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ABSTRACT
Peer-grading is widely believed to be an inexpensive and
scalable way to assess students in large classroom settings.
In this paper, we propose calibrated self-grading as a more ef-
ficient alternative to peer grading. For self-grading, students
assign themselves a grade that they think they deserve via
an incentive-compatible mechanism that elicits maximally
truthful judgements of performance. We show that the stu-
dents’ self-evaluation scores obtained via this mechanism
can be used to perform classic item response theory (IRT)
analysis. In order to obtain unbiased estimates of the IRT
parameters, we show that the self-assigned grades can be
calibrated with a minimum amount of input from instructors
or domain experts. We demonstrate the effectiveness of the
proposed calibrated self-grading approach via simulations
and experiments on Amazon’s Mechanical Turk.

Keywords
Assessment, self-grading, item response theory (IRT).

1. INTRODUCTION
A significant bottleneck in scaling traditional classrooms
to hundreds or thousands of students is the challenge of
enabling efficient mechanisms of assessment. Peer-grading,
hailed as a solution to this “scaling problem,” has received
significant attention, both from the education [12, 5] and
machine learning [10, 11] communities. Broadly speaking,
peer-grading can be thought of as a relaxation of the tra-
ditional teacher/student roles in the classroom: An expert
instructor is replaced by several “noisy” students having the
task of estimating performance of other students. Virtually
all of the existing statistical models for peer-grading aim
to estimate the student’s true performance from such noisy
measurements, under some metric of optimality.

Self-grading constitutes a special case of peer-grading: The
student is their own only “peer” and is solely responsible for
assigning a score based on the judgement of their own work.

Depending on the student’s honesty in self-evaluation, self-
grading is appealing for at least two reasons: (i) Students can
provide a richer signal towards their internal state of knowl-
edge by explicitly revealing confidence in their answers—a
signal that can be exploited during assessment; (ii) because
every student is their own grader, potentially no additional
peer-grading efforts are required to perform assessment. Self-
grading, however, introduces two unique challenges not faced
in traditional peer-grading: (i) Designing mechanisms for
eliciting honest judgement of performance and (ii) accounting
for individual biases in self-evaluation. The first challenge
in self-grading fundamentally requires an explicit mecha-
nisms for eliciting truthful judgements.1 The second chal-
lenge is addressed in peer-grading by appealing to statistics
and assuming that the population of graders is—at least on
average—unbiased.

In this work, we propose calibrated self-assessment to ad-
dress both of the above challenges. Our approach combines
self-assessment with a small number of instructor-graded
items, which provides a simple, incentive-compatible mecha-
nism of eliciting self-assigned scores, and yields assessments
of comparable or superior quality to a setting with signifi-
cantly more instructor-graded items and no self-scoring. As a
consequence, calibrated self-assessment enables a significant
reduction in effort of instructors, domain experts, or peers.

2. RELATED WORK
We focus our review on two research directions that our work
aims to bring together: (i) self-assessment as a method for
summative assessment and (ii) decision-theoretic mechanism
design for judgement elicitation.

Self-grading and Peer-grading in education: Self-
assessment is often seen by teachers as a valuable tool in
classrooms [17], who cite self-assessment as a viable way to
reduce the instructor’s effort, elicit additional information
from students (e.g., their effort and confidence), and provide
an additional learning opportunity in the process. More re-
cently, in addition to peer-grading, self-grading was deployed
in massive open online courses (MOOCs) [5]. Self-grading as
a tool for summative assessment, however, is controversial,
with its validity questioned on the basis of students’ internal
biases. In fact, studies indicate that bias is often a function
of one’s ability [17, 16]. Studies that compare peer-grading
and self-grading differ in their findings, with self-grading and

1This is also a potential problem in peer-grading when con-
flicts of interest are present.



peer-grading performance excelling in different conditions
(classrooms, age-groups, etc.), but both are heavily influ-
enced by the underlying assessor biases (see [16] for a survey
of the studies). A study carried out in four middle-school
science classrooms found that peer-grading and self-grading
have a high correlation with instructor grades, with grading
bias patterns that are consistent with other studies [12]. In
addition, they found that the process of self-grading resulted
in learning gains, whereas peer-grading did not. A recent
study carried out at the university level, however, found that
both peer-grading and self-grading results in learning gains
as a side-effect of grading [8].

