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Abstract
Statistical models of student responses on assess-
ment questions, such as those in homeworks and
exams, enable educators and computer-based per-
sonalized learning systems to gain insights into
students’ knowledge using machine learning. Pop-
ular student-response models, including the Rasch
model and item response theory models, represent
the probability of a student answering a question
correctly using an affine function of latent factors.
While such models can accurately predict student
responses, their ability to interpret the underlying
knowledge structure (which is certainly nonlin-
ear) is limited. In response, we develop a new,
nonlinear latent variable model that we call the
dealbreaker model, in which a student’s success
probability is determined by their weakest concept
mastery. We develop efficient parameter inference
algorithms for this model using novel methods for
nonconvex optimization. We show that the deal-
breaker model achieves comparable or better pre-
diction performance as compared to affine models
with real-world educational datasets. We further
demonstrate that the parameters learned by the
dealbreaker model are interpretable—they pro-
vide key insights into which concepts are critical
(i.e., the “dealbreaker”) to answering a question
correctly. We conclude by reporting preliminary
results for a movie-rating dataset, which illus-
trate the broader applicability of the dealbreaker
model.
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1. Introduction
A key problem in machine learning-based education is
student-response modeling, i.e., developing principled sta-
tistical models that (i) accurately predict unobserved student
responses to questions and (ii) identify the latent concepts
that govern correct or incorrect responses. A wide range
of student-response models have been proposed in the lit-
erature, including the Rasch (Rasch, 1993), item response
theory (IRT) (Lord, 1980), knowledge tracing (Corbett &
Anderson, 1994), and factor analysis-based models (Cen
et al., 2006; Pavlik et al., 2009; Gong et al., 2010; Chi et al.,
2011; Bergner et al., 2012; Lan et al., 2014b).

The Rasch model (Rasch, 1993) is simple yet effective for
analyzing student-response data. This model characterizes
the probability of a correct response as a function of two
scalar parameters: the student’s ability and the question’s
difficulty. The Rasch model lays the foundation for the
IRT model (Lord, 1980), which features additional param-
eters characterizing the discrimination level of the ques-
tions across students and the effect of guessing. The multi-
dimensional IRT (MIRT) model (Reckase, 2009) and the
factor analysis-based models expand upon the IRT model by
adding multi-dimensional ability and difficulty parameters
(we refer to the model dimensions as “concepts”).

1.1. Limits of Affine Student–Response Models

A key commonality of all the models described above is
that they are affine—they characterize a student’s proba-
bility of success on a question as an affine function of the
student’s knowledge on underlying concepts. While such
models are simple and enable accurate prediction of un-
observed student responses, they suffer from a key flaw
known as the “explaining away” phenomenon (Wellman &
Henrion, 1993): Affine models allow weak knowledge of
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a concept to be erroneously covered up by strong knowl-
edge of other potentially unrelated concepts. Affine models
also fail to capture more complicated nonlinear dynamics
underlying student responses. For instance, it may be im-
possible for a student to answer a question correctly without
mastering a specific concept. Consider the situation where a
student tries to solve the problem: “Simplify the expression
(5x2 sin2 x+ 5x2 cos2 x+ 10x)/(x+ 2).” Students that do
not know the trigonometric identity sin2 x + cos2 x = 1,
will by stymied, no matter how strong their knowledge of
polynomial division. This kind of nonlinear “dealbreaker”
property cannot be captured by an affine model.

Only limited progress has been made in nonlinear student-
response models. For example, the deterministic inputs,
noisy and-gate (DINA) model (de la Torre, 2011) posits
that a student’s probability of answering a question cor-
rectly depends on each specific combination of their binary-
valued concept knowledge states (e.g., 101 means that the
student has mastered Concepts 1 and 3, but not 2). While the
DINA model enables the characterization of more complex
response behavior, such as “students have to master both
Concepts 1 and 3 in order to answer this question correctly,”
it remains an affine model, because the success probability
is modeled as an affine function of the probabilities of the
student being in each specific knowledge state. Moreover,
the DINA model suffers from the fact that there can be up to
2K possible knowledge patterns for each question involving
K concepts; this prevents its use in domains that cover tens
or more different concepts.

1.2. Contributions

In this paper, we develop a new statistical framework for
student-response modeling, dubbed the dealbreaker model,
that avoids the drawbacks of existing models. In the deal-
breaker model, the probability of a student’s success on a
question depends only on their weakest concept mastery
among all the concepts involved in that question and no
others; this prevents the “explaining away” phenomenon.
For the example question mentioned above, we say that not
knowing the trigonometric identity sin2(x) + cos2(x) = 1
is the “dealbreaker” of the question.

To perform parameter inference for this non-affine model,
we develop a novel, nonconvex optimization algorithm as
well as a smooth approximation to the dealbreaker model
that leads to even more efficient inference.

Using four distinct educational datasets, we demonstrate
that the exact and approximate dealbreaker models achieve
comparable or better prediction performance on unobserved
student responses than state-of-the-art affine models (Rasch,
MIRT, and DINA models). Moreover, we showcase the
ability of our models to identify the key concept (the so-
called “dealbreaker”) that is needed to answer a question

correctly. This new functionality could play a significant
role in the modern, machine learning-based approach to
personalized learning that has been identified as a national
priority in the US (NAE, 2016). Going further, we report
preliminary results for a movie rating dataset, which show-
case the broader applicability and interpretability advantage
of the dealbreaker model to domains outside of education.

2. The Dealbreaker Model
Let N be the total number of students and Q the total num-
ber of questions. Let Yi,j denote the binary-valued graded
response of student j to question i, where Yi,j = 1 denotes
a correct response and Yi,j = 0 an incorrect response. Note
that some (or many) responses Yi,j may be unobserved or
missing. Let K be the number of concepts underlying the
questions in the dataset, where the concepts are the latent
factors that control the probability of a correct answer. Let
Ck,j denote the knowledge mastery level of student j on
concept k (Lan et al., 2014b). Also let µi,k denote the intrin-
sic difficulty of question i on concept k, which characterizes
the level of knowledge required on this concept for a student
to answer this question correctly.

The hard dealbreaker model represents the probability that
student j answers question i correctly as follows:

p(Yi,j = 1) = σ

(
min

k=1,...,K
(Ck,j − µi,k)

)
= min
k=1,...,K

σ(Ck,j − µi,k) . (1)

Here, σ(x) is a suitably-chosen link function that maps
real values onto the success probability of a Bernoulli ran-
dom variable in [0, 1]. Without loss of generality, we will
exclusively use the inverse logit link function defined as
σ(x) = (1 + e−x)−1; hence, the second equality in (1)
follows from the fact that σ(x) is non-decreasing in x.

We will refer to min(x) = mink xk : RK → R as the
min function, with the max function defined analogously.
The min function is a non-smooth, non-convex function
that makes parameter estimation a nontrivial task. As an
alternative, we will also use the so-called soft-min function

fα(x) = − 1

α
log

∑
k=1,...,K

e−αxk ,

which is a smooth approximation to the min function; the
parameter α > 0 determines the quality of the approxima-
tion (larger values correspond to tighter approximations).
This soft-min approximation leads to the soft dealbreaker
model for graded student responses:

p(Yi,j = 1) = σ

(
− 1

α
log

∑
k=1,...,K

e−α(Ck,j−µi,k)

)
. (2)
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For K = 1, both dealbreaker models (1) and (2) coincide
(trivially) with the classical Rasch model (Rasch, 1993).

Intuitively, the two dealbreaker models state that the proba-
bility of a student answering a question correctly depends
only on their weakest concept mastery that is tested in the
question. For example, suppose that geometry and algebra
are both involved in a question. The dealbreaker model
requires the student to have strong knowledge of both geom-
etry and algebra in order to succeed with high probability.
If they have strong knowledge of only geometry but not
of algebra, then they are not likely to succeed—literally,
algebra is a “dealbreaker” to their success on this question.

Remark 1. By defining

p(Yi,j = 0) = min
k=1,...,K

σ(µi,k − Ck,j) (3)

instead of (1), we arrive at an alternative model, which we
refer to as the hard dealmaker model; analogously to (2), a
soft-version can be derived. In contrast to the dealbreaker
models, these dealmaker models imply that it is sufficient
for student j to master only one concept Ck,j to successfully
answer question Yi,j . In what follows, we will focus on the
hard and soft dealbreaker models as they (i) better reflect
educational scenarios and (ii) achieve superior prediction
performance in our experiments on real-world educational
datasets. Nevertheless, our proposed inference methods can
easily be applied to the dealmaker model. We also note that
the dealmaker model may be useful in the analysis of other
datasets (e.g., to model single-issue politics in voting).

Remark 2. The two dealbreaker models (1) and (2), as well
as the hard dealmaker model in (3), are only identifiable in
their parametersCk,j and µi,k up to a constant offset in each
concept, i.e., the model predictions remain unchanged if we
add an arbitrary constant ak to the parameters Ck,j , ∀j and
µi,k, ∀i. Therefore, parameter estimation for these models
is non-unique. We will alleviate this identifiability issue by
regularizing the parameters Ck,j and µi,k in Sec. 5.1.

3. Inference for the Hard Dealbreaker Model
We now develop a computationally efficient parameter in-
ference algorithm for the hard dealbreaker model. We first
outline the full algorithm, which employs the alternating
direction method of multipliers (ADMM) framework (Boyd
et al., 2011) for our nonconvex problem. We then detail the
proximal operators that are required in our algorithm.

3.1. ADMM Algorithm

We formulate parameter estimation for the hard dealbreaker
model as an optimization problem that minimizes the neg-
ative log-likelihood of the observed student responses. Let
Ω1 = {(i, j) : Yi,j = 1}, and Ω0 = {(i, j) : Yi,j = 0}.

The dealbreaker model decomposes into the form

minimize
Ck,j ,µi,k,∀i,j,k

∑
(i,j)∈Ω1

− log σ(min
k

(Ck,j − µi,k))

+
∑

(i,j)∈Ω0

− log σ(−min
k

(Ck,j − µi,k))

=
∑

(i,j)∈Ω1

max
k
− log σ(Ck,j − µi,k)

+
∑

(i,j)∈Ω0

min
k
− log σ(−(Ck,j − µi,k)).

We have made use of the facts that − log(σ(x)) is non-
increasing in x and thus p(Yi,j = 0) = 1− p(Yi,j = 1) =
1− σ(mink(Ck,j − µi,k)) = σ(maxk −(Ck,j − µi,k)).

Since this optimization problem is non-convex, we seek an
efficient approximate solution via the ADMM framework.
Let Zki,j = Ck,j − µi,k and rewrite the above problem as

minimize
Ck,j ,µi,k,∀i,j,k

∑
(i,j)∈Ω1

max
k
− log σ(Zki,j)

+
∑

(i,j)∈Ω0

min
k
− log σ(−Zki,j),

subject to Zki,j = Ck,j − µi,k.

The augmented Lagrangian for this problem is as follows:

minimize
Ck,j ,µi,k,∀i,j,k

∑
(i,j)∈Ω1

max
k
− log σ(Zki,j)

+
∑

(i,j)∈Ω0

min
k
− log σ(−Zki,j)

+
ρ

2

∑
i,j,k

(Zki,j − Ck,j + µi,k + Λki,j)
2,

where Λki,j is the Lagrange multiplier for the constraint
Zki,j = Ck,j − µi,k and ρ ≥ 0 is a (suitably chosen) scaling
parameter.1 We randomly initialize the variables Zki,j , Ck,j ,
and µi,k,∀ i, j, k from the standard normal distribution, and
initialize the Lagrange multipliers as Λki,j = 0, ∀ i, j, k. We
then iterate the following steps until convergence is reached
(convergence of ADMM for non-convex problems is shown
in (Li & Pong, 2015)).

Optimize over Zki,j: For each index pair (i, j) ∈ Ω1, solve
the following proximal problem:

minimize
Zki,j ,∀k

1
2

∑
k(Zki,j − Ck,j + µi,k + Λki,j)

2

+ 1
ρ maxk − log σ(Zki,j),

1Note that we use the scaled augmented Lagrangian, in which
the Lagrange multiplier appears inside of the least-squares penalty.
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and for each index pair (i, j) ∈ Ω0, solve the following
proximal problem:

minimize
Zki,j ,∀k

1
2

∑
k(Zki,j − Ck,j + µi,k + Λki,j)

2

+ 1
ρ mink − log σ(−Zki,j).

The details of these two proximal problems are given
in the next section.

Optimize over Ck,j: Solve the following problem:

minimize
Ck,j

1
2

∑
i(Z

k
i,j − Ck,j + µi,k + Λki,j)

2.

The closed-form solution is given by

Ĉk,j = 1
Q

∑
i(Z

k
i,j + µi,k + Λki,j).

Optimize over µi,k: Solve the following problem:

minimize
µi,k

1
2

∑
j(Z

k
i,j − Ck,j + µi,k + Λki,j)

2.

The closed-form solution is given by

µ̂i,k = 1
N

∑
j(Ck,j − Zki,j − Λki,j).

Update Lagrange multiplier: Compute

Λ̂ki,j = Λki,j + Zki,j − Ck,j + µi,k,∀ i, j, k.

3.2. Proximal Operators

In the hard dealbreaker ADMM algorithm, we need to solve
the following proximal problems:

Pmax : minimize
x

1
2‖y − x‖22 + maxk g(xk),

Pmin : minimize
x

1
2‖y − x‖22 + mink g(−xk).

Here, y ∈ RK and g(x) = 1
ρ log(1 + e−x) is a non-

increasing, non-negative convex function on (−∞,∞). The
following theorem characterizes the solution to Pmax.2

Theorem 1. Assume that the entries in y are sorted in
ascending order. Then, the solution to the proximal problem
Pmax is given by

xk =

{
τ̂ for k = 1, . . . , K̂,

yk for k = K̂ + 1, . . . ,K,

where K̂ is the largest integer M such that

MyM −
∑M
k=1 yk + g′(yM ) ≤ 0

and τ̂ is the solution to K̂τ −
∑K̂
k=1 yk + g′(τ) = 0.

2Our results apply to any non-increasing, differentiable func-
tion g(·), more general than the results in (Parikh & Boyd, 2014).

Proof. The problem Pmax is equivalent to

minimize
x

1
2‖y − x‖22 + t

subject to g(xk) ≤ t, ∀k.

The Karush-Kuhn-Tucker (KKT) conditions for this prob-
lem are as follows:

xk − yk + γkg
′(xk) = 0, ∀k, (4)∑
k γk = 1, (5)

γk(g(xk)− t) = 0. ∀k, (6)

Here, γk is the non-negative Lagrange multiplier for the
inequality constraint g(xk) ≤ t. In the complimentary slack-
ness condition (6), we have that if γk = 0, then g(xk) ≤ t.
In this case, the stationarity condition (4) gives xk = yk.
On the other hand, if γk > 0, then g(xk) = t, mean-
ing that xk = g−1(t) := τ . In this case, (4) leads to
xk = yk−γkg′(xk) ≥ yk, since γk ≥ 0 and g′(xk) ≤ 0 be-
cause g(xk) is non-increasing. As a consequence, we know
that the solution to Pmax is given by

xk = max{yk, τ} (7)

for some constant τ . Hence, we need only find τ . Since
1
2‖y − x‖22 is non-decreasing and maxk g(xk) is non-
increasing as τ increases, we know that there will be a
minimizer for τ . In order to find its value, we note that the
analysis above gives

γk =

{
0 xk = yk,
yk−τ
g′(τ) xk = τ ≥ yk.

Together with the stationary condition for t (5), we have∑
k′
yk′−τ
g′(τ) = 1 ⇐⇒

∑
k′(yk′ − τ)− g′(τ) = 0,

where k′ corresponds to the indices in x that satisfy xk = τ .
First, we need to identify these indices. By assumption,
y1 ≤ . . . ≤ yK . Then, we examine the value of f(τ) =∑
k′(yk′ − τ)− g′(τ). Note that f(τ) is a non-increasing

function of τ as both
∑
k′(yk′ − τ) and −g′(τ) = 1

ρ(1+eτ )

are non-increasing functions of τ . To find the indices k′, we
check f(τ) for different values of τ :

τ < y1: f(τ) = −g′(τ) > 0, since we have xk = yk for
k = 1, 2, . . . ,K from (7).

y1 ≤ τ < y2: f(τ) = y1−τ−g′(τ) since we have x1 = τ
and xk = yk for k = 2, . . . ,K, giving f(y1) = y1 −
y1 − g′(y1).

...

τ ≥ yK : f(τ) =
∑K
k=1 yk + Kτ − g′(τ) since we have

x1 = . . . = xK = τ , giving f(yK) =
∑K
k=1 yk −

KyK − g′(yK).
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According to the analysis above, the number of elements
in x that are equal to τ is simply the largest integer M such
that MyM −

∑M
k=1 yk + g′(yM ) ≤ 0.

Once we have found the integer K̂, the value of τ can be
found by solving f ′(τ) = K̂τ −

∑K̂
k=1 yk + g′(τ) = 0. We

use Newton’s method by initializing τ0 = yK̂ and iteratively
performing the following update:

τ`+1 = τ` −
K̂τ` −

∑K̂
k=1 yk + g′(τ`)

K̂ + g′′(τ`)

until the sequence {τ`} converges to τ̂ .

In summary, the solution of Pmax can be written as

xk =

{
τ̂ for k = 1, . . . , K̂,

yk for k = K̂ + 1, . . . ,K.

We note that Pmax is a generalization of the proximal prob-
lem for the `∞-norm (Duchi et al., 2008; Studer et al., 2015),
which corresponds to the special case of g(x) = |x|.

The following theorem characterizes the solution to Pmin.
Theorem 2. Assume that the entries in y are sorted in
ascending order. Then, the solution to the proximal problem
Pmin is given by

xk =

{
τ̂ for k = 1,
yk for k = 2, . . . ,K,

where τ̂ is the solution to τ − y1 + g′(−τ) = 0.

Proof. In this case, the function g(−x) is non-decreasing
on (−∞,∞). Therefore, the value of mink g(−xk) depends
only on the smallest element in x, and the other elements
of x will simply be equal to their corresponding elements
in y. We need only solve for the smallest element; it will be
given by the solution to the equation τ − y1 + g′(−τ) = 0.
In our algorithm, we use Newton’s method, analogously to
the one used to solve Pmin to find τ̂ .

4. Inference for the Soft Dealbreaker Model
We now develop the inference algorithm for the soft deal-
breaker model. As for the hard dealbreaker model, the in-
ference problem minimizes the approximated negative log-
likelihood (2) of the observed student responses

minimize
Ck,j ,µi,k,∀i,j,k

∑
(i,j)∈Ω1

− log σ(min
k

(Ck,j − µi,k))

+
∑

(i,j)∈Ω0

− log σ(−min
k

(Ck,j − µi,k))

≈
∑

(i,j)∈Ω1

− log σ

(
− 1

α
log
∑
k

e−α(Ck,j−µi,k)

)

+
∑

(i,j)∈Ω0

− log σ

(
1

α
log
∑
k

e−α(Ck,j−µi,k)

)
,

where α ≥ 0 controls how tight the soft-min approximates
the hard-min function. Since the approximate negative log-
likelihood function is smooth in the variables Ck,j and µi,k,
we can use the fast adaptive shrinkage/thresholding algo-
rithm (FASTA) framework (Goldstein et al., 2015) to effi-
ciently find a locally optimal solution to this problem.

We start by initializing the variables as for the hard deal-
breaker model. To reduce the chance of getting stuck in a
local optimum, we initialize α to a small positive value (e.g.,
α = 0.1) that ensures smoothness of the initial objective
function. We also initialize the stepsize s to a small positive
value. Then, in each iteration, we perform the following
steps until convergence is reached.

Gradient step on Ck,j and µi,k: Calculate the gradient of
the cost function f with respect to Ck,j and µi,k via

∂f

∂Ck,j
= −

∑
i:(i,j)∈Ω1

e−α(Ck,j−µi,k)

u+ u1− 1
α

+
∑

i:(i,j)∈Ω0

e−α(Ck,j−µi,k)

u+ u1+ 1
α

,

∂f

∂µi,k
=
∑

j:(i,j)∈Ω1

e−α(Ck,j−µi,k)

u+ u1− 1
α

−
∑

j:(i,j)∈Ω0

e−α(Ck,j−µi,k)

u+ u1+ 1
α

,

where u =
∑
k′ e
−α(Ck′,j−µi,k′ ). Then, perform the

gradient step with respect to each Ck,j and µi,k,
∀ i, j, k, via

Ck,j ← Ck,j − s ∂f
∂Ck,j

, µi,k ← µi,k − s ∂f
∂µi,k

,

and perform a backtracking line-search (Boyd & Van-
denberghe, 2004) on s.

Stepsize s update: Adaptively select the stepsize s using
the value of the variables from this iteration and the last
iteration according to the Barzilai-Borwein rule (Barzi-
lai & Borwein, 1988). This selection rule achieves
faster empirical convergence than other methods, e.g.,
(Beck & Teboulle, 2009).

The steps above do not update the value of α, but in prac-
tice, we update the value of α using a rule inspired by the
continuation method (Wen et al., 2010) in convex optimiza-
tion. The procedure we use works as follows. First, we hold
the value of α fixed and perform the above iterations until
convergence. Then, we increase the value of α by multiply-
ing it by a constant factor (e.g., 5), and run the iterations
again by initializing them with the converged estimates of
Ck,j and µi,k from the previous iterations. We terminate the
iterations until they converge for a large value of α (e.g.,
α = 20). At this point, the large final value of α ensures
that the soft min function closely approximates the true,
non-smooth min function. We emphasize that this contin-
uation approach also speeds up the numerical solver and
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Model Hard DB Soft DB DINA 3PL MIRT Rasch 1-bit MC

K 3 6 3 6 3 6 3 6

MT 0.798±0.016 0.796±0.017 0.801±0.013 0.799±0.012 0.770±0.012 0.775±0.017 0.673±0.024 0.723±0.020 0.795±0.016 0.802±0.016
UG 0.871±0.004 0.871±0.004 0.875±0.004 0.871±0.004 0.850±0.005 0.800±0.006 0.757±0.017 0.754±0.015 0.853±0.004 0.873±0.004

CE 0.689±0.003 0.685±0.003 0.685±0.003 0.682±0.004 0.684±0.003 0.641±0.004 0.533±0.006 0.558±0.007 0.686±0.004 0.688±0.005

edX 0.929±0.001 0.925±0.001 0.927±0.001 0.927±0.001 0.926±0.001 0.917±0.001 0.865±0.002 0.860±0.002 0.926±0.001 0.928±0.001

Table 1. Performance comparison in terms of the prediction accuracy (ACC) for the dealbreaker models (Hard DB and Soft DB) against
the DINA, 3PL MIRT, and Rasch models, and also the 1-bit MC algorithm in (Lan et al., 2014a).

Model Hard DB Soft DB DINA 3PL MIRT Rasch 1-bit MC

K 3 6 3 6 3 6 3 6

MT 0.841±0.015 0.839±0.015 0.840±0.018 0.839±0.018 0.784±0.023 0.730±0.021 0.646±0.027 0.690±0.024 0.839±0.017 0.838±0.019

UG 0.832±0.004 0.831±0.004 0.831±0.005 0.830±0.004 0.760±0.014 0.788±0.011 0.613±0.019 0.633±0.015 0.800±0.009 0.830±0.007

CE 0.744±0.004 0.744±0.004 0.748±0.004 0.746±0.003 0.750±0.004 0.679±0.005 0.524±0.009 0.560±0.007 0.747±0.004 0.747±0.004

edX 0.904±0.002 0.906±0.002 0.912±0.002 0.911±0.002 0.906±0.003 0.832±0.003 0.754±0.004 0.753±0.004 0.911±0.002 0.910±0.002

Table 2. Performance comparison in terms of the area under the receiver operating characteristic curve (AUC) for the dealbreaker models
(Hard DB and Soft DB) against the DINA, 3PL MIRT, and Rasch models, and also the 1-bit MC algorithm in (Lan et al., 2014a).

reduces the chance that our method gets stuck in a bad local
minimum, eventually improving the quality of our results.

5. Experiments
We now demonstrate the prediction performance of the deal-
breaker model on unobserved student responses using four
real-world educational datasets. We furthermore showcase
the interpretability of the dealbreaker model by visualizing
the “dealbreaker” concept for each question. In addition,
we use a movie rating dataset to show that the dealbreaker
model can be applied to other datasets outside of education.

5.1. Predicting Unobserved Student Responses

We compare the dealbreaker models against three state-of-
the-art student-response models: the DINA model (de la
Torre, 2011), the 3PL multi-dimensional item response the-
ory (3PL MIRT) model (Reckase, 2009), and the Rasch
model (Rasch, 1993). We also include a comparison against
the 1-bit matrix completion (1-bit MC) algorithm proposed
in (Lan et al., 2014a) and analyzed in (Davenport et al.,
2014). The following four datasets are used.

MT: N = 99 students answering Q = 34 questions in a
high-school algebra test administered in Amazon’s Me-
chanical Turk (Amazon, 2016); 100% of the responses
are observed.

UG: N = 92 students answering Q = 203 questions in
an undergraduate course on introduction to computer
engineering; 99.5% of the responses are observed.

CE: N = 1567 students answering Q = 60 questions in
a college entrance exam; 70.7% of the responses are
observed.

edX: N = 6403 students answering Q = 197 questions in
a massive open online course (MOOC) on signals and
systems; 15.0% of the responses are observed.

Experimental setup: To reduce the identifiability issue
of the dealbreaker model, we add the regularization term
λ
2 (
∑
k,j C

2
k,j +

∑
i,k µ

2
i,k) to the cost functions of both the

hard and soft dealbreaker optimization problems and se-
lect the parameter λ using cross-validation. In each cross-
validation run, we randomly leave out 20% of the student
responses in the dataset (the “unobserved” data) and train
the algorithms on the rest of the responses before testing
their prediction performance on the unobserved data. We
repeat each experiment 20 times with different random par-
titions of the dataset.

For the Rasch model and the MIRT model, we perform
inference using the R MIRT package (Chalmers, 2012). The
DINA model is implemented as detailed in (de la Torre,
2009; 2011). For the MIRT model, the DINA model, and
both dealbreaker models, we use K ∈ {3, 6} concepts.

We evaluate the prediction performance on the unobserved
student responses of each model using two different metrics:
(i) prediction accuracy (ACC), which is simply the portion of
correct predictions, and (ii) area under the receiver operating
characteristic curve (AUC) of the resulting binary classifier
(Jin & Ling, 2005). Both metrics take on values in [0, 1],
with large values indicating better prediction performance.

Results and discussion: Tables 1 and 2 show the aver-
age performance of each algorithm on each dataset using
each metric over 20 random splits of the data. With only two
exceptions, we see that both dealbreaker models slightly out-
perform the other educational models in terms of prediction
accuracy (ACC) and achieve slightly better or comparable
performance with the Rasch model in terms of AUC. More-
over, the performances of the dealbreaker models and the
Rasch model are very close to each other and much better
than the DINA model and the 3PL MIRT model. The perfor-
mance of the dealbreaker models is comparable to the 1-bit
MC algorithm, whose parameters admit no interpretability.
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MT-DB MT-Rasch

Soft DB 0.799 0.810
Rasch 0.775 0.808

Table 3. Comparison of the dealbreaker (DB) model against the
Rasch model in terms of ACC when both models are fitted sep-
arately on subsets of the MT dataset. The dealbeaker model per-
forms well on both subsets while the Rasch model does not perform
well on questions with diverse response patterns across students.

Note that the results shown in Tables 1 and 2 correspond
to the prediction performance over the entire dataset. We
now compare the prediction performance of the dealbreaker
models against other models (the Rasch model, in particular,
as it is the best performing educational baseline algorithm)
on different questions. Towards this end, we fit the soft deal-
breaker model (with K = 3 concepts) and the Rasch model
on the MT dataset and analyze their prediction performance
on each question separately.

The top 5 questions that the dealbreaker model performs best
on have average scores (portion of students with correct an-
swers) of 67%, 63%, 67%, 74%, 70%, while the top-5 ques-
tions that the Rasch model predicts best on have average
scores of 83%, 11%, 95%, 87%, 99%. Thus, we conclude
that the Rasch model excels at very easy and very hard ques-
tions, while the dealbreaker model excels at questions with
more diverse response patterns across students.

To further validate our observation, we divide the MT dataset
with Q = 34 questions into two smaller, separate datasets,
each with Q = 17 questions. One of them consists of ques-
tions on which the dealbreaker model outperforms the Rasch
model (labeled MT-DB) in the prediction experiments above
(using the entire dataset), and the other consists of questions
on which the Rasch model outperforms the dealbreaker
model (labeled MT-Rasch). We then repeat prediction ex-
periments on these two small datasets separately.

Table 3 shows the performance of each algorithm on each
small dataset using the ACC metric. We see that the deal-
breaker model performs well on both small datasets, while
the Rasch model’s performance deteriorates significantly
on the subset of the questions in the MT-DB dataset. These
results support our observation that the simplicity of the
Rasch model is best suited for questions with uniform re-
sponse patterns across students (i.e., very easy or very hard
questions), whereas the dealbreaker model is better suited
for questions having more complex concept-understanding
requirements for students to achieve success.

We emphasize that the soft dealbreaker model enables more
efficient parameter inference compared to the hard deal-
breaker model. For example, a single run of our Python
code for the soft dealbreaker model with the UG dataset
with 92 students and 203 questions takes only 10 s com-
pared to 30 s for the hard dealbreaker model on an Intel i7

Figure 1. Visualization of the estimated question difficulty param-
eters µi,k. “Warm” colors mean that the question requires the
learners to have high knowledge on those concepts. For questions
testing multiple concepts, we can see that the estimated difficulty
parameters clearly show which concept is the “dealbreaker.”

laptop with a 2.8 GHz CPU and 8 GB memory.

5.2. Visualizing the Dealbreaker Model

We now demonstrate the parameter interpretability afforded
by the dealbreaker model using the MT dataset.

Experimental setup: The MT dataset comes with 13
domain-expert provided tags (or labels) on every question,
which summarize the tested concepts. We use these tags as
information on the underlying knowledge structure of the
dataset and setK equal to the number of unique tags, letting
each tag correspond to a unique concept. For each question,
we only estimate the difficulty parameters of the concepts
that it is associated with, and set the difficulty parameters
of the other concepts to µi,k = −∞ so that they cannot
be chosen as the minimum element in the min function on
Ck,j − µi,k in the dealbreaker model.

Results and discussions: Figure 1 visualizes the esti-
mated parameters µi,k for the MT dataset. Each grid cell
in the figure represents the difficulty of a question with re-
spect to a particular concept; “warm” colors (positive values)
mean that the question requires high knowledge of a con-
cept, “cold” colors (negative values) mean that the question
requires only a moderate level of knowledge on a concept,
and white means that a concept is not tested in the question.

Now we take a closer look at the questions that involve
multiple concepts. For example, Question 3 corresponds to

If 3x
7 −

9
8 = −5, then x = ?

The question tags are “Solving equations” and “Fractions,”
and the estimated question concept difficulties show that
“Fractions” is the dealbreaker in this question. This matches
with the observation that the key to answering this ques-
tion correctly is to understand fractions, while the part that
involves equation solving is relatively straightforward. As
another example, Question 20 in this dataset is:

Compute limx→0
1
x sin(x).
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soft DB Rasch 1-bit MC

ACC 0.710±0.003 0.689±0.004 0.718±0.002
AUC 0.775±0.004 0.730±0.005 0.779±0.003

Table 4. Prediction performance of the dealbreaker model, the
Rasch model, and 1-bit MC on the MovieLens dataset.

The question tags are “Fractions,” “Trigonometry,” and
“Limits,” and the estimated question concept difficulties
show that “Limits” is the dealbreaker here, in agreement
with the fact that the key to solving this question is to have
a good knowledge on limits (more precisely, l’Hôpital’s
rule), while the fraction and trigonometry concepts needed
to answer this question are less critical.

These examples highlight the advantage of the nonlinear
dealbreaker model over affine models, since it can iden-
tify the most critical concepts involved in a question (e.g.,
in the widely used Q-matrix model (Barnes, 2005), every
concept involved in the question is treated as though it con-
tributes equally to the students’ success probability). This
information could enable a machine learning-based intelli-
gent tutoring system to generate more targeted feedback for
remediation or when a student asks for a hint on a question.

5.3. Interpreting Movie Ratings

To demonstrate the broader applicability of the dealbreaker
model to domains outside of education, we perform infer-
ence on the “MovieLens 100k” dataset (Herlocker et al.,
1999) consisting of the integer-valued (1-to-5) ratings of
N = 943 users on Q = 1682 movies. To evaluate the per-
formance of the dealbreaker model, we convert the entries
into binary values using the approach proposed in (Daven-
port et al., 2014), i.e., we compare each entry to the average
rating across the entire dataset (1 and 0 implies above and
below average, respectively). We perform a prediction ex-
periment as in Sec. 5.1 and compare the performance of the
soft dealbreaker model with K = 19 (using the provided 19
genres with the genre labels of each movie) to the Rasch
model and to the 1-bit matrix completion algorithm (1-bit
MC) as proposed in (Davenport et al., 2014).

Table 4 shows the average prediction performance on the
MovieLens dataset on both the ACC and AUC error metrics
over 20 random splits of the dataset. Note that although the
1-bit MC algorithm slightly outperforms the soft dealbreaker
model in terms of prediction performance, it offers virtually
no interpretability of its model parameters.

We now report some interesting observations made by in-
terpreting the estimated dealbreaker model parameters. The
movies “Pretty Woman,” “Sabrina,” and “While You Were
Sleeping,” all have “Comedy” and “Romance” as their gen-
res, with “Romantic” being the dealbreaker for these movies.
“Romance” is the dealbreaker in all of these movies as they
have large negative µ values on the “Comedy” genre (i.e.,

even users who do not particularly favor comedy would not
dislike these movies) and large positive values on the “Ro-
mance” genre (i.e., users who do not favor romance would
dislike these movies). On the contrary, “Bram Stoker’s Drac-
ula” has both “Horror” and “Romance” genres but with
“Horror” as its dealbreaker—users who dislike horror movies
are much less likely to enjoy it than users who dislike ro-
mantic movies.

Another interesting observation is that most of the highly
rated movies (e.g., “Fargo,” “Forrest Gump,” and “Star
Wars”) cover many genres yet have no particular dealbreaker
(i.e, they have large negative µ values for all involved gen-
res). This implies that, even if a user does not like some of
the genres, they may still like these movies. We feel that
these preliminary results are encouraging, since they high-
light the advantage of the nonlinear dealbreaker model for
collaborative filtering applications as compared to affine
models that excel in prediction but lack interpretability.

6. Conclusions
We have developed the dealbreaker model for analyzing
students’ responses to questions. Our model is nonlinear
and characterizes the probability of a student’s success on
a question as a function of their weakest concept mastery,
i.e., the “dealbreaker.” This model helps us to gain deep
insights into the knowledge structure of questions and to
identify the key factors behind student response patterns
on different questions. We have developed two inference
algorithms for estimating the parameters of the hard and soft
versions of the dealbreaker model, and have shown that they
achieve excellent prediction performance on unobserved
student responses, while enabling human interpretability of
the estimated parameters. In addition, an application of the
dealbreaker model to a movie rating dataset has shown that
it provides an advantage compared to affine models in terms
of interpretability of the model parameters.

There are a number of avenues for future work. Clearly,
the performance of the dealbreaker model on a variety of
educational datasets as well as on a movie rating dataset (es-
pecially in terms of interpretability) provides a call-to-action
for the exploration of other nonlinear models. Adding extra
functionality to the dealbreaker model also appears promis-
ing. For example, it is often the case that each question only
covers a small number of concepts out of many (i.e., con-
cept usage is sparse) (Lan et al., 2014b). Enforcing such
a sparsity property on a dealbreaker model is challenging
when there are no a-priori question labels available for the
dataset. Furthermore, it is possible to extend the dealbreaker
model from modeling binary data to ordinal data (e.g., the
actual ratings in collaborative filtering applications), which
may further improve the performance of the dealbreaker
model on other applications.
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