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Abstract—We investigate the performance of mismatched data
detection in large multiple-input multiple-output (MIMO) sys-
tems, where the prior distribution of the transmit signal used
in the data detector differs from the true prior. To minimize
the performance loss caused by this prior mismatch, we include
a tuning stage into our recently-proposed large MIMO approx-
imate message passing (LAMA) algorithm, which allows us to
develop mismatched LAMA algorithms with optimal as well as
sub-optimal tuning. We show that carefully-selected priors often
enable simpler and computationally more efficient algorithms
compared to LAMA with the true prior while achieving near-
optimal performance. A performance analysis of our algorithms
for a Gaussian prior and a uniform prior within a hypercube cov-
ering the QAM constellation recovers classical and recent results
on linear and non-linear MIMO data detection, respectively.

I. INTRODUCTION

Data detection in multiple-input multiple-output (MIMO)
systems deals with the recovery of the transmit data vector
s0 ∈ OMT , where O is a finite constellation (e.g., QAM or
PSK), from the noisy input-output relation y = Hs0 + n. In
what follows, MT and MR denotes the number of transmit and
receive antennas, respectively, y ∈ CMR is the receive vector,
H ∈ CMR×MT is the MIMO system matrix, and n ∈ CMR

is i.i.d. circularly symmetric complex Gaussian noise. To
minimize the symbol-error rate, we are interested in solving
the individually-optimal (IO) data detection problem [2]–[4]

(IO) sIO
` = arg max

s̃`∈O
p(s̃` |y,H), ` = 1, . . . ,MT.

Here, sIO
` denotes the `-th IO estimate and p(s̃` |y,H) is the

conditional probability density function of s̃` ∈ O given the
receive vector y and the channel matrix H.

The problem (IO) is known to be of combinatorial na-
ture [2]–[4], and the use of an exhaustive search or sphere-
decoding methods results in prohibitive complexity for systems
where MT is large [5]. In contrast, our recently proposed
algorithm referred to as large MIMO approximate message
passing (LAMA) [6], achieves IO performance using a simple
iterative procedure in the large-system limit, i.e., where we fix
the system ratio β = MT/MR and let MT → ∞. For finite-
dimensional systems, LAMA was shown to deliver near-IO
performance at low computational complexity [6]. Despite all
these advantages, LAMA requires repeated computations of
transcendental functions that exhibit a high dynamic range.
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These computations render the design of corresponding high-
throughput hardware designs that rely on finite precision (e.g.,
fixed-point) arithmetic a challenging task.

A. Contributions
We propose a mismatched version of the LAMA algorithm

(short M-LAMA), which enables the design of hardware-
friendly data detectors that achieve near-IO performance. We
first develop a mismatched version of the complex Bayesian
approximate message passing (cB-AMP) algorithm [7] that
includes a tuning stage to minimize the performance loss
caused by the mismatch in the signal prior. We propose
the mismatched state-evolution (SE) framework to enable a
performance analysis in the large-system limit. We then apply
our framework to mismatched data detection in large MIMO
systems by considering two mismatched prior distributions: (i)
a Gaussian prior and (ii) a uniform prior within a hypercube
covering the QAM constellation. We analyze the performance
of the resulting mismatched algorithms in the large-system limit
and demonstrate their efficacy in finite-dimensional systems.

B. Relevant prior art
The performance of zero forcing (ZF) and minimum mean-

square error (MMSE) detection, which are both well-known
instances of mismatched detection algorithms, has been in-
vestigated in [8]–[10] for the large-system limit. The use of
a uniform prior within a hypercube leads to an alternative
mismatched detector for antipodal (e.g., BPSK) signals [11]–
[13]. Corresponding theoretical results in [14], [15] for noiseless
systems revealed that a system ratio of β < 2 enables perfect
signal recovery. The error-rate performance for the noisy case
was derived recently in [13]. The analysis of the mismatched
algorithms presented in our paper recovers all these results.

The proposed M-LAMA algorithm relies upon approximate
message passing (AMP) [16]–[18], developed for sparse signal
recovery. The case of mismatched estimation of sparse signals
via AMP was studied in [19], [20], where the performance
of AMP was analyzed when the true prior is unknown. This
AMP algorithm includes a tuning stage for automated, optimal
parameter selection that minimizes the output mean-squared
error (MSE). The key differences between M-LAMA and the
results in [19], [20] are that (i) we consider MIMO data
detection and (ii) we know the true signal prior and intentionally
select a mismatched prior in order to design hardware-friendly
data detection algorithms that enable near-IO performance.

C. Notation
Lowercase and uppercase boldface letters designate vectors

and matrices, respectively. We define the adjoint of matrix H as



HH and use 〈·〉 to abbreviate 〈x〉 = 1
N

∑N
k=1 xk. A multivariate

complex-valued Gaussian probability density function (pdf) is
denoted by CN (m,K), where m is the mean vector and K
the covariance matrix. EX [·] and VarX [·] denotes the mean and
variance with respect to the random variable X , respectively.

II. MISMATCHED COMPLEX BAYESIAN AMP
We start by presenting a mismatched version of the

complex Bayesian approximate message passing (cB-AMP)
algorithm [7] (short mcB-AMP), which enables the use a
different prior distribution p̃(s̃) than the true signal prior p(s0).

A. The mismatched cB-AMP (mcB-AMP) algorithm

Given an i.i.d. prior distribution p(s0) =
∏N
`=1 p(s0`) of the

true signal s0 and a mismatched prior p̃(s̃) =
∏N
`=1 p̃(s̃`), the

proposed mcB-AMP algorithm corresponds to

σ̃2
t = 1

MR
‖rt‖22 , (1)

τ t = arg min
τ≥0

ES0,Z

[
|Fmm(S0 + σ̃tZ, τ)− S0|2

]
, (2)

st+1 = Fmm(st + HHrt, τ t
)
, (3)

rt+1 = y −Hst+1 + βrt
〈
F′

mm
(st + HHrt, τ t)

〉
,

which is carried out for tmax iterations t = 1, . . . , tmax. The
algorithm is initialized by s1

` = ES0
[S0] for all ` = 1, . . . ,MT,

where S0 ∼ p(s0), r1 = y −Hs1, and F′
mm is the derivative

of Fmm taken by its first argument. The function

Fmm(s`, τ) = ES̃ [S̃|s`] =
∫
C s̃p(s̃|s`, τ)ds̃, (4)

is the posterior mean with respect to the mismatched prior p̃(s̃`)
and the variance parameter τ , p(s̃|s`, τ) = 1

C p(s`|s̃, τ)p̃(s̃), C
is a normalization constant, and p(s`|s̃, τ) ∼ CN (s̃, τ). The
functions Fmm(s`, τ) and F′

mm operate element-wise on vectors
and the expectation in (2) is taken with respect to the true
prior distribution of S0 ∼ p(s0) and Z ∼ CN (0, 1).

The mcB-AMP algorithm differs from the original cB-AMP
algorithm derived in [7] by the additional steps (1) and (2).
In every iteration, step (1) estimates the so-called decoupled
noise variance σ2

t (see Section II-B) and step (2) tunes the
variance parameter τ t based on the estimate σ2

t . The tuning
stage (2) ensures that mcB-AMP converges to the solution that
minimizes σ2

t for every iteration (see Section II-C).

B. Decoupling property of AMP-based algorithms
We will frequently use the following definition.

Definition 1. Assume a MIMO system with MT transmit
and MR receive antennas, and let the entries of H be i.i.d.
CN (0, 1/MR). We define the large-system limit by fixing the
system ratio β = MT/MR and letting MT →∞.

As shown in [7], [17], [21], AMP-based algorithms decouple
the MIMO system into parallel AWGN channels in the large-
system limit, i.e., the quantity zt = st+HHrt can be expressed
equivalently as s0 + wt, where wt ∼ CN (0, σ2

t IMT) and σ2
t

is the decoupled noise variance. A key property of AMP-
based algorithms is that the decoupled noise variance σ2

t can
be tracked exactly by the state evolution (SE) framework.
We formalize the mismatched SE framework for mcB-AMP

in Theorem 1. This result is a specific instance of the SE
framework in [17] and has been adapted to mcB-AMP.

Theorem 1. Assume the large-system limit and that Fmm is
Lipschitz continuous. Then, the decoupled noise variance σ2

t+1

after t mcB-AMP iterations is given by the coupled recursion

γ2
t = arg min

γ2≥0

Ψmm(σ2
t , γ

2), (5)

σ2
t+1 = N0 + βΨmm(σ2

t , γ
2
t ), (6)

which is initialized by σ2
1 = N0 + β VarS0 [S0]. Here, S0 ∼

p(s0) and the MSE function is defined by Ψmm(σ2
t , γ

2
t ) =

ES0,Z

[∣∣Fmm(S0 + σtZ, γ
2
t )− S0

∣∣2], where the expectation is
taken with respect to S0 and Z ∼ CN (0, 1).

If the true prior is identical to the mismatched prior, i.e.,
p(s0) = p̃(s̃), we can show that mcB-AMP delivers the same
decoupled noise variance as cB-AMP without prior mismatch.

Lemma 2. If p(s0) = p̃(s̃), then the decoupled noise variance
σ2
t+1 of mcB-AMP is equivalent to σ2

t+1 of cB-AMP [7].

The proof of Lemma 2 follows by noting that the MSE
function Ψmm(σ2

t , γ
2) in (6) is minimized by γ2 = σ2

t in (5),
and reduces to the conditional variance [22]. Therefore, (6)
reduces to the conventional SE recursion of cB-AMP [7].

C. Optimal tuning of the variance parameter τ

Before we discuss the tuning stage (2) in detail, we formalize
what we mean by optimal tuning of the variance parameter τ t.
For all iterations t = 1, . . . , tmax, our goal is to minimize
the decoupled noise variance σ2

tmax+1 given by Theorem 1, as
the smallest σ2

tmax+1 minimizes the error probability of our
algorithm. Hence, optimal tuning tries to identify a sequence
of variance parameters {τ1, . . . , τ tmax} so that mcB-AMP
ultimately leads to the smallest σ2

tmax+1; sub-optimal choices of
τ t either lead to a higher σ2

tmax+1 or cause slower convergence to
the smallest σ2

tmax+1. We will use the following definition [20].

Definition 2. Assume the large-system limit and denote the
decoupled noise variance of mcB-AMP obtained from the se-
quence {τ1, . . . , τ tmax} as σ2

tmax+1(τ1, . . . , τ tmax). A sequence of
parameters {τ1

? , . . . , τ
tmax
? } is optimally tuned at iteration tmax,

if and only if for all {τ1, . . . , τ tmax} with τ t ∈ [0,∞) we have

σ2
tmax+1(τ1

? , . . . , τ
tmax
? ) ≤ σ2

tmax+1(τ1, . . . , τ tmax). (7)

We next show that the tuning stage in (2), which is carried out
at every iteration of mcB-AMP, achieves the smallest σ2

tmax+1,
i.e., optimally tunes the variance parameters τ t. We omit the
proof details as it follows closely that in [20, Sec. 4.4].

Theorem 3. Suppose {τ1
? , . . . , τ

tmax
? } are optimally-tuned for

iteration tmax. Then, for any t < tmax, {τ1
? , . . . , τ

t
?} are also

optimally-tuned for iteration t. Thus, one can obtain tmax
optimally-tuned variance parameters by optimizing τ1

? at t = 1,
and then, proceeding iteratively by optimizing τ t? until t = tmax.

In general, the exact value of the decoupled noise variance σ2
t

that is needed for the tuning stage in step (2) to select τ t? is
unknown. We therefore use the estimate σ̂2

t = 1
MR
‖rt‖2 in



step (1), which was shown to converge to the true decoupled
noise variance σ2

t in the large-system limit [18].

D. Decomposition of complex-valued systems
We now briefly discuss properties of mcB-AMP in complex-

valued systems that will be necessary for our analysis of
mcB-AMP in MIMO systems. In particular, we show that for
special constellations, the complex-valued set O can be exactly
characterized by a suitably-chosen real-valued set Re{O}.
Definition 3. For all s ∈ O, express s as s = a+ ib, where
a ∈ Re{O}, b ∈ Im{O}. Then, the constellation O is separable
if p(s) = p(a)p(b) holds for all s ∈ O and Re{O}= Im{O}.

An example of a separable constellation is M2-QAM with
equally likely transmit symbols. For such a separable set O, the
following lemma (with proof in [7]) provides the equivalence
of the complex-valued and real-valued SE framework.

Lemma 4. For a separable constellation set O, the mismatched
SE recursion in Theorem 1 can be expressed equivalently by:

σ2
t+1 = N0 + 2β min

γ2≥0
ESR

0,Z
R

[(
Fmm

R (SR
0 + σtZ

R, γ2)− SR
0

)2]
,

where Fmm
R is posterior mean function with respect to the

constellation set OR = Re{O}, SR
0 ∈ OR and ZR ∼ N (0, 1/2).

E. Fixed-point analysis
While the performance of mcB-AMP at every iteration can

be characterized by the mismatched SE recursion equations in
Theorem 1, we are interested in analyzing the performance of
mcB-AMP for tmax →∞. In this case, the mismatched SE in
Theorem 1 converges to the following fixed-point equation:

σ2
? = N0 + β min

γ2≥0
Ψmm(σ2

?, γ
2) = N0 + βΨmm

? (σ2
?). (8)

Thus, as tmax → ∞, σ2
t+1 in Theorem 1 converges to σ2

? as
given by (8). In general, if there are multiple fixed points,
then mcB-AMP converges to the largest fixed-point, which
ultimately leads to a higher probability of error than that of
the smallest fixed-point solution. To provide conditions that
ensure a unique fixed-point solution to (8) (see Section III),
we use the following lemma (the proof is given in [7]).

Lemma 5. Fix p(s0) and p̃(s̃). The minimum recovery
threshold (MRT) βmin for M-LAMA is defined by:

βmin = min
σ2≥0

(
dΨmm

? (σ2)
dσ2

)−1

. (9)

For all system ratios β < βmin the fixed-point solution in (8) is
unique. Furthermore, let σ2

? = arg min
σ2≥0

(
dΨmm

? (σ2)/dσ2
)−1

. If

for any other σ2 6= σ2
? , βmindΨmm

? (σ2)/dσ2 < 1, then M-LAMA
also has a unique fixed point at β = βmin.

III. MISMATCHED DATA DETECTION WITH TUNING

We now apply the mismatched cB-AMP framework to
mismatched data detection in large MIMO systems, and refer to
the algorithm as mismatched large MIMO AMP (M-LAMA).

In what follows, we assume that the true prior is taken from
a discrete constellation set O with equally likely symbols, i.e.,

p(s0`) = 1
|O|
∑
a∈O δ(s0`−a), where |O| is the cardinality of

the set O; we also define ES0 [|S0|2] = Es. Note that in MIMO
systems, the true signal prior is generally known. Hence, it is
natural to ask why one should consider a mismatched prior,
especially since the LAMA algorithm [6] that uses the true
prior minimizes the error probability. To answer this question,
consider the posterior mean function (4) of LAMA [6]

F(r, τ) =
∑
a∈O a exp(− 1

τ |r−a|
2)∑

a∈O exp(− 1
τ |r−a|

2)
, (10)

whose calculation requires high arithmetic precision. In fact,
even the use of double-precision floating-point arithmetic
becomes numerically unstable for small values of τ . Hence,
the development of hardware designs for LAMA that use finite-
precision arithmetic is challenging. In contrast, suitably-chosen
mismatched priors can lead to hardware-friendly data detectors.

A. Optimally-tuned data detection with a Gaussian prior

We now derive an M-LAMA algorithm variant with a
mismatched Gaussian prior. Without loss of generality, we
assume a standard complex Gaussian distribution for the
mismatched prior, i.e., p̃(s̃`) ∼ CN (0, 1) as the variance
parameter τ t will be scaled accordingly to Es in the tuning
stage (2). For the mismatched Gaussian prior, the posterior
mean function (4) is given by Fmm(r, τ) = Es

Es+τ
r. In the

large-system limit, we can derive the following mismatched
SE recursion given in (6) using Theorem 1:

σ2
t+1 = N0 + βminγ2≥0

Es
(Es+γ2)2 (Esσ

2
t + γ4). (11)

Evidently, the mismatched SE recursion (11) only depends
on the signal energy Es and no other properties of the true
prior p(s0). This fact allows us to optimally tune the variance
parameters only with knowledge of signal energy Es. We note
that the RHS of (11) is minimized by γ2 = σ2

t and thus, the
mismatched SE recursion becomes:

σ2
t+1 = N0 + β Es

Es+σ2
t
σ2
t . (12)

By Lemma 5, M-LAMA has a unique fixed point if β ≤ 1.
Interestingly, if we define signal-to-interference ratio (SIR) as
SIR = 1/σ2 and let tmax → ∞, then the fixed-point solution
of (12) coincides to the SIR of the linear MMSE detector in the
large-system limit [8]–[10]. Hence, for a mismatched Gaussian
prior, M-LAMA achieves the same performance as the linear
MMSE detector. We note that the proofs given in [8]–[10] use
results from random matrix theory, whereas our analysis uses
the mismatched SE recursion in Theorem 1. Furthermore, our
result is constructive, i.e., M-LAMA is a novel, computationally
efficient algorithm that implements linear MMSE detection.

B. Sub-optimal data detection with a Gaussian prior

We can replace the optimal tuning stage of τ t in (2) for
the M-LAMA algorithm by a fixed variance parameter choice,
which leads to a sub-optimal, mismatched algorithm, referred
to as sub-optimal M-LAMA (short SM-LAMA). We now
show that this approach leads to other well-known linear data
detectors. In particular, we obtain the following mismatched



SE recursions in the large-system limit for the following two
choices of variance parameters γ2

t → 0 and γ2
t →∞ in (5):

(ZF) σ2
t+1= N0 + β lim

γ2
t→0

Ψmm(σ2
t , γ

2
t )=N0 + βσ2

t ,

(MF) σ2
t+1= N0 + β lim

γ2
t→∞

Ψmm(σ2
t , γ

2
t )=N0 + β VarS0

[S0].

By Lemma 5, (ZF) and (MF) has a unique fixed point if
β < 1 and for any finite β, respectively. If β < 1, then the
solution to the fixed-point equation of (ZF) and (MF) coincides
exactly to the SIR given by ZF and MF detector in the large-
system limit [8]–[10], respectively. Hence, by choosing specific
predefined and sub-optimal variance parameters γ2

t , SM-LAMA
can be used to perform ZF and MF data detection.

C. Optimally-tuned data detection with a hypercube prior

We now derive an M-LAMA algorithm variant using a
mismatched uniform distribution within a hypercube around the
true prior distribution of square constellations (e.g., QPSK and
16-QAM). For example, for a QPSK system with equally likely
symbols, we use a mismatched prior distributed uniformly in the
interval [−1,+1] for both the real and imaginary part. For this
mismatched prior, we use Lemma 4 to compute the posterior
mean function independently for the real and imaginary part;
the posterior mean function Fmm is given by

Fmm(s`, τ) = s` + τ
2

(
ν−( sR

` , τ/2) + iν−( sI
`, τ/2)

)
, (13)

where we use sR
` = Re{s`}, sI

` = Im{s`}, and

ν−(s`, τ) = e−
1
2τ

(s`+α)2−e−
1
2τ

(s`−α)2

√
2πτ

(
Φ
(
s`+α√
τ

)
−Φ
(
s`−α√
τ

)) ,
with Φ(x)=

∫ x
−∞

1√
2π
e−u

2/2du. The mismatched SE recursion
can be obtained from Theorem 1 and evaluated numerically.

There are two disadvantages of this algorithm: (i) The
computation of the posterior mean function (13) is not efficient
from a hardware perspective as it involves transcendental
functions. In fact, computing ν−(s`, τ) requires—similar to
that of the optimal LAMA algorithm (10)—excessively high
numerical precision; (ii) the tuning stage (2) turns out to be
non-trivial and requires numerical methods to find a minimum.
Hence, corresponding hardware designs are impractical.

D. Sub-optimal data detection with a hypercube prior

Analogously to the ZF detector in Section III-B, we can
derive a sub-optimal variant of M-LAMA (SM-LAMA) with
the hypercube prior from Section III-C, where we replace the
tuning stage in (2) by the fixed choice τ t → 0.

This choice leads to a much simpler algorithm compared to
the optimally-tuned M-LAMA algorithm and enables a detailed
performance analysis. The posterior mean function reduces to

lim
τ→0

Fmm(s`, τ) = sR
` + sign( sR

` ) min
{
α−

∣∣ sR
`

∣∣ , 0}
+ i
(

sI
` + sign( sI

`) min
{
α−

∣∣ sI
`

∣∣ , 0}) ,
and thus, limτ→0 F

mm(s`, τ) and its derivative can be evaluated
efficiently in hardware. Furthermore, by fixing τ → 0, the
tuning stages in (1) and (2) are no longer required.
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Fig. 1. Symbol-error rate of M-LAMA and its variants for a 128× 64 large-
MIMO system with 10 iterations and QPSK; (finite) and (limit) denote the
detectors that are simulated and computed by SE (in the large-system limit),
respectively. SM-LAMA with the uniform hypercube prior performs within
1 dB from LAMA [6] that achieves IO performance in the large-system limit.

We now present conditions on the system ratio β for which
SM-LAMA has a unique fixed point. The following Lemma 6,
with proof in Appendix C, shows that the MRT of SM-LAMA
for M2-QAM is given by βmin = (1− 1/M)−1.

Lemma 6. Assume a M2-QAM prior for S0 with equally likely
symbols. Then, the MRT for SM-LAMA is given by βmin =
(1− 1/M)−1. Moreover, SM-LAMA has a unique fixed point
at β = βmin regardless of the noise variance N0.

Using Lemma 6, we obtain the same MRT for M -PAM
constellations by Lemma 4. We omit the proof and refer to [7].

Corollary 7. SM-LAMA has the same MRT for M2-QAM and
M -PAM in a complex and real-valued system, respectively.

We now show that this computationally-efficient SM-LAMA
variant achieves the same performance as a well-known
relaxation of the maximum likelihood data detection problem
[11]–[13]. The algorithm, which is known as box relaxation
(BOX) detector, solves the following convex problem:

ŝ = arg min
s̃∈CMT

‖y −Hs̃‖2 subject to ‖s̃‖∞ ≤ 1 (14)

and slices the individual entries of ŝ onto the QPSK (or BSPK)
constellations. The next result shows that SM-LAMA achieves
the same error rate performance as the BOX detector for
β < 2, while providing a simple and computationally efficient
algorithm. The proof is given in Appendix B.

Lemma 8. Assume β < 2 and the large system limit. Then,
for a complex-valued MIMO system with QPSK (or a real-
valued MIMO system with BPSK), SM-LAMA achieves the
same error-rate performance as the BOX algorithm in (14).

IV. NUMERICAL RESULTS

We now compare the error-rate performance of the M-LAMA
algorithm variants proposed in this paper. While the mismatched



SE framework in Theorem 1 enables an exact performance anal-
ysis in the large-system limit, we also carry out Monte–Carlo
simulations in a finite-dimensional large MIMO system with
128 receive and 64 transmit antennas. Fig. 1 shows the symbol
error-rate performance of LAMA, M-LAMA, and SM-LAMA.
The optimally-tuned M-LAMA and sub-optimal SM-LAMA
with the uniform hypercube prior perform within 1 dB of the
LAMA algorithm [6], which achieves IO performance in the
large-system limit. These results demonstrate that carefully-
selected mismatched priors enable near-IO performance in
finite-dimensional systems and in a hardware-friendly way.

APPENDIX A
DERIVATION OF THE MSE FUNCTION ΨQAM(σ2)

We will compute the MSE function for ΨQAM(σ2) by first
computing the MSE function ΨPAM(σ2) for a real-valued
M -PAM system with equally likely symbols and then, use
Lemma 4 to express ΨQAM(σ2) for M2-QAM. We start by
defining Fα(s`) = s` + sign(s`) min{α− |s`| , 0}. Note that
for equally likely symbols, the M -PAM constellation can be
expressed by p(s`) = 1

M

∑M/2
k=−M/2+1 δ(s` − (2k− 1)). Thus,

by using symmetry for equally likely M -PAM symbols:

ΨPAM(σ2) = 2
M

∑M/2
k=1 ΨPAM

k (σ2), (15)

where we introduced ΨPAM
k (σ2) that is defined by:

ΨPAM
k (σ2) = EZ [(Fα((2k − 1) + σZ)− (2k − 1))2]

=σ2 + (ᾱ2
k − σ2)Q

(
ᾱk
σ

)
+ (α2

k − σ2)Q
(
αk
σ

)
− σ√

2π
ᾱke

− ᾱ2
k

2σ2 − σ√
2π
αke

− α2
k

2σ2 ,

with ᾱk = α − (2k − 1), αk = α + (2k − 1), Z ∼ N (0, 1),
and Q(x) =

∫∞
x

1√
2π
e−u

2/2du. By Lemma 4, ΨQAM can be
computed by ΨQAM(σ2) = 2ΨPAM(σ2/2) with α = M − 1.

APPENDIX B
PROOF OF LEMMA 8

We start by stating the following result from [13, Thm. 2.1]
that establishes the error-rate performance of BOX detector.

Theorem 9 (Theorem 2.1 [13]). Assume a real-valued BPSK
system with β < 2. The bit-error rate in the large-system limit
converges to Q(1/τ?), where τ? is the unique solution to
τ? = arg minτ>0 g(τ), where g(τ) is defined by

g(τ) = τ
2

(
1
β − 1

2

)
+ N0

2βτ + τ
2

∫∞
τ
2

(
x− 2

τ

)2 1√
2π
e−

x2

2 dx.

We note that as τ? is the unique, minimal solution to g(τ),
we have g′(τ?) = 0. Rearranging terms in g′(τ?) = 0 results
in the fixed-point equation τ2

? = N0 + βΨ(τ2
? ) with

Ψ(τ2
? ) = 1

2τ
2
? − 2τ?√

2π
e
− 2
τ2
? +Q

(
2
τ?

)
(4− τ2

? ). (16)

The function Ψ(τ2
? ) in (16) is identical to (15) for a BPSK

system, i.e., M = 2 with σ2 = τ2
? . This implies that the

BOX-relaxed method in [13] and SM-LAMA with the uniform
hypercube prior achieves the same fixed-point (8). Moreover,
due to the decoupling property of SM-LAMA detailed in

Section II-B, the error-rate of a real-valued BPSK system in the
large-system limit is given by Q(1/τ?). The result of Theorem 9
can be generalized to complex-valued QPSK systems and is
equal to fixed-point solution of SM-LAMA by Lemma 4.

APPENDIX C
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As shown in Appendix A, we compute d
dσ2 ΨQAM(σ2) and

observe that d
dσ2 ΨQAM(σ2) ≤ 1 − 1/M , where equality is

achieved only when σ2 → 0. Thus, βmin = (1 − 1/M)−1.
To show that M-LAMA also has a unique fixed point when
β = βmin, we use Lemma 5 and observe that no other σ2

? > 0
satisfies βmin = (dΨ(σ2)/dσ2)−1 at σ2 = σ2

?.
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