The existing literature on self-grading points to the significant
effect of bias in self-scoring, with most studies concluding
that students of lower ability tend to inflate their grades
more. As a consequence, we argue for the importance of
an incentive-compatible mechanism that is designed to elicit
maximally truthful judgements, and a calibrated model that
is able to explicitly de-bias the individuals by incorporating
a subset of instructor-graded items.

Judgement elicitation: The literature on truthful judge-
ment elicitation through scoring functions dates back to the
fifties, when the so-called “quadratic scoring rule” was pro-
posed for the task of weather forecasting [2]. Since then, a
number of generalizations of the quadratic scoring rule and
other incentive-compatible scoring rules have been proposed
and analyzed [3, 14, 7, 13] and found application in forecast-
ing weather, sports, and finance. Analysis of the behavior
of non-risk neutral agents in scoring-rule-based mechanisms
has received only limited attention [9], with lottery-based
payoffs being the most well-known solution for encouraging
risk-neutral behavior. Lottery-based payoffs had received
mixed results in experimental evaluations [4, 15], and in the
context of education a reward system based on a lottery is
not a reasonable solution. In this work, we rely on heavily
limited instructor input in order to correct for individual
biases, which includes under- and over-confidence, as well as
non-risk-neutral behavior.

To the best of our knowledge, the only work that applies
a scoring rule mechanism in the context of education that
we are aware of is [1]. The focus of this work is in ana-
lyzing the effect of different scoring functions on the self-
assessment behavior of students. Our primary contribution
in this work is in developing a principled statistical model for
calibrated summative assessment that integrates self-scoring
and instructor-scoring within the classic IRT framework.

3. MODEL
Self-grading without a proper incentive mechanism may lead
to dishonest behavior. In the setting of self-grading, a “mech-
anism” is a scoring rule that specifies the rules by which the
points are assigned to the student as a function of their own
judgement and the outcome (i.e., whether their answer was
correct). A mechanism is called incentive compatible when
the student’s optimal strategy with respect to his or her own
utility function results in a truthful elicitation of information,
e.g., truthful judgement of their own work.

We consider the following scoring function:

pij =

{
θij if correct
− 1

2
θ2ij if wrong,

where θij ∈ [0, A] is a score provided by student i in answering
question j, where A is some fixed upper bound. If the student
provides a correct answer, they get the θij points that they
proposed; if they provide an incorrect answer, they lose
exactly half of that value squared. This scoring function is
known as a quadratic scoring rule and was first proposed
in [2].

For this scoring function, the expected payoff is

E[pij ] = θij π̂ij −
1

2
θ2ij(1− π̂ij), (1)

where π̂ij is the ith student’s estimate of the probability that
they will get question j correct. This expression is maximized
when

θij =
π̂ij

1− π̂ij
. (2)

Equation 2 is exactly the student’s own belief about the
odds of them answering the question correctly. Consider
that the student estimates their chances of answering any
question correctly, by simultaneously estimating their own
ability and the difficulty of the question. Let us now define
that probability to be the standard IRT Rasch likelihood, but
defined with respect to the student’s own estimate of their
ability, ŝi and their estimate of the question’s difficulty q̂j :

π̂ij =
1

1 + exp(−(ŝi − q̂j))
.

Given the student’s estimate of their own ability ŝi and of
the difficulty of the question q̂j , we can now derive their
optimal proposed score (assuming they act rationally and are
risk-neutral) for that problem θij (or rather its logarithm):

log(θij) = ŝi − q̂j ,

which follows from the fact that log-odds of a logistic model
is a linear function of its parameters. We will assume that the
student is risk-neutral and is unbiased in his or her estimates
of own ability and question difficulty, but we will relax both
assumptions later. On any given question, however, the
student’s estimate of their ability to answer that particular
question may deviate from their true ability. Assuming that
the student’s own estimates are normally distributed around
their true values, we get:

ŝi − q̂j ∼ N (si − qj , σ2),

where si and qj are the true student ability and question dif-
ficulty parameters respectively. As a consequence, it follows
that log(θij) is normal distributed and θij is log-normal dis-
tributed. Consider a dataset D consisting of the self-assigned
scores log(θij) submitted by each student for each question
that the student answered. We can write the conditional
likelihood of the entire dataset as follows:

P (θ | s,q) =
∏

(i,j)∈D

N (log(θij) | µ = si − qj , σ2).

