is
accomplished using a leading-zero detector and programmable
shift to the left. The second part generates a reciprocal value
for the normalized input using a look-up table (LUT). We use
a FPGA BRAM18 to implement a 18 bit, 2048 entry LUT,
where the leading 11 bits of the normalized input value are

TABLE I
IMPLEMENTATION RESULTS ON A XILINX VIRTEX-7

XC7VX690T FPGA FOR DIFFERENT BS ANTENNA NUMBERS

Array size B = 32 B = 64 B = 128

# of Slices 2 873 6 508 11 094
# of LUTs 6 059 12 588 23 914
# of FFs 10 704 24 801 43 008
# of DSP48s 198 390 774
# of BRAM18s 2 2 2

Max. clock frequency 261 MHz 261 MHz 258 MHz

used to point to the entry in the LUT that stores the associated
normalized reciprocal. Finally, we denormalize the normalized
reciprocal value by another left shift.

V. IMPLEMENTATION RESULTS AND COMPARISON

We now show FPGA implementation results and compare
our design to the recently proposed data-detectors for massive
MU-MIMO systems in [7], [10], [12], [13].
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TABLE II
AREA BREAKDOWN ON A XILINX VIRTEX-7 XC7VX690T FPGA FOR DIFFERENT BS ANTENNA NUMBERS

Main units # of Slices # of LUTs # of FFs # of DSP48s # of BRAM18s

B
=

3
2

r update unit 256 (8.91%) 1 024 (16.9%) 0 (0%) 0 (0%) 0 (0%)
Inner-product unit 811 (28.2%) 1 045 (17.3%) 2 416 (22.6%) 96 (48.5%) 0 (0%)
hu∆zu scaling unit 265 (9.22%) 249 (4.11%) 1 137 (10.6%) 96 (48.5%) 0 (0%)
Miscellaneous 1 541 (53.6%) 3 741 (61.74%) 7 151 (66.8%) 6 (3.0%) 2 (100%)
Total 2 873 (100%) 6 059 (100%) 10 704 (100%) 198 (100%) 2 (100%)

B
=

6
4

r update unit 512 (7.87%) 2 048 (16.3%) 0 (0%) 0 (0%) 0 (0%)
Inner-product unit 1 627 (25.0%) 2 006 (15.9%) 5 776 (23.3%) 192 (49.2%) 0 (0%)
hu∆zu scaling unit 485 (7.45%) 505 (4.01%) 2 161 (8.71%) 192 (49.2%) 0 (0%)
Miscellaneous 3 884 (59.7%) 8 029 (63.8%) 16 864 (68.0%) 6 (1.6%) 2 (100%)
Total 6 508 (100%) 12 588 (100%) 24 801 (100%) 390 (100%) 2 (100%)

B
=

1
2
8

r update unit 1 024 (9.23%) 4 096 (17.1%) 0 (0%) 0 (0%) 0 (0%)
Inner-product unit 3 447 (31.1%) 4 109 (17.2%) 11 676 (27.0%) 384 (49.6%) 0 (0%)
hu∆zu scaling unit 1 955 (17.6%) 5 120 (21.4%) 4 211 (9.72%) 384 (49.6%) 0 (0%)
Miscellaneous 4 668 (42.1%) 10 589 (44.3%) 27 421 (63.3%) 6 (0.8%) 2 (100%)
Total 11 094 (100%) 23 914 (100%) 43 308 (100%) 774 (100%) 2 (100%)

TABLE III
THROUGHPUT AND LATENCY ON A XILINX VIRTEX-7 XC7VX690T FPGA
FOR K ITERATIONS AND 64-QAM, AND 128 BS AND 8 USER ANTENNAS

K = 1 K = 2 K = 3 K = 4

Max. throughput [Mb/s] 1 363 496 376 302
Latency [µs] 1.58 2.33 3.08 3.82

A. FPGA Implementation Results

We designed three different implementations for the fol-
lowing BS antenna configurations: B = 32, B = 64 and
B = 128. For each configuration, we provide post place-and-
route implementation results on a Xilinx Virtex-7 XC7VX690T
FPGA. All our designs support U ≤ 32 users and K ≤ 256
OCD iterations; both of these parameters can be set at run-time.

The hardware complexity, resource utilization, and maximum
clock frequency results are summarized in Table I. We note
that there is no particular critical path in all our designs as
Vivado HLS evenly optimizes the delays among all pipeline
stages. A detailed area breakdown of the main units is shown in
Table II. The “r update unit” corresponds to the output adder
in Figure 3(b); the “inner-product unit” corresponds to the unit
that computes hH

u hu and hH
u r in Figure 3(a) and Figure 3(b),

respectively; the “hu∆zu scaling unit” corresponds to the
scaling block in Figure 3(a); all remaining circuitry has been
flattened by Vivado HLS and is subsumed in “miscellaneous.”
Since the proposed architecture performs operations on B-
dimensional vectors, the resource utilization (excluding the
BRAMs) scales linearly with B. Since the quantities Hw

and yw are assumed to be stored in external memories, our
OCD architecture only uses two BRAM18s: one for the
reciprocal LUT and one to store the regularized channel
gains pu, u = 1, . . . , U .

