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ABSTRACT
Difficult multiple-choice (MC) questions can be made easy by
providing a set of answer options of which most are obviously
wrong. In the education literature, a plethora of instruc-
tional guides exist for crafting a suitable set of wrong choices
(distractors) that enable the assessment of the students’ un-
derstanding. The art of MC question design thus hinges on
the question-maker’s experience and knowledge of the poten-
tial misconceptions. In contrast, we advocate a data-driven
approach, where correct and incorrect options are assembled
directly from the students’ own past submissions. Large-
scale online classroom settings, such as massively open online
courses (MOOCs), provide an opportunity to design optimal
and adaptive multiple-choice questions that are maximally
informative about the students’ level of understanding of the
material. In this work, we (i) develop a multinomial-logit
discrete choice model for the setting of MC testing, (ii) derive
an optimization objective for selecting optimally discrimi-
native option sets, (iii) propose an algorithm for finding a
globally-optimal solution, and (iv) demonstrate the effective-
ness of our approach via synthetic experiments and a user
study. We finally showcase an application of our approach to
crowd-sourcing tests from technical online forums.
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CCS Concepts
•Applied computing → Computer-assisted instruc-
tion;

Figure 1: Geometric intuition behind the choice of
an optimal set of options in a multiple choice test:
we imagine the subject’s distance from the wall to
be inversely related to their “ability to see.” If asked
which colored dot painted on the wall is the right-
most dot, subjects closer to the wall would be more
likely to answer the question correctly, and subjects
farther away would be most likely to guess. The ques-
tion of optimal choice set design can then be posed
as: “where on the wall do we paint the dots, such
that I best learn about your distance to the wall
based on your answers?”

1. INTRODUCTION
The design of a good set of options in multiple-choice ques-

tions (MCQs) is notoriously difficult [15]. Incorrect options,
also known as distractors, should ideally be picked from a
representative set of misconceptions that students commonly
share. But even if this set is representative, the question
might still fail to distinguish between students who were



“close” to the correct answer, and those who were clueless. In
the adaptive testing literature [11, 20], the questions them-
selves are selected to be at a level that is appropriate for the
student, such that their responses result in the most accurate
estimate of their knowledge. In this work, we pursue the
same goal, but at the level of designing a single question,
i.e., to select a set of options to present as potential answers.
This problem is not a straightforward extension of the classic
adaptive testing problem for two reasons: (i) from an applica-
tion perspective, only recently with the advent of web-scale
learning platforms we are able to leverage the massive num-
ber of student submissions and answer click-through logs
to generate rich, adaptive, and data-driven questions that
exploit actual student misconceptions; (ii) from a technical
level, selecting choices is inherently a batch optimization
problem, i.e., all options must be considered jointly during
optimization; this is in stark contrast to question selection,
which typically assumes independence between questions and
finds the optimal set in a greedy fashion (though test bank
optimization is an exception, see Chapter 7 in [5]) . The main
contributions of our work are summarized as follows:

• We propose an objective function for selecting an optimal
set of choices in a discrete choice model, given the estimated
user ability, and we investigate the solutions across different
regimes of student ability.

• We propose an algorithm for finding a globally-optimal
option choice set.

• We collect and release a dataset used in our experiments:
A “U.S. States Quiz” dataset, where users were given an
MCQ quiz testing their knowledge of U.S. states.

• We propose a new paradigm of data-driven test design by
leveraging data from technical online forums, and showcase
the applicability of this model to the task of MCQ design
from StackExchange posts.

2. RELATED WORK

2.1 Education
In the education literature, multiple choice testing has

received significant attention, studying a broad range of
aspects of MCQ design, e.g., to ensure validity (i.e. does the
question measure learning outcomes?) [8, 7], to decide on
the optimal number of choices [15, 9], and to design good
distractors [10, 7]. In an empirical study [8], Haladyna and
Downing concluded that the key in multiple choice item
design was “not the number of distractors but the quality of
distractors.”They find that, almost unanimously, high-quality
distractors are considered to be those that represent common
student misconceptions [9]. Thissen et al. [17] developed
a graphical analysis method of distractors based on the
response statistics in the context of a nominal item response
model, with the goal of facilitating a posteriori analysis of
multiple choice items. Computational methods have been
proposed for the task of multiple choice item design (i.e.
designing a question and its choices), but are restricted to
specific domains, such as vocabulary [3], grammar testing [2],
or topic-specific comprehension [13]. For all these methods,
however, distractors are generated automatically based on
the structure of the problem domain. We are unaware of
prior results that directly optimize for a distractor choice set
based on the data of past student submissions.

2.2 Active Learning and Adaptive Testing
The field of adaptive testing borrows techniques from the

areas of active learning and optimal experiment design. Adap-
tive testing is classically posed as a task of item set opti-
mization (classically in an online setting, see [11, 20]), where
the optimization objective is related to the estimator effi-
ciency, typically of student ability (see Chapter 7 of [5] for
an overview). More recently, methods based on the prin-
ciple of estimator efficiency have been applied to the task
of test-set reduction [18] in the context of a multidimen-
sional extension of the Rasch model (SPARFA) [19]. We can
view choice-set optimization as a non-trivial generalization
of optimal test-design that was traditionally explored in the
setting of item-set optimization only. We argue that this
extension will become particularly relevant in rapidly grow-
ing, data-intensive educational settings, where a subset of
real student submissions can be efficiently selected into an
optimal distractor set for a student of a specific ability level.

3. MODEL
In formulating our model, we require it to exhibit the

following three properties:

Property 1 The model specifies a probability of a student
choosing a particular option as a function of that student’s
ability and that option’s correctness, such that students
of greater ability are more likely to pick the most correct
option (we will discuss this aspect in detail below).

Property 2 A “perfect” student (with the highest attain-
able ability) chooses the correct option with probability 1.

Property 3 A student with the lowest attainable ability
makes their choice uniformly at random.

For simplicity, we require that there is exactly one correct
option, leaving the remaining options as distractors that lie
on a continuum of apparent correctness, i.e., options that
vary in how difficult they are to discern from the correct
answer (and such that a more able student is more likely to
discern the correct option).

A multinomial logit model with a partial order constraint
on the apparent correctness of each choice βj and a non-
negativity constraint on the student’s ability θi, exhibits all
of the properties above. Specifically, we use the following
statistical model:

P (i picks option j | θi, {βj}j∈C) =
exp(θiβj)∑

j′∈C exp(θiβj′)
, (1)

where j is the option index, βj∗ > βj , ∀j ∈ C \ j∗, and j∗ is
the correct option. Furthermore, we assume θi ≥ 0, ∀i, where
θi is the ability of student i, and {βj}j∈C is the set of option
parameters presented to the student, encoding the apparent
correctness of each option. Without an explicit partial order
constraint on the choices and a non-negativity constraint on
the students, the model would capture the relative preference
of subjects towards choices. In psychometrics this model is
known as the nominal response model [5] and is also related
to the more general multidimensional unfolding models [4,
16] often used to investigate the relationship between subjects
and preferences. In our setting, the non-negativity constraint
on the ability θi, combined with the partial order constraints
on the option parameters {βj} are critical to obtaining the
desired interpretation of the ability parameter θi, namely as



capturing the ability of the student (larger values indicate
greater ability). One can easily verify that Property 2 and
Property 3 are both satisfied by considering the limiting
behavior of (1) when θi = 0 and θi =∞ respectively. Prop-
erty 1 is satisfied as a result of P (i picks option j∗ | ·) (i.e.,
the probability of student i picking a correct option) being
a monotone function of θi. As a consequence, performing
optimal option subset selection under this model and these
constraints will result in subsets that are most informative
about the students’ abilities.

It is also important to understand the limitations and
additional assumptions underlying this model. The most
significant limitation is what is known as the independence
of irrelevant alternatives (IIA) assumption [14]. The IIA
assumption is violated whenever the two options are not
inherently different. For example, in the setting of reusing
student responses as potential options in a test, this would
occur if the two options are either completely identical or
are paraphrases of each other. We leave dealing with the
problem of IIA to future work.

To place our model in the context of existing work, we
compare it with two closely related models: the classical
Rasch model [5] and the recent model proposed by Bachrach
et al. [1].

3.1 Relationship to the Rasch model
The classical dichotomous Rasch model defines the likeli-

hood of a student answering a question correctly as a function
of the question’s difficulty and the student’ ability, i.e., it is
agnostic to the actual choice made by the student in an MCQ
setting. The likelihood of student i with ability θi getting
the question j with difficulty qj correct is given by:

P (i correctly answers j | θi, qj) =
1

1 + exp(−(θi − qj))
.

To gain intuition about how our model encodes question
difficulty, consider the case of only two options: the correct
option with parameter βj∗ and the incorrect option with
parameter βj . We can now express the likelihood of the
student answering this question correctly using our model as
follows:

P (i correctly answers j | θi,∆j∗−j) =
1

1 + exp(−θi∆j∗−j)
,

where ∆j∗−j = β∗j −βj , which is positive by definition (since

βj∗ > βj). By analogy with the Rasch likelihood, ∆−1
j∗−j

captures a similar notion of question difficulty : the farther
apart are the two options in the parameter space, the “easier”
is the resulting question.

When the question contains more than two options, the
likelihood of the student answering the question correctly
can be expressed as:

P (i right on j | θi, {∆j∗−j}j) =
1

1 +
∑
j∈Q exp(−θi∆j∗−j)

,

where an exponential term containing the distance ∆j∗−j
between the correct option and every remaining option now
appears in the denominator. Observe that the probability of
getting the question right approaches one only when the cor-
rect option parameter (scaled by ability θi) is well-separated
from every other option (distractor). An important advantage
offered by modeling individual choices is that the model’s
estimate of the students’ abilities will not only depend on

which questions were answered correctly and incorrectly, but
also on the nature of the incorrect answers chosen. Conse-
quently, our model could distinguish between the abilities
of two students, even if both of these students answered all
questions incorrectly.

3.2 Relationship to Bachrach et al.
Recently Bachrach et al. [1] extended the dichotomous

Rasch to account for the observation of the actual choice,
with the goal of inferring the correct answers from choice click-
through alone (i.e., in an unsupervised way). The (simplified)
generative process of their model is defined as follows:

zij ∼ P (i correctly answers j | θi, qj)

P (i picks option k | zij , πk) =

{
πk if zij = 1
1/K otherwise,

which can be interpreted as a mixture model of two com-
ponents: (i) if the student answers the question correctly
(zij = 1), the student picks option k with probability πk and
(ii) if the student answers the question incorrectly (zij =
0), the student picks an option uniformly at random (i.e.,
πk = 1/K where K is the number of options). The proba-
bility of the student answering correctly P (zij = 1 | θi, qj)
is parametrized by the standard Rasch model described in
Section 3.11.

While both our model and the model by Bachrach et al.
can be used for the task of estimating student and question
parameters in the absence of annotated data (i.e., answer
key), the fundamental distinction lies in the capability of
our formulation to be used for the task of optimal choice
set design—a task that is not feasible with the model by
Bachrach et al. The underlying reason for this distinction
is because our model implicitly couples choice parameters
and question difficulty (see Section 3.1), allowing us to tune
question difficulty to students of varying ability levels by
optimizing over choice sets. In contrast, in the Bachrach et
al. model, the question difficulty and choice parameters are
decoupled, making it impossible to derive an objective that
relates the expected informativeness of a question about a
student and a set of presented choices.

4. OPTIMAL CHOICE SETS
We formulate the problem of optimal choice set design

as active learning—query a user (student) with an instance
(choice set) such that the expected outcome (student’s an-
swer) maximizes information about the unknown parameters
(student ability). Given a question’s complete set of potential
answer options Q, a student with ability θ is presented with a
subset C ⊆ Q. We are interested in finding a subset C∗ ⊆ Q
that is optimal in some sense for the user with a given ability.
Specifically, we are interested in choosing C that results in
the smallest variance of the maximum likelihood estimator
of θ, which is equivalent to C with the maximum Fisher
information w.r.t. θ:

C∗ = argmax I(θ;C) (2)

where Fisher information of set C, I(θ;C), is given by

I(θ;C) = −E
[
∂2

∂θ2
log f(θ;C)

∣∣∣∣ θ] . (3)

1This is a slight oversimplification of the original model
(ignoring question “discriminability” parameter) proposed by
Bachrach et al., but captures its key aspects for our purpose.



Here, f(θ;C) is the likelihood function in (1). It can be shown
that the solution to the above is the following combinatorial
optimization problem2:

maximize
{xn}

∑N
i

∑N
j>i xixj(βi − βj)

2 exp(θ[βi + βj ])∑N
i

∑N
j xixj exp(θ[βi + βj ])

subject to xn ∈ {0, 1}, ∀n ∈ Q
N∑
n=1

xn ≤ K,

(4)

where {xn}n=1...N are indicator variables (xn ∈ {0, 1}) that
select choices from Q to be included in C, N = |Q| (i.e., the
total number of potential options) and K is the maximum
permissible size of C (e.g., four options).

4.1 Asymptotically optimal choices
We now investigate the nature of the optimal choice sets.

Consider two limiting cases: a student with a large ability
(θi →∞), and a student with a low ability (θi → 0).

Case θi → ∞: It is straightforward to show that in the
limit of “infinite ability,” the information will go to zero.
However, the rate at which it goes to zero depends on the
choice set, allowing us to gain insight into the kinds of choice
sets that will be “preferred” for users with a large ability.
The logarithm of the information function will have a linear
asymptote, with the slope dominated by the largest expo-
nential in the numerator and the denominator. We can show
that as θ →∞, only the two choices with the largest values
of β remain relevant (i.e. {βmax, βmax−1}), with the optimal
spacing between them, βmax − βmax−1, given by:

βmax − βmax-1 =
2

θ
.

Clearly, the greatest Fisher information for large values of θ
will be obtained when βmax−1 ≈ βmax, i.e., when the distance
between the two top choices approaches zero.

Case θi → 0: In the limiting case of θ → 0, the objective
reduces to:

maximize
1

K2

K∑
k

K∑
k′>k

(βk − βk′)2,

where K is the number of options we seek to display to
the student and k indexes over those options. The solution
to the above can be obtained by choosing a subset of the
choices from Q with the smallest β (“left-most” or “incorrect”
choices) and a subset of choices from Q with the largest
β (“right-most” or “correct” choices) (proof omitted). The
intuition behind this solution requires some explanation. It
is instructive to consider the optimal solution in the case of
only two choices. The optimal “spacing” between the correct
choice and the distractor (∆ij) will lie somewhere between 0
and ∞, but where exactly depends on our prior belief about
the ability of the student (θ). An intuitive interpretation of
this solution can be gained by relying on a related notion
of information gain: the expected distance (KL-divergence)
between the prior and the posterior (after observing the
choice) on θ (ability). Information gain exhibits the same
limiting behavior: when the two choices are infinitely far
apart (∆ij →∞), the student will always pick the correct
option regardless of their ability—thus, the posterior will

2derivation ommited due to space limitation

not be updated as a consequence of their choice (hence,
no information gain). In the extreme of the two choices
spaced very close together, the student will always “flip a
coin” between them, again giving away no information about
their ability. It is this last scenario that will be fundamental
to understanding the optimal choice set (with more than two
choices) when θ = 0.

Consider now introducing additional choices into the choice
set. Appealing to the information gain interpretation, we
again consider the prior-posterior gain of each potential
choice (there are K of them now). As in the case with only
two choices, the prior-posterior gain for each option will be
non-zero if the student has a “more than a coin-flip” chance
of choosing the better option (i.e., giving the student an op-
portunity to demonstrate their ability), from which it follows
that the remaining options must be sufficiently far apart for
a student with θ ≈ 0. Because under the prior of θ = 0 each
outcome (choice) is equally likely, the expected information
gain is a sum of of such prior-posterior gains. It follows then
that the spacing configuration that maximizes total inter-
choice distance will also maximize the expected information
gain. It also explains why there should be a large “dead-
zone” (i.e., no other choices) between the choices separated
at the “correct” and the “incorrect” extremes: inserting even
a single choice in the middle will result in the student with
θ ≈ 0 flipping a coin between the choices at the “correct”
extreme and the choice in the middle, neutralizing all of the
prior-posterior gain.

4.2 Optimization algorithm
Although problem (4) is a non-linear combinatorial opti-

mization problem, we show that it can be transformed into
a series of integer linear programs (ILPs) which can be used
to find a globally optimal solution. See Appendix A for the
details and analysis of our algorithm.

5. SYNTHETIC EXPERIMENTS

5.1 Parameter learning
The simulation is performed as follows: 100 student ability

parameters (θi) are sampled from a uniform distribution; 50
questions with 20 options each are generated, where each
option parameter β is independently sampled from a zero-
mean normal distribution. We evaluate a range of variances
for the distribution over choice parameters and study its
effect on the quality of the inferred parameters.

We summarize the performance of the inference algorithm
via (i) rank correlation of the inferred and ground truth
rankings of students and (ii) the accuracy in identifying
the correct answers in questions. We use Kendall Tau as a
metric of rank correlation. Kendall Tau returns a quantity
in the range [−1,+1], where +1 indicates perfect correlation
(every pair of students in both rankings is in a consistent
order), −1 when the rankings are inverted, and 0 when the
rankings are not correlated. In predicting the correct answer
for a question, recall that in our model, the choice with the
largest parameter β is interpreted as the correct answer (see
Section 3). Accuracy in predicting correct answers, therefore,
is defined as a fraction of questions where the predicted
correct answer matches the ground-truth correct answer.

Figures 2(a) and 2(b) depict accuracy and rank correlation
as a function of the number of choices (i.e., multiple choice
options) presented in each question, and as a function of the
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Figure 2: Performance (simulation) of the model in (a) predicting the correct answers in a set of questions
and (b) ranking students by their ability, as a function of (i) number of choices shown in each question
and (ii) variance of the choice parameter distribution (shown as standard deviation σβ). “Easier” questions
correspond to those with a “wider” spread between choice parameters (i.e., higher variance). We can conclude
the following on the basis of these results: (i) more choices improves performance in both, predicting correct
answers and ranking students, but with diminishing returns, and (ii) showing “easier” questions generally
improves performance in correct answer prediction and ranking, however, the model is able to rank well even
when the correct answers are more difficult to identify (see Section 5). Note that the random baseline for
accuracy in (a) is 5% as there are 20 choices for each question in the simulation.

variance of the distribution over choice parameters β. Recall
that the variance of the distribution from which we sample
the choice parameters β is inversely related to the difficulty
of the resulting question. As we discussed in Section 3.1,
the question becomes “easy” (i.e., students of lower θ will
have a high probability of getting it right) when the choice
parameters are “spread out” (which is achieved when the
choices are sampled from a high-variance distribution). Both
Figure 2(a) and Figure 2(b) indicate that (i) more choices
result in better performance (higher accuracy in identifying
correct answers and higher rank correlation between the true
and inferred student rankings), and (ii) “easier” questions
(i.e., questions whose choice parameters are sampled from a
high-variance distribution) generally result in better accuracy
and rank correlation.

It is worthwhile to analyze the observation that student
rank-correlation (Figure 2(b)) remains the same between
the “Easy” and “Medium” conditions, while accuracy (Figure
2(a)) drops considerably. This can be attributed to the fact
that in inferring the ability parameter of a student, the model
relies jointly on the parameters of every choice in the set,
i.e., not only on whether the chosen option was correct. As
a result, while the ordering of the top two choices may be
incorrect (resulting in an incorrect prediction of the correct
answer), the remaining choices still play an important role
in inferring student parameters (and thus in the quality of
the ranking).

5.2 Optimal choice sets
We now evaluate the choice subset selection optimization

objective introduced in Section 4. We again generate a sim-
ulated classroom with 50 students and 50 questions3. In
contrast to the experiment in Section 4, here we perform
parameter inference sequentially after each student answers

3Student and choice parameters were sampled from uniform
distributions with support (0, 1) and (0, 100) respectively
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Figure 3: Rank correlation between the true and in-
ferred student rankings as a function of the num-
ber of questions answered by each simulated student,
separated by the choice sampling strategy. Optimiz-
ing choice sets according to the proposed objective
(OPT-average and OPT-individual) results in better
rank correlation with fewer questions compared to
when the choice sets are sampled randomly. Optimiz-
ing choice sets according to the individual student
abilities (OPT-individual) marginally improves per-
formance over optimizing choice sets based on the
average student ability (OPT-average).



a question, simulating an adaptive testing scenario. For every
question, we sample choice sets of size 2 according to three
different sampling strategies: (i) random: choices are drawn
uniformly at random, (ii) OPT-individual: the optimal
choice set is selected for each student according to that stu-
dent’s estimated ability parameter, and (iii) OPT-average:
the optimal choice set is selected according to the average
estimated ability of the student population (i.e. choice sets
are identical for each student). Figure 3 compares the per-
formance across the three conditions using the student rank
correlation metric introduced in Section 5. On the basis of
these results, we draw the following conclusions: (i) present-
ing choice sets optimized using the objective introduced in
Section 4 with the inferred parameters achieves significantly
better rank-correlation and with fewer questions than when
the choice sets are sampled randomly; (ii) optimizing choice
sets based on the individual student parameters marginally
improves performance over optimizing choice-sets to the av-
erage ability of the student population. Note, however, that
in practice the exact gains will vary depending on the nature
of the student and choice parameter distributions.

6. USER STUDY: “US STATES QUIZ”
We performed a real-world study to evaluate the impor-

tance of data-driven choice set selection in the context of a
quiz that asks users to name states of the United States. In
this setting, we considered a question to be a specific state
which the person is required to identify by picking a correct
choice out of a set of options (other states). This problem
serves as an excellent platform for evaluating our model for
two reasons:

1. Ease of evaluation: The fact that the set of possible
answers to each question is finite allows us to use the raw
score on a question where all 50 options are presented as
the “ground-truth” of the user’s knowledge in this domain.
Any other test based on only a subset of the options (and
consequently a method used to obtain the options) can be
evaluated against this “ground-truth” by measuring the
correlation of the two scores.

2. Large range of “good” and “bad” choices: Not all
distractors in this setting are “created equal”: intuitively
we should expect that some states, like those that border
the correct state, to be easily mistaken for the correct
answer. This provides an opportunity for a data-driven
method to excel in finding “good” choice sets for building
effective questions.

6.1 Data collection
Mechanical Turk workers residing in the U.S. were solicited

to a task titled “How well do you know U.S. states?”, which
was briefly described as a quick quiz to test one’s knowledge
of the U.S. states, consisting of two stages:

1. Stage I (fullMCQ): Workers are presented with a map
of the U.S. with a randomly highlighted state and 50
options, one for each state, that they are required to
choose from. This selection is made for every one of the
50 states, presented in random order. Workers are not
revealed the correct answer, and are discouraged from
looking up the answers externally.

2. Stage II (subsetMCQ): The same workers then repeat
the test, but now with only 4 options for each of the 50

states. Options are chosen according to two strategies:
Random and Optimal described in more detail below.

Two experiments were conducted (Exp1, Exp2) under two
different conditions for how the multiple choice options were
sampled:

1. (Exp1) Random: (N = 110) During the second stage of
the task when only 4 choices are presented (subsetMCQ),
the choices are selected uniformly at random from the 50
options.

2. (Exp2) Optimal: (N = 67) During the second stage of
the task (subsetMCQ), the choices are selected accord-
ing to the optimization objective introduced in Section
4. Data collected during the Random condition is used
to fit the model parameters to be used for optimizing the
subsets. The subsets are optimized for the average ability
of the users in the Random condition (this corresponds
to the OPT-average strategy introduced in Section 5).

6.2 Evaluation
We propose two strategies for empirically assessing the

quality of an MCQ test via two correlation metrics:

1. Within-subject correlation The performance of the
worker in the first stage of the task (FullMCQ) serves
as a ground-truth score of that worker’s knowledge of
the domain. The correlation of the performance score
(fraction of correctly identified states) of the same worker
on the same set of questions, but with only a subset of
the choices, provides a measure of quality of the presented
choice sets.

2. Between-subject correlation A good test should also
discriminate between workers of different levels of ability.
If, for example, student A ranks higher that student B
according to their raw score on the fullMCQ, we should
expect this ordering to be preserved if we were to instead
rank the students based on their performance on the
subsetMCQ test. We use Kendall Tau—a measure of
rank correlation—on students ordered according to their
performance on the fullMCQ and subsetMCQ tests.

7. RESULTS

7.1 Within-subject correlation
Figure 4 compares the workers’ scores according to their

performance on the FullMCQ and subsetMCQ tests, split
by condition: Random and Optimal, where performance
is defined as the fraction of states that were named correctly
in each test. Both plots indicate that workers with a high
score on one test also attain a high score on the other test,
which is expected. The critical difference between the two
conditions, however, is that of the 40% of the workers that
attained a full-score (all correct) on the subsetMCQ in the
Random condition, less than 4% of them attained a full
score on the fullMCQ.

The subsetMCQ test where the choices are generated
according to the Optimal strategy helps remove the full-
score bias in the score distribution on the subsetMCQ test.
Specifically, less than 17% of the workers attain full score
on the subsetMCQ designed according to the Optimal
strategy. Additionally, Pearson’s correlation in the Optimal
condition is 0.89, in contrast to 0.78 in Random.
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Figure 4: Within-subject correlation between raw
scores attained on the subsetMCQ and fullMCQ
tests separated by choice set design strategy—choice
sets optimized according to the proposed objective
yield better within-subject score correlation than
choice sets sampled randomly.

7.2 Between-subject correlation
We now focus on the quality of the workers’ ranking using

the raw scores obtained on the subsetMCQ test between
the Optimal and Random strategies. Our hypothesis is
that a test designed to elicit maximum information about
the worker’s knowledge should result in a higher quality
discrimination across workers of different levels of knowledge
(abilities), and thus yield a more accurate ranking of the
workers. We obtain a ranking of workers by sorting everyone
according to their raw score on the subsetMCQ, and as in
the within-subject analysis, evaluate it against the “ground-
truth” ranking obtained by ordering the students by their raw
score on the fullMCQ test. We compute rank correlation by
sampling a random set of 50 workers and computing Kendall
Tau for the Random and Optimal conditions, repeating
the process for 1000 iterations and report the statistics in
Figure 5.

We observe that rank correlation in the workers given a
subsetMCQ test with the Optimal choice set significantly
outperforms rank correlation of the workers given a sub-
setMCQ test with a Random choice set (p-value=0 by
permutation test), confirming our hypothesis: a test that
optimizes information about the student’s ability implicitly
optimizes the accuracy of the ranking of the students.

8. CROWDSOURCING TESTS FROM FO-
RUMS

One application that we explore in this paper is to the task
of generating multiple choice tests from technical forum data.
Technical forums, like StackExchange, Piazza and Quora,
exhibit a typical structure: (i) a user posts a question on
the forum, (ii) other users propose solutions by submitting
answers, and (iii) users vote on what they consider to be
the best answer to the original question. Forums that follow
this structure provide an opportunity to apply our model for
optimal question generation where choice subsets are selected
from the user submissions. The potential benefit of creating
assessment content dynamically from technical forums is:
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Figure 5: Rank correlation between workers ranked
according to the raw scores attained on the sub-
setMCQ and fullMCQ tests, separated by choice set
design strategy – choice sets optimized according to
the proposed objective yield better rank correlation
than choice sets sampled randomly.

Figure 6: Visualization of optimal choice sets for the
question “Kansas”, optimized to students of varying
prior ability parameter (black vertical bar, displayed
over the empirical distribution of inferred student
abilities). Observe that as ability increases, choices
become clustered closer to the true answer, making
the correct answer more difficult to discern.

1. Large technical forums like StackExchange are repositories
of real-world problems and solutions, where the solutions
are of varying correctness and quality. A test generated
from this data is likely to consist of relevant real-world
problems.

2. Choices created from real user submissions are likely to
capture common misconceptions that other people are
likely to share and thus, are potentially good distractors.

8.1 Modeling users and questions
We describe how we adapt our model to the setting of

a generic technical online forum that fits the structure de-
scribed above, i.e., it contains user-submitted questions, user-
submitted answers and user votes for each answer. Exactly as
in the problem of “U.S. States Quiz,” we endow each choice
(answer post) with a real-valued parameter βij , but where
in this case i is an index of the user that contributed that
answer and j is an index of the question which this answer
answers. For modeling convenience, we explicitly distinguish
between users that contribute an answer, and users that vote



Physics #14609
Is there any difference between using 

a positive versus a negative 
charge to test an electric field?

Biology #8996
Does DNA have any other function 

in the cell other than being 
a genetic material and 
carrier of information?

Physics #147346
I would like to know if it is possible
to create a parachute so large in 
the real world that it might stop 
all velocity, essentially making 

whatever is attached to it float in mid-air

Physics #776
Can we ignite Jupiter so that it 
will produce enough heat to 
warm these two earth like 

planets/satellites?

          In eukaryotes DNA has a structural as well coding function. 
          Parts of chromosomes called centromeres bind to proteins
and form a scaffold which helps chromosomes attach to each 
other and correctly segregate during division. Technically this 
is still related to the transmission of genetic information though. ...

         DNA has been shown to be important for biofilm formation 
         in certain bacteria. This is extracellular DNA that comes 
from cell lysis.

           You can use a negative charge to test an electric field. You just
           have to remember that the electric field points antiparallel
(opposite) to the force on the charge, rather than parallel to it (in the same
direction). That's just a convention, though; we could have defined th
 electric field to point with the force on a negative charge, and physics
would work the same, except for a couple of negative signs in some 
formulas.

         We take positive charge as a test charge because 
         positive charge is higher potential and negative charge 
is lower potential. Therefore, influence of positive charge
on other charges is greater than negative charges. 
We can also take negative charge but the effect will be lower.s.

          Jupiter's mass is too small to produce nuclear fusion.
          Jupiter would need to be about 75 times as massive to 
fuse hydrogen and become a star. This wikipedia page 
explains the detailed requirements of nuclear fusion: 
http://en.wikipedia.org/wiki/Nuclear_fusion

          The most likely answer is that probably Jupiter is 
          already ignited: it emits lots of infrared radiation that 
as far as i know, its largely unexplained. It just doesn't have 
enough mass to radiate more energy than a extremely dim 
brown dwarf, so it naively looks to us as a planet

           No. All parachutes, whether they are drag-only 
           (round) or airfoil (rectangular) will sink. 
Some airflow is needed to stay inflated, and that 
airflow comes from the steady descent. Whether your net 
descent rate is positive or negative is a different question. 
It is quite easy to be under a parachute and end up rising 
(I have done it myself), you just need an updraft in excess 
of your descent rate.  Never lasts though, as a permanently 
floating parachute would violate a couple of laws of nature.

         It could be possible if the parachute was very 
         large,  rigid, shaped like a floating object, and you 
started descending from the vacuum of space. 
In this case the parachute would float on top of the 
atmosphere. It's easier to visualize if you imagine 
the parachute being a boat and you fell into some
water; the boat would float on top of the water and
reduce your velocity to zero.
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Figure 7: Example StackExchange questions with posterior distributions over choice correctness parameters.
Two optimal choices are highlighted and annotated. See Section 8.3 for details.

for a particular answer. “Voting users” are modeled the same
way as the users who answer multiple choice questions in our
discrete choice model, i.e., their strictly positive “choosing
ability” θ appears as a coefficient of the choice correctness in
parametrizing the discrete distribution over choices4. “Con-
tributing users” are endowed with an “answering ability” pa-
rameter φ, which parameterizes the distribution over answer
correctness parameters for answers contributed by that user.
This allows us to share statistical strength of“good”and“bad”
answers that are created by the same users, e.g., users that
contribute poor answers in general (answers that receive few
upvotes) will be informative in inferring answer parameters in
other questions they answered, where the voting information
may be sparse.

8.2 Generative Model and Inference
We formalize the above model with a Bayesian generative

story shown on the right. We put normal priors on the an-
swer and user parameters, and a truncated-normal prior on
the voter ability, to ensure non-negativity. The high-level
description of the story is as follows: users with ability φi
contribute answers to questions whose correctness βij is nor-
mally distributed about the creator’s ability, i.e., more able
users are able to create higher-quality answers. Later at some
time t, a voter with ability θk observes a set of answers Ctq (to
question q) that have been created up to time t and makes a
selection according to the discrete distribution parametrized
by (1), where voters with greater ability are more likely to
pick the best choice. We use variational message passing for
inference, a deterministic approximate posterior inference

4unfortunately StackExchange datasets do not reveal the
identity of the “voters”, thus we assume that each vote is
contributed by a distinct “voter”

algorithm, provided in the Infer.NET package [12]. We per-
form inference on three StackExchange forums: Biology (620
users, 638 questions), Physics (3,487 users, 5,262 questions),
Parenting (1,820 users, 1,503 questions).

For each user i ∈ S:

– Draw user ability φi ∼ N (0, σ2
prior)

For each answer j created by user i:

∗ Draw βij ∼ N (φi, σ
2
prior)

Draw µθ ∼ TruncNormal(0, σ2
prior)

Draw σ2
θ ∼ Inv-Gamma(αprior, βprior)

For each question q:

– For each vote in question q at time t

∗ Draw voter ability θqk ∼ N (µθ, σ
2
θ)

∗ Draw vote zqk ∼ Discrete
(
{π(i,j)

qk }(i,j)∈Ct
q

)
where Ctq is a set of answers available for ques-
tion q at time t and

π
(i,j)
qk =

exp(θqkβij)∑
(i′,j′)∈Ct

q
exp(θqkβi′j′)

8.3 Examples
We present a qualitative analysis of the results via examples

in Figure 7, which provide some insight into the advantages
and issues with applying our model to real-world forum data



at the task of question generation. Full end-to-end evaluation
of the quality and effectiveness of the generated questions will
require user-studies, which we leave for future work. Figure
7 displays posteriors over answer correctness parameters for
four questions, with the highlighted and annotated answers
belonging to the optimal choice set, where optimality is deter-
mined by the optimality criterion introduced in Section 4. As
done in Section 6.1, we optimize the choice sets for an “aver-
age user,” i.e., whose ability is given by the posterior mean of
θ. Finally, in selecting choice pairs, we require that the “most
correct” choice (one with the highest posterior mean) always
appears in the set, making the selection problem essentially
one of finding a good distractor.

The examples in Figure 7 are given with their respective
forum name and a question ID, and can be viewed in more de-
tail by finding them on the StackExchange site. For example,
the top left question in Figure 7 (147346), can be found at:
http://physics.stackexchange.com/questions/147346. Ques-
tions 14736, 14609 and 776 are examples where the distractors
are all plausible incorrect answers (the correct answer in ev-
ery question is marked with “A”). Question 8996, however,
is a common example of a generated choice set, where the
distractor is also a correct answer, yet it appeared less pop-
ular for another reason, e.g., it was incomplete, had little
supporting evidence, or was simply not a commonly-known
answer (the case for question 8996) and therefore received
significantly fewer votes. In our setting, we argue that having
an explicit constraint that the distractor is wrong is not
necessary—it is sufficient if the user can tell apart the best
answer from the remaining answers. However, if the dimen-
sion of quality is orthogonal to correctness, e.g., if one of the
answers is better phrased or contains additional illustrations,
the question will not serve its purpose in differentiating those
users that know the answer from those that do not. This
limitation is potentially less severe in areas where the answer
is constrained to be of a particular format, e.g., if the answer
is computer code like in StackOverflow, where often multiple
submitted answers may be correct, but only one exhibits the
best performance. We leave the full study of the application
of this model to test generation from technical forums for
future work.

9. DISCUSSION
We have proposed a method for optimal choice selection

for the task of optimal test design. Our response model is
closely related to a discrete choice model, where the variance
parameter encodes the ability of the user. This formulation,
unlike related models such as [5, 1], allows us to explicitly
identify optimal choice sets, where optimality is specified in
terms of estimator efficiency on the user ability parameter.
We have demonstrated that the resulting choice sets are
selected on the basis of how easily the choices are mistaken
for one another, highlighting one of the principles of multiple
choice question design: good distractors must capture common
misconceptions. We also look ahead to the application of this
model to data-driven crowd-sourced assessment generation
from technical forums, and briefly highlight challenges and
potentials of this paradigm.
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APPENDIX
A. A PRACTICAL ALGORITHM TO FIND

AN OPTIMAL CHOICE SET
The mathematical programming formulation (4) for finding

the optimal choice set has binary decision variables and even
when these are relaxed to take on real values between 0 and 1,
the objective function is a nonlinear function. In this section
we describe a practical way of finding an optimal solution,
which uses an Integer Linear Programming (ILP) solver as a
subprocedure. The idea is to introduce new binary variables
that represent the product of two decision variables (which
can be enforced using linear constraints), replace the objec-
tive function by just the numerator of the original objective
function, and add a constraint that bounds the denomina-
tor of the original objective function. This problem given
in (5) is an ILP, for which we invoke the subroutine. The
(basic) procedure now is the following: an upper bound on
the denominator is given (at first infinity), the best solution
is found, given that bound (which can be found using an
ILP), then the bound is lowered to slightly below the denom-
inator given by the current solution. This is repeated until
all possible denominators are considered. The best overall
solution is kept.

maximize z =
∑
i,j:i<j

yij(βi − βj)2 exp(θ[βi + βj ])

subject to
∑
i,j

yij exp(θ[βi + βj ]) ≤ B

yij ≤ xi, ∀i, j
yij ≤ xj , ∀i, j
yij ≥ xi + xj − 1,∀i, j∑

xi ≤ K

xi ∈ {0, 1}, ∀i
yij ∈ {0, 1},∀i, j

(5)

The Algorithm
1. Set δ = 2 exp(mini β

2
i ).

Set B ←∞, and solve ILP (5). (The current solution
is denoted by yij and z.)

2. Let Beff ←
∑
i,j yij exp(θ[βi + βj ]), let rbest ← z/Beff,

and let Bbest ← Beff.

3. Repeat while Beff > 0:

(a) Set B ← min{z/rbest, Beff − δ}.
Solve ILP (5). (The current solution is denoted by
yij and z.)

(b) Let Beff ←
∑
i,j yij exp(θ[βi + βj ]).

If Beff > 0 and z/Beff > rbest then set rbest ←
z/Beff and set Bbest ← Beff.



Proof of Correctness
Claim 1. [6] For any xi, xj ∈ {0, 1} we have xixj = yij

for yij ∈ {0, 1}, when the following three constraints are
satisfied: yij ≤ xi, yij ≤ xj and yij ≥ xi + xj − 1.

Proof. If xi = 0 or xj = 0, yij has to equal 0 as well
because of the first two constraints. If xi = xj = 1 then the
third constraint forces yij to be 1.

Claim 2. After every execution of the while loop of the
algorithm rbest is equal to the best objective value of (4) with

the additional constraint
∑
i,j yij exp(θ[βi + βj ]) ≥ Bafter

eff ,
where the superscript “after” indicates the values at the end
of the loop.

Proof. Proof by induction on the number of executions
of the while loop. The base case is when the while loop is not
executed yet (0 executions of the while loop). At that moment
z is the maximum objective value of (5) with B =∞. So any
solution where

∑
i,j yij exp(θ[βi + βj ]) ≥ Beff has objective

value that does not exceed z. Therefore the objective of (4)
(which is equal to the quotient of objective and the constraint)
cannot exceed rbest, under

∑
i,j yij exp(θ[βi + βj ]) ≥ Beff.

Induction step: Suppose the claim is true after k− 1 execu-
tions of the while loop. In iteration k, z is the maximum ob-
jective value of (5) with B = min{z/rstart

best , B
start
eff − δ}, where

the superscript “start” indicates the values at the start of the
loop. By the same argument as above the objective of (4) can-
not exceed z/Bafter

eff , under
∑
i,j yij exp(θ[βi + βj ]) ≥ Bafter

eff

and
∑
i,j yij exp(θ[βi + βj ]) ≤ B. By the induction hypoth-

esis rstart
best is equal to the best objective value of (4) with

the additional constraint
∑
i,j yij exp(θ[βi + βj ]) ≥ Bstart

eff .

Because rafter
best is set to the maximum of these values, we have

proved the claim as long as there is no better solution when∑
i,j yij exp(θ[βi + βj ]) ≥ B and

∑
i,j yij exp(θ[βi + βj ]) ≤

Bstart
eff . Note that the choice of δ ensures that there is no

solution such that
∑
i,j yij exp(θ[βi + βj ]) > Bstart

eff − δ and∑
i,j yij exp(θ[βi + βj ]) < Bstart

eff . Finally, because z is an

upper bound on the objective value of (5) at every execution
of the while loop, we know that the denominator can be
constrained to be at most z/rbefore

best before we can find an
improved solution.

Corollary 1. The algorithm above finds a (globally) op-
timal solution to (4).
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