Here, s and q are the vectors comprising the student ability
and question difficulty parameters, respectively, and θ is
the vector of student-submitted scores. Maximizing the



likelihood of all observations gives a straightforward least-
squares solution for the parameters si and qj , given all the
user-provided scores θij . Note that σ2 is assumed to be a
constant variance in students’ estimates of their own ability.
In practice this variance is likely user-specific and corresponds
to the students’ ability in self-assessment. We will address the
issues of bias and variance in self-assessment in Section 3.2.

3.1 Parameter estimation
It is interesting to note that we can solve for the IRT param-
eters (student abilities and question difficulties) using the
above formulation with no outcome information, i.e., without
knowing which students answered which questions correctly.
In fact, the above approach does not even require that the
students who are self-grading know what the correct answer
is; students’ confidence in their answers elicited through the
quadratic scoring rule is all that is needed to learn the pa-
rameters of the model. Of course, this observations relies on
two fundamental assumptions: (i) students are risk-neutral
and (i) students are unbiased in estimating their chance of
answering a question correctly. In Section 3.2, we will ac-
count for the individual biases and non-risk-neutral behavior
by explicitly introducing a bias parameter into the model
and estimating it from an additional set of instructor-graded
responses. However, in order to gain a better understanding
of the model, it is insightful to first analyze the solution to
the problem where both of these assumptions hold.

The solution for the model parameters can be obtained in
closed-form using a standard pseudo-inverse solution to a
least-squares problem. Alternatively, the solution can be
obtained iteratively, without requiring to explicitly invert
any (potentially large) matrices. In particular, one can
repeatedly evaluate the following two steps:

si =
∑
j∈Qi

qj
λ+ niq

+
∑
j∈Qi

log(θij)

λ+ niq

qj =
∑
s∈Sj

si

λ+ njs
−
∑
i∈Sj

log(θij)

λ+ njs
.

Here, si is the ability of student i and qj is the difficulty of
question j. To guarantee a unique solution, we introduce
a non-negative regularization parameter λ, which we will
discuss in more detail in the next paragraph. The constants
niq and njs are the number of questions that student i an-
swered and the number of students that answered question j
respectively. Note that the above iterative solution has an
intuitive interpretation: The ability of the student is the sum
of the average of the (log-transformed) self-assigned scores
to a set of questions that the student answered and the av-
erage difficulty of those questions. In turn, the difficulty of
a question is the negative of the average (log-transformed)
score that students assigned to themselves for that question
plus the average ability of the students who answered that
question. Intuitively, if students with high ability self-assess
themselves to have done poorly on a specific question, that
question will have a large difficulty parameter.

In the case where there is no missing data, i.e., each stu-
dent answers each question, the solution for student ability

parameters simplifies to:

s =


∑

i∈S log θi1
λ+Ns

...∑
i∈S log θiNq

λ+Ns

+O(1/λ)1,

where O(1/λ) is a function that grows proportional to 1/λ. In
other words, the student’s ability is simply the average of the
(log-transformed) scores that the student assigned to them-
selves plus a constant that is identical for each student. This
solution also illustrates the role of the regularization parame-
ter λ. Because the solution for s and q is location-invariant,
without an explicit prior, the likelihood is maximized by scal-
ing all parameters to infinity. This is equivalent to setting λ
to 0, in which case the above solution will tend to infinity,
as expected. Note, however, that the relative ranking of the
student abilities in this solution will be consistent, regardless
of λ. As obtaining the ranking of the students is our primary
focus, we can thus set λ to zero in the above solution, and
simply consider the average self-assigned (log-transformed)
score as the the ability parameter of the student. The same
argument applies to question difficulty parameters.

3.2 Calibrating the model
There are two issues in relying on students’ self-given score
for ranking students via the IRT model: (i) Students may
be prone to over- or under-estimating their ability and (ii)
because there is uncertainty involved in both answering and
grading, some students may be more or less inclined to
“gamble” with their self-assigned score (i.e., some students
are more or less risk-averse/risk-loving). We subsume both
effects (as it is impossible to tell them apart) into a general
student “bias” in self-grading, and model it explicitly as

log(θij) = ŝi − q̂j + bi,

where bi ∈ (−∞,∞) is a student-specific bias. We assume
that this student bias is drawn from a normal distribution
bi ∼ N (0, σ2