The maximum achievable throughput as well as the process-
ing latency are shown in Table III. We see that the throughput
only depends on the maximum iteration number K and the
clock frequency, but does not depend on U . The reason is
because the number of bits per subcarrier and the number of
clock cycles required to process 24 subcarriers grows linearly

with respect to U . For example, doubling U doubles the number
of bits per subcarrier. However, since the number of OCD
updates is KU , the number of required clock cycles also
doubles; this results in a constant throughput. For K = 3
iterations, which was shown in Figure 1 to achieve near-optimal
performance, our design achieves 376 Mb/s. Hence, the use of
only three parallel instances (to process subcarriers in parallel)
would easily exceed 1.1 Gb/s, while consuming less than 65%
of the FPGA’s BRAM18s (cf. Table IV).

The processing latency increases roughly linearly with
respect to K and U . More specifically, the processing latency
of this design is approximately 24(K + 1)U +O clock cycles,
where O is the number of cycles required to flush the pipeline.
Typically, 26 cycles are required to flush the pipeline, the exact
value of O depends on B. The (approximately) linear increase
in K can be seen in Table III and for K = 3, our design
requires only 3.08µs to produce its first equalized output.

B. Comparison

Table IV compares OCD to other, recently proposed large-
scale MIMO data detectors, namely the conjugate gradient
(CG)-based detector [10], the Neumann-series detector [7], the
Gauss-Seidel (GS) detector [13], and triangular approximate
semidefinite relaxation (TASER) [12]. All of these detectors
have been implemented on the same FPGA and for a 128
BS antenna, 8 user system. We see that for the same system
configuration, OCD outperforms all other designs in terms of
hardware efficiency, which we define as throughput per FPGA
LUTs. Furthermore, our OCD detector achieves superior PER
performance than the CG, Neumann, and GS detector (see
Figs. 1(b) and 1(c)), which demonstrates the effectiveness
of OCD. TASER, in contrast, achieves better error-rate per-
formance for the considered antenna configuration8 but only
supports QPSK constellations. We note that the throughput of
(approximate) linear detectors, such as the ones in [7], [10], [13]
scales linearly in the number of bits Q per symbol; for TASER,
however, the throughput is limited by QPSK modulation, which

8TASER achieves near-ML performance in “not-so-massive” MIMO systems,
where the number of users is comparable to the number of BS antennas.



9

TABLE IV
COMPARISON OF 128× 8 DATA DETECTORS FOR MASSIVE MU-MIMO SYSTEM ON A XILINX VIRTEX-7 XC7VX690T FPGA

Detector CG [10] Neumann [7] Gauss-Seidel [13] TASER [12] OCD

Performance near-MMSE near-MMSE near-MMSE near-ML near-MMSE
Highest modulation 64-QAM 64-QAM 64-QAM QPSK 64-QAM
Iteration count K 3 3 1a 3 3

# of slices 1 094 (1.0%) 48 244 (45%) n.a. 4 350 (4.0%) 11 094 (10%)
# of LUTs 3 324 (0.8%) 148 797 (34%) 18 976 (4.3%) 13 779 (3.2%) 23 914 (5.5%)
# of FFs 3 878 (0.4%) 161 934 (19%) 15 864 (1.8%) 6 857 (0.8%) 43 008 (4.96%)
# of DSP48s 33 (0.9%) 1 016 (28%) 232 (6.3%) 168 (5.7%) 774 (21.5%)
# of BRAM18s 1 16 6 0 2

Maximum clock frequency [MHz] 412 317 309 225 258
Latency [clock cycles] 951 196 n.a. 72 795
Maximum throughput [Mb/s] 20 621 48 50 376

Throughput/LUTs 6 017 4 173 2 530 3 629 15 597

aThe method uses a special Neumann-series initializer followed by one GS iteration.

prevents this detector to achieve comparable throughputs as
the other approximate methods.

In summary, we see that OCD outperforms the next-best
design (namely the CG-detector from [10]) by more than 2.6×
in terms of hardware efficiency. The reasons for this advantage
are due to the facts that (i) OCD can be implemented in a very
regular and parallel manner and (ii) preprocessing requires
significantly lower complexity compared to that of the other
detectors that require the computation of the regularized Gram
matrix Aw, which can be a significant burden in massive
MU-MIMO-OFDM systems.

VI. CONCLUSIONS

We have proposed a novel coordinate descent (CD)-based
data detector, called optimized CD (OCD), for massive MU-
MIMO systems that use orthogonal frequency division multi-
plexing (OFDM). The proposed OCD detector enables high-
performance linear MMSE and non-linear box-constrained
data detection using a simple, parallel VLSI architecture that
requires low hardware complexity. Our FPGA reference design
achieves 376 Mb/s for a 128 BS antenna, 8 user system, and
substantially outperforms existing approximate linear data-
detection methods in terms of hardware efficiency and/or error-
rate performance. Our results show that OCD enables realistic
OFDM-based massive MU-MIMO systems to support tens of
users communicating with hundreds of BS antennas, while
achieving high throughput at low implementation costs.

There are many avenues for future work. OCD can also
be used for linear and non-linear precoding in the massive
MU-MIMO downlink; a corresponding study is part of ongoing
work. Computing exact soft-output values for OCD-based
detection (for MMSE and BOX equalization) is an interesting
open research problem. Finally, accelerated CD algorithms have
been proposed recently [34]; such methods may lead to even
faster convergence and hence, could enable higher throughput
at the same error-rate performance when implemented in VLSI.
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