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Abstract—We propose a new, low-complexity data-detection algorithm
and a corresponding high-throughput FPGA design for 3GPP LTE-
based large-scale (or massive) multi-user (MU) multiple-input multiple-
output (MIMO) wireless communication systems. Our algorithm per-
forms approximate minimum mean-square error (MMSE) data detection
using coordinate descent (CD), which enables near-MMSE performance
at low computational complexity, even for systems with hundreds of
antennas at the base station (BS). We design a high-throughput VLSI
architecture for 3GPP LTE wideband systems with a deep and interleaved
pipeline, which can be parametrized at design time to support various
antenna configurations. Our CD-based data detector achieves 379 Mb/s
throughout, while using 24 k LUTs and 771 DSP units on a Xilinx Virtex-7
FPGA for a 128 BS antenna, 8 user large-scale MU-MIMO system.

I. INTRODUCTION

Large-scale (or massive) multi-user (MU) multiple-input multiple-
output (MIMO) wireless systems use hundreds of antennas at the
base-station (BS) receiving data from tens of users that communicate
simultaneously and in the same frequency band [1], [2]. While this
emerging approach promises significantly improved spectral efficiency,
coverage, and range compared to conventional, small-scale MU-
MIMO wireless systems, the implementation complexity of suitable
baseband processing algorithms increases significantly. In particular,
data detection in the uplink (where users transmit data simultaneously
to the BS) quickly results in excessive computational complexity at
the BS, especially for systems supporting a large number of users. To
enable high-throughput data detection for such large-scale MU-MIMO
systems, a variety of low-complexity data-detection algorithms [3]–[5]
and corresponding hardware designs have been proposed recently, e.g.,
[6]–[8]. All these detector implementations, however, are either unable
to achieve the throughputs offered by modern wideband large-scale
MU-MIMO systems, or exhibit excessive hardware complexity.

A. Contributions

In this paper, we propose a new, low-complexity data-detection
algorithm and a corresponding high-throughput FPGA architecture for
3GPP LTE-based large-scale MU-MIMO wireless systems. Our algo-
rithm, referred to as optimized coordinate descent (OCD), performs
approximate minimum mean-square error (MMSE) data detection
using coordinate descent—an iterative method that is able to invert
high-dimensional linear systems at low complexity. The regularity
of OCD enables near-MMSE performance at very low hardware
complexity, even for systems with hundreds of BS antennas. To
demonstrate the efficacy of the proposed OCD data detector, we
design a corresponding high-throughput VLSI architecture with a
deep and interleaved pipeline, which can be parametrized at design
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time to support a variety of BS and user antenna configurations. We
provide reference implementation results on a Xilinx Virtex-7 FPGA
and show that our OCD data detector achieves superior error-rate
performance and hardware efficiency compared to existing linear
data-detector implementations for large MU-MIMO systems.

B. Notation

Boldface lowercase and boldface uppercase letters stand for column
vectors and matrices, respectively. For a matrix A, we denote its
hermitian transpose by AH . We use ak,` for the entry in the kth row
and `th column of the matrix A, the kth entry of a column vector a
is denoted by ak = [a]k, and ‖a‖2 =

√∑
k |ak|2.

II. SYSTEM MODEL AND LINEAR DATA DETECTION

A. 3GPP-LTE Uplink System Model

We consider a large-scale 3GPP LTE-based uplink system, where U
single-antenna user terminals send data to a BS with B � U antennas.
The LTE uplink [9] employs single-carrier frequency division multiple
access (SC-FDMA), where the ith user encodes its own bit stream
and maps the resulting coded bits onto constellation points in a finite
set O (e.g., 16-QAM), with unit average transmit power and Q =
log2(M) bits per constellation point. The result is an L-dimensional
time-domain (TD) vector x(i) =

[
x
(i)
1 , . . . , x

(i)
L

]T . Each user then
applies a discrete Fourier transform (DFT) to the TD symbol vector to
obtain a frequency domain (FD) symbol vector s(i), where the vector
s(i) =

[
s
(i)
1 , . . . , s

(i)
L

]T contains the FD symbols transmitted by the
ith user. For each user, these FD symbols are assigned to pre-defined
data-carrying subcarriers, and transformed to the TD using an inverse
DFT. After prepending the cyclic prefix, all users transmit their TD
signals simultaneously over the frequency-selective channel.

At the BS, the TD signals received at each antenna are transformed
back to the FD using a DFT. The FD input-output relation on the
wth subcarrier can be modeled as yw = Hwsw + nw, where

yw =

 y
(1)
w...
y
(B)
w

, Hw =

 H
(1,1)
w · · · H

(1,U)
w...

. . .
...

H
(B,1)
w · · · H

(B,U)
w

,
sw = [s(1)w , . . . , s(U)

w ]T, nw = [n(1)
w , . . . , n(B)

w ]T .

Here, y(i)w is the received FD symbol on the wth subcarrier for
antenna i, H(i,j)

w models the wireless channel on the wth subcarrier
between the ith receive antenna and jth user, s(j)w denotes the symbol
transmitted by the jth user on the wth subcarrier, and n(i)

w , ∀w, are
i.i.d. complex circularly-symmetric Gaussian random variables with
variance N0 per complex entry.



B. Soft-Output MMSE Data Detection

Throughout the paper, we focus on linear data detection algorithms
because they enable low-complexity hardware designs in large-scale
MU-MIMO systems. We build our algorithm on the soft-output MMSE
data detection algorithm proposed in [10]. To obtain estimates of the
transmitted FD symbols in SC-FDMA systems, we first perform
MMSE equalization on a per-subcarrier basis and then, compute
soft-outputs in the form of log-likelihood ratio (LLR) values.

MMSE data detection starts by computing the regularized Gram
matrix Aw = Gw+N0IU with Gw = HH

wHw and the matched filter
vector yMF

w = HH
wyw. One can then compute the MMSE-equalized

FD symbols as s̃w = A−1
w yMF

w [8], [10]. The LLR values are obtained
by first performing an IDFT on s̃(i) = [s̃

(i)
1 , . . . , s̃

(i)
L ]T to obtain the

TD estimate x̃(i) = [x̃
(i)
1 , . . . , x̃

(i)
L ]T . Then, the max-log LLR value

of the jth bit of tth symbol can be computed as [10]

L
(i)

(t,j) = ρ(i)
(

min
a∈O0

j

∣∣∣∣∣ x̃(i)t

µ(i)
− a

∣∣∣∣∣
2

− min
a∈O1

j

∣∣∣∣∣ x̃(i)t

µ(i)
− a

∣∣∣∣∣
2)
, (1)

where O0
j and O1

j sets of constellation symbols for which the jth bit is
0 and 1 respectively, and ρ(i) = (µ(i))2/ν2i where ν2i = µ(i) − |µ(i)|2
for SC-FDMA-based systems [8]. We also need the so-called effective
channel gain µ(i) = L−1∑L

w=1 a
H
i,wgi,w, where aH

i,w is the ith row
of A−1

w and gi,w is the ith column of Gw.

III. MMSE DETECTION VIA COORDINATE DESCENT (CD)

A. MMSE Equalization

The soft-output MMSE data detection algorithm outlined above
may result in high complexity for large-scale MU-MIMO systems. In
particular, computing the FD MMSE estimates s̃w = A−1

w yMF
w , ∀w,

requires the calculation of the U×U -dimensional matrix inverses A−1
w ,

which entails prohibitive complexity for large-dimensional systems.
Thus, instead of computing s̃w = A−1

w yMF
w , which requires the

inverse A−1
w , the estimate s̃w can be computed more efficiently by

solving the following linear system of equations Aw s̃w = yMF
w for the

vector s̃w. As it has been realized in [5], this problem is equivalent
to solving the following regularized LS optimization problem:

s̃w = arg min
z∈CU

‖yw −Hwz‖22 +N0‖z‖22. (2)

While the solution to such regularized LS problems can be found
(exactly or approximately) at low computational complexity using
conjugate gradient (CG) methods, see, e.g., [5], corresponding VLSI
implementations [7] are unable to achieve the high throughputs offered
by 3GPP LTE-based large-MIMO systems, mainly due to a fairly
complex algorithm structure and the need for high arithmetic precision.

B. Coordinate Descent (CD)

We now propose an alternative method to solve (2) by means of
coordinate descent (CD) [11]. To this end, we first define

f(z1, . . . , zU ) = f(z) = ‖yw −Hwz‖22 +N0‖z‖22, (3)

and then minimize the function f(z1, . . . , zU ) for each variable zu,
u = 1, . . . , U , independently and in a round-robin fashion.1 To
simplify notation, we omit the subcarrier index w in the following
discussion. Assume we want to find the optimum uth value zu. To this
end, we hold all other values zj , ∀j 6= u, fixed and set the gradient
of the function (3) with respect to the first component to zero, i.e.,

0 = ∇uf(z) = hH
u (Hz− y) +N0zu. (4)

1The performance of CD can often be improved by randomizing the variable-
update order; in our design, we simply perform round-robin updates.

Algorithm 1 Optimized Coordinate Descent (OCD)
1: inputs: y, H, and N0

2: initialization: t = 0B×1 and z(0) = 0U×1

3: preprocessing: d−1
u = (‖hu‖22 +N0)−1, u = 1, . . . , U

4: for k = 1, . . . ,K do
5: for u = 1, . . . , U do
6: ∆z = d−1

u hH
u (y − t)

7: z
(k)
u = z

(k−1)
u + ∆z

8: t = ht∆z + t
9: end for

10: end for
11: outputs: s̃ = [z

(K)
1 , . . . , z

(K)
U ]T

By decomposing Hz = huzu +
∑

j 6=u hjzj , we can now solve (4)
for zu and obtain the following expression:

zu = (‖hu‖22 +N0)−1hH
u

(
y −

∑
j 6=u hjzj

)
, (5)

which is the CD update rule for the uth entry of z. We can now
compute (5) for t = 1, . . . , U and repeat that procedure for K
iterations to obtain an estimate for s̃ = z(K), where z(K) is the result
of the above-described iteration; see [11] for more details on CD.

C. Optimized Coordinate Descent (OCD)

To reduce the complexity of CD, we precompute the regularized
inverse squared column norms of H, i.e., d−1

u = (‖hu‖22 +N0)−1 for
u = 1, . . . , U . This preprocessing step results in significant complexity
reduction as all subsequent CD iterations do not need to recompute
this value. To further reduce the complexity of CD, we perform
the following iterative updates. In a first step, we update the uth
component of z given the input vectors hu, y, and t. In a second step,
we update the temporary vector t, which is used in the next iteration.
We then sequentially update the symbol estimates. While the original
CD algorithm in Section III-B requires one complex-valued dot (or
inner) product and U − 1 complex scalar-by-vector multiplications
per iteration, our optimized CD algorithm (short OCD) requires only
one dot product and one complex scalar-by-vector multiplication;
this results in significantly reduced computational complexity. The
resulting OCD algorithm is summarized in Algorithm 1.

D. LLR Approximation for OCD

To compute the LLR values (1), we must resort to an approximation
as we never compute the inverse A−1

w . To this end, we use the approx-
imation in [5], [8], which computes µ(i) ≈ L−1∑L

w=1(di,w)−1gi,w ,
where (di,w)−1 is the ith regularized inverse squared column norm
of Hw and gi,w is the entry in the ith diagonal of the matrix Gw.
Furthermore, we use the approximation ρ(i) ≈ (1− µ(i))−1.

E. Error-Rate Performance

We simulate a 20 MHz 3GPP LTE uplink system using SC-FDMA
with 64-QAM and a rate-3/4 turbo code. We also consider a WINNER-
Phase-2 channel model with 7.8 cm antenna spacing [5], [8]. For
channel decoding, we use a log-map turbo decoder.

Figures 1(a) and 1(b) show the packet error rate (PER) for OCD,
as well as other approximate data-detection methods for large-scale
MU-MIMO systems, namely the Neumann-series detector [6] and CG-
based detection [7]. We also include an exact linear MMSE detector as
a reference. We show results for two antenna configurations, 64×8 and
128×8, where we use the notation B×U . OCD with three iterations
(K = 3) achieves near-MMSE performance, and outperforms the two
other approximate detectors for the same iteration count.
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(b) 128 BS antennas and 8 users.

Fig. 1. Packet error rate (PER) for a 64 × 8 and 128 × 8 massive MIMO
system. Optimized coordinate descent (OCD) achieves close-to-MMSE PER
performance and outperforms the two other approximate methods [6], [7].

IV. VLSI ARCHITECTURE

A. Architecture Overview

Figure 2 shows two high-level block diagrams of the proposed
OCD architecture. The inputs of our architecture are the channel
matrix H, the received vector y, and the noise variance N0. Our
architecture supports two operation modes: (a) preprocessing (line 3
of Algorithm 1) and (b) CD iterations (lines 5–9). Preprocessing and
detection are carried out in a B-wide vector processing pipeline, which
processes B-dimensional vectors at a time. In the preprocessing mode,
we compute the regularized inverse squared column norms d−1

u . In
the detection mode, we perform one OCD iteration. To support these
two modes without the need of redundant computation units, the
processing pipeline shares the key operations used in both modes. In
particular, both supported modes share the dot-product unit and the
right shifter unit (highlighted in red in Figure 2).

The main implementation challenge of the OCD algorithm are data
dependencies between successive iterations, which prevent conven-
tional architecture pipelining. In particular, each OCD iteration updates
the temporary vector t and the vector z

(k+1)
u given the previous

vectors t and z
(k)
u . To achieve high throughput, we deploy pipeline

interleaving, i.e., we simultaneously process multiple subcarriers in an
interleaved manner. For example, after performing an OCD iteration
for the first subcarrier, we start an OCD iteration for the second
subcarrier in the next clock cycle; we repeat this interleaving process
until all pipeline stages are occupied. We use 24 pipeline stages,
which enables our design to achieve up to 260 MHz.2

2We note that it is possible to achieve even higher clock frequencies by
increasing the number of pipeline stages (especially for smaller values of B).
This approach, however, entails a significant hardware overhead.

TABLE I
IMPLEMENTATION RESULTS ON A XILINX VIRTEX-7

XC7VX690T FPGA FOR DIFFERENT BS ANTENNA NUMBERS

Array size B = 32 B = 64 B = 128

Slices 3 732 6 709 13 447
LUTs 5 909 13 779 23 956
FFs 15 148 27 795 61 335
DSP48s 195 387 771
BRAM18 1 1 1
Max. clock frequency 262 MHz 261 MHz 262 MHz

TABLE II
THROUGHPUT ON A XILINX VIRTEX-7 XC7VX690T FPGA FOR

K ITERATIONS AND 64-QAM, AND 128 BS AND 8 USER ANTENNAS

K = 1 K = 2 K = 3 K = 4

Throughput [Mb/s] 1 379 500 379 304

B. Fixed-point Arithmetic

In order to optimize the hardware efficiency of our architecture, we
deploy fixed-point arithmetic. We achieved a negligible implementation
loss with 16 bit precision for most internal signals; see Figure 1 for
the fixed-point (fp) performance. There are two exceptions.

1) Dot-product unit: This unit first computes entry-wise products
of two B-dimensional vectors and then, generates the final sum of
these products. We use a balanced adder tree to compute the final
sum and 36 bit adders to achieve sufficiently high arithmetic precision.
The dot product unit computes ‖hu‖22 (line 3 of Algorithm 1) and
hH
u (y − t) (line 6). As both output terms are close to B (for large

values of B), we shift these terms by b = dlog2(B)e bit to the right
to reduce the dynamic range. Since we shift ‖hu‖22 by b to the right,
when we compute the reciprocal value, d−1

u = (‖hu‖22 +N0)−1, we
effectively shift the reciprocal term d−1

u by b bit to the left. In the
dot-product unit, we also shift the term hH

u (y − t) by b bit to the
right. Consequently, we do not need to undo these shifts, as both of
them cancel during the multiplication on line 6 of Algorithm 1.

2) Reciprocal unit: This unit consists of two parts. The first part
normalizes the input signal to the range [0.5, 1]. The second part
generates a reciprocal value for the normalized input; we use a
BRAM18 as a 18 bit, 2048 entry look-up table (LUT), where the
top 11 bit of the normalized value are used to point to the entry in
the LUT that stores the associated normalized reciprocal. We then
denormalize the reciprocal value (see [6] for more details).

V. IMPLEMENTATION RESULTS

We used Vivado HLS (version 2015.2) to parameterize our OCD
architecture for various antenna configurations, i.e., for B = 32,
B = 64 and B = 128 BS antennas. For each configuration, we
provide post place-and-route implementation results on a Xilinx
Virtex-7 XC7VX690T. All implementations support U ≤ 32 users
and K ≤ 256 OCD iterations, which we can control at run-time.

The hardware complexity and resource utilization results are shown
in Table I. Since the proposed architecture performs operations on
B-dimensional vectors, the resource utilization (excluding the BRAM)
scales linearly with B. Since the quantities H and y are assumed to
be stored in external memories, our OCD architecture only uses one
BRAM18 for the LUT in the reciprocal unit.

The throughput results are shown in Table II. We see that the
throughput only depends on the maximum iteration number K and
the clock frequency, but does not depend on U . The reason is because
the number of bits per subcarrier and the number of clock cycles



(a) OCD preprocessing mode.

(b) OCD iteration mode.

Fig. 2. High-level block diagram of OCD detector pipeline. The pipeline is reconfigurable at design time for various antenna configurations, and is able to
either perform preprocessing or carry out OCD iterations. The shared units between both processing modes are outlined in red.

TABLE III
COMPARISON OF DATA DETECTORS FOR AN 128× 8 LARGE-SCALE

MIMO SYSTEM ON A XILINX VIRTEX-7 XC7VX690T FPGA

Detector CG [7] Neumann [6] OCD

Slices 1 094 (1.0%) 48 244 (45%) 13 447 (12%)
LUTs 3 324 (0.8%) 148 797 (34%) 23 955 (5.5%)
FFs 3 878 (0.4%) 161 934 (19%) 61 335 (7.1%)
DSP48s 33 (0.9%) 1 016 (28%) 771 (21%)
BRAM18 1 16 1

Clock freq. [MHz] 412 317 262
Latency [cycles] 951 196 795
Throughput [Mb/s] 20 621 379

Throughput/LUTs 6 017 4 173 15 821

required to process 24 subcarriers grows linearly with respect to U .
For example, doubling U doubles the number of bits per subcarrier.
However, since the number of OCD updates is KU , the number of
required clock cycles also doubles; this results in a constant throughput.
In contrast, the processing latency increases with respect to both U
and K. Specifically, the latency of this design is 24(K + 1)U + 26
clock cycles, where 26 cycles are required to flush the pipeline.

Table III compares OCD to two other large-scale MIMO data
detectors, namely the CG-based detector [7] and the Neumann-series
detector [6]. Both of these detectors have been implemented on the
same FPGA and for a 128 BS antenna, 8 user system. We see that
OCD for the same system configuration outperforms these designs in
terms of hardware efficiency (measured in terms of throughput per
FPGA LUTs). Furthermore, our OCD detector achieves superior PER
performance than the other two detectors (see Figs. 1(a) and 1(b)),
which demonstrates the effectiveness of OCD.

VI. CONCLUSIONS

We have implemented a new, coordinate descent (CD)-based data
detector, called optimized CD (short OCD), for 3GPP LTE large-
scale MU-MIMO systems. The proposed OCD detector enables high-
performance linear data detection, while enabling VLSI designs that

require low hardware complexity. Our FPGA reference design achieves
379 Mb/s for a 128 BS antenna, 8 user system, and outperforms
existing approximate linear data-detection methods in terms of
hardware efficiency and error-rate performance. Hence, OCD enables
realistic 3GPP-LTE large-scale MU-MIMO systems to support tens
of users communicating with hundreds of BS antennas.
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