b ), where the above distribution stipulates that
the average of the student population is unbiased. It is
impossible to estimate bi using self-grading alone, as without
actual observations of correctness of students’ responses, the
model will conflate si and bi into a single parameter. Imagine
that we do grade a student’s responses on a small subset of
the answered questions (which they also self-grade). Let the
set of instructor-graded questions be Qg ⊆ Q, where Q is the
set of all questions. As the observations of instructor- and
self-assigned grades are all conditionally independent given
the student and question parameters, the overall likelihood
of both self- and instructor-given scores is a product of
these likelihoods. We can then express the log-likelihood of
the entire dataset as a sum of the self-graded response log-
likelihoods and instructor-graded response log-likelihoods:

logP (θ,y | s,q,b) =
∑
si∈S

( ∑
qj∈Q

(log θij − (si + bi − qj))2

︸ ︷︷ ︸
self-graded responses

+
∑
q′j∈Qg

log(1 + exp(−yij(si − q′j)))

︸ ︷︷ ︸
instructor-graded responses

)
.



Here, yij ∈ {−1, 1} is the instructor-grade for question j
answered by student i and y is the response vector for all
students (yij = +1 corresponds to a correct response and
yij = −1 otherwise). Observe that the “bias” parameter only
appears in the self-graded part of the likelihood. This allows
us to calibrate the model via instructor-graded questions as
a “training set” to separate the effects of the bias and true
ability. Note that, unlike in the previous case that relied
entirely on students’ self-scores, like with the traditional
Rasch IRT model, we are unaware of a closed form solution
for this formulation. In all of our experiments, we use the
L-BFGS algorithm [18] for learning model parameters.

3.3 Consequences of students’ awareness of the
mechanism

The assumption that the learner is optimizing a utility func-
tion based on the expected test score:

E[pij ] = θij π̂ij −
1

2
θ2ij(1− π̂ij) (3)

fundamentally assumes that the student believes that each
question will be graded, as otherwise there would be no pos-
sibility of getting a question wrong and losing points. In
practice, our goal for self-grading may be motivated by the ef-
fort to reduce the instructor’s involvement in grading, and, in
general, as a way to scale assessment to potentially very large
classrooms, such as massive open online courses (MOOCs).
Having each submission be graded by an instructor (or your
peers) defeats the purpose of self-grading. If, however, the
student is aware of the fact that not every question is graded,
we can expect that their utility function, and thus their opti-
mal strategy, will be affected by this knowledge. If the test is
administered once, of course, the students could be deceived
into believing that every question is graded. In a real course,
however, a more realistic assumption is that the students
possess the knowledge that not all of the questions are graded
and if the assignments are returned, we can expect that the
students’ estimates of the fraction of graded questions will
improve over time. If, however, the student believes that a
random subset of their submissions is graded by someone
else, but if the student does not know which subset is graded,
then we should still expect the student’s optimal behavior
to be maximizing a utility function similar to the one above.
The utility function will not be the same, as we now have to
account for the student’s belief about how many problems
are graded by someone else. Let us assume that the student
has a prior belief that each problem has a probability ρ of
being graded. Then, the expected score the student i receives
on question j is given by

Egr [E[pij | graded]] = ρ(θij π̂ij −
1

2
θ2ij(1− π̂ij)) + (1− ρ)θij ,

where we take an additional expectation with respect to the
student’s belief that the problem is graded. Note that when
a problem is not graded, the expected score that the student
receives is just θij , i.e., their self-assigned score, regardless
of whether the student answers correctly. This is because
when a problem is not graded, there is no possibility of losing
points. We can show that the student’s optimal self-assigned
score log(θij) has the following approximate relationship to
their ability and question difficulty (the approximation is a
piece-wise linear approximation to the true strategy that is
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Figure 1: The optimal strategy for providing a self-assessment
score log θij for a student with ability si on a question of
difficulty qj , assuming the student’s knowledge that a random
fraction ρ of the questions will be graded. The optimal
strategy is approximately piece-wise linear as a function of
the student’s relative ability si − qj . In the regime of low
relative ability, the student’s optimal strategy is to report
a fixed score that is a function of ρ, regardless of his or her
relative ability.

asymptotically accurate):

log(θij) = max

{
log

(
1

ρ
− 1

)
, (si − qj)− log ρ

}
.

The optimal strategies for different values of ρ are illustrated
in Figure 1. The student’s knowledge of the mechanism is
reflected by the appearance of a lower-bound on the self-
assigned score in a region where the student is likely to
do poorly (low values of si − qj). This is expected: If the
student is aware that the chance of a particular question to be
graded is low enough, it would make sense to take advantage
of those odds and “bet” a small, but a non-zero amount, even
if the student does not know the correct answer. From a
practical perspective of implementing a system that solicits
self-assessment scores, it would not make sense to provide the
user with the ability to provide a self-assessment score lower
than their optimum. From the model inference perspective,
this introduces a complication: Observations that correspond
to the lowest possible self-score do not correspond to any
specific si − qj , but rather an entire range. This problem is
known generally as censored regression. and can be solved
using the same approach as for the original problem, but with
the modified likelihood function that accounts for this “kink.”
Note that a similar restriction on the likelihood (but as an
upper-bound) is introduced when the maximum attainable
score for a problem is incorporated into the scoring function.

4. EXPERIMENTS
4.1 Simulations
It is insightful to study the effect of bias in the population of
students on the quality of the learned parameters in the IRT
model: student ability parameters and question difficulty
parameters. We perform a simple simulation of a classroom
with 50 questions and 30 students (question difficulties and
student abilities are sampled from a zero-mean normal distri-
bution with a standard deviation of 3), where each student
answers each question (a total of 1,500 responses). In this
simulation, each student submits their self-grade log(θij) for
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Figure 2: Simulation results. Rank correlation across students obtained using three models for different variance of self-grading
bias (σ2): (i) black : a model that uses student self-scores and the correctness of their response to a subset of graded questions
(number of graded questions on x-axis), (ii) solid gray : a model that uses correctness of their response to a subset of graded
questions only (number of graded questions on x-axis) and (iii) dashed gray : a model that uses only the students’ self-score.

each question by optimizing their utility according to the
utility function in 3. We repeat the simulation for four dif-
ferent populations of students, each with a different variance
σ2
b of the bias parameter. To evaluate the quality of the in-

ferred student parameters, we compute the rank correlation
(Kendall Tau) between the true ordering of the students (by
their true parameters) and the ordering obtained by sorting
the students based on the inferred parameters. The Kendall
Tau metric is defined as follows:

KendallTau(s, ŝ) =
Ncorrect

pairs −Nwrong
pairs

Npairs

where s and ŝ are the true and inferred student ability param-
eters, respectively, and Ncorrect

pairs and Nwrong
pairs is the number

of student pairs that are ordered correctly in the inferred
ranking (with respect to the true ranking) and the number of
pairs that are ordered incorrectly, respectively. Kendall Tau
is equal to +1 when the rankings are consistent and to −1
when the rankings are inverted. The corresponding results
are shown in Figure 2.

Three models were evaluated:

• Self-grading only: Only students’ self-submitted scores
log(θij) are used in fitting the Rasch model parameters.

All students submit their self-scores for all questions.
The correctness of students’ responses is not used in
fitting the Rasch parameters.

• Instructor-grading only: Only the correctness of
the responses is used for fitting the Rasch model pa-
rameters; this is a classic Rasch model. We vary the
number of questions used in fitting the model parame-
ters (x-axis in Figure 2).

• Self-grading + instructor-grading: A combination
of self-scores submitted by all students for all questions
and the correctness of a subset of submitted questions
is used for fitting the Rasch model parameters (number
of questions used is the x-axis in Figure 2).

In the case where the students in the class are relatively un-
biased (low σ2

b ) (top left in Figure 2), self-scoring achieves a
better rank-correlation than the traditional IRT Rasch model,
even when many questions are instructor-scored. Interest-
ingly, in the regime of low bias, including actual instructor-
graded responses actually negatively affects the correlation
(this is due to over-fitting caused by a small number of instruc-
tor grades—introducing additional bias variables requires a
sufficient number of observations to infer them reliably; this
performance drop eventually disappears when a sufficient



Figure 3: Screenshot of one question from the Mechanical
Turk task. A subject answers a math question and provides
a self-assessment score by adjusting a slider. The student
sees the number of points that they will gain if they answer
the question correctly (green) and the number of points they
will lose if they answer the question incorrectly (red).

number of questions is included). As the bias of the popu-
lation increases, the performance of the self-scoring model
decreases but still exceeds the performance of the instructor-
only Rasch IRT, especially in situations where only a few
questions are scored.

4.2 User study
To evaluate the efficacy of the proposed self-grading approach,
we conducted a user-study on Amazon’s Mechanical Turk.
We solicited 206 subjects to participate in a task titled “Do a
short math quiz and earn bonus!”. The subjects were asked to
answer 30 math questions of varying difficulty levels ranging
from basic arithmetic to pre-calculus. The questions from
the dataset introduced by [6] were used in our experiment.
All questions were multiple choice and included a “none
of the above” option, included in order to minimize the
probability of getting a right answer through a process of
elimination. Although in practice, multiple-choice questions
mostly defeat the purpose of self-grading, we use multiple
choice questions for the ease of evaluation and the lack of
subjectivity that would be otherwise present in free-response
questions. Figure 3 illustrates a single question from the
task. The subjects were asked to mark what they believed
to be the correct answer, and then to assign themselves the
number of points that they would receive if they answered
the question correctly. The input was provided through a
slider. Moving the slider automatically displayed the number
of points that the subject would gain if they answered the
question correctly (green), and the number of points they
would lose if they answered the question incorrectly (red).
The points were then converted to currency (1 point = $0.01),
and paid through a “bonus” mechanism in Mechanical Turk.
We chose to use real currency as a reward to to ensure that
the subjects had a stake in their performance, and thus there
is incentive to think carefully about their self-assigned scores.

We follow the same evaluation scheme that we described
in the previous section. Recall, that we are interested in
the quality of the assessment derived from the students’
self-evaluation. In the simulation study, a “gold-standard” as-
sessment was available and allowed us to use rank correlation
between the “gold-standard” ranking and the inferred ranking
as an evaluation metric. In this user-study, we consider the

ranking inferred by the IRT model that relies on the com-
plete dataset, as a proxy for the “gold-standard” ranking. We
then repeat the evaluation scheme described in the previous
section: (i) vary the number of instructor-graded questions
from 0 to all questions (30) and combine that with the self-
assigned scores for every question, (ii) infer the ranking using
the proposed model, and (iii) compare it to the ranking that
is derived from “gold-standard” proxy.

We find that the results are comparable to those obtained
in the simulation (Figure 4(a)). Self-scoring is already able
to obtain a reasonable correlation with the “gold-standard”
ranking even without any instructor-graded question. Incor-
porating instructor-grades for additional questions improves
the performance. Rank correlation metrics, such as Kendall
Tau, while convenient for summarizing the results with a
single quantity, often fail to distinguish regimes where the
model might perform differently. It is instructive to consider
the performance of rank-correlation in the different segments
of the ranking. Figure 4(b) decomposes the results by quar-
tiles. We employ a more intuitive metric, Precision@Quartile,
defined as follows:

Precision@Qi =
|ŜQi ∩ SQi |
|ŜQi |

where SQi is the set of students in the ith quartile of the

“gold-standard” ranking, and ŜQi is the set of students in the
ith quartile of the inferred ranking. This metric captures the
ability of the model to perform within a particular segment
of the ranking. For example, looking at Precision at the first
quartile, measures the ability of the model to predict top
students. From Figure 4(b) we can conclude that the model is
significantly better at distinguishing the top-ranked students
(first quartile) as compared to the lower-ranked students
(second quartile). By using the self-scoring signal without
any instructor-graded questions, we are able to recover nearly
60% of the top quarter of all students. The performance in
the second quartile is significantly lower, but follows the same
trend: incorporating the students’ self-reported scores in the
regime of zero to several questions significantly improves
performance over the baseline of instructor-graded questions
alone. This observation leads to the conclusion that, at least
in this study, better students were better at estimating their
ability. We look into the effect of self-estimation performance
in more detail in the next section.

4.3 Self-assessment and bias
The performance of the model that relies on self-assessment
depends fundamentally on the model’s estimates of the stu-
dents’ biases as well as the ability of the students to self-assess
reliably (self-assessment variance). In our model, we infer
only the individuals’ biases and assume constant variance in
the self-assessment likelihood (these could in principle be esti-
mated as well. Figure 6 illustrates the individual inferred bi-
ases for each student (averaged across multiple folds), sorted
in an increasing order. The resulting distribution illustrates
the skew in the bias distribution towards “under-confidence,”
i.e., most students tend to under-estimate their ability (act
conservatively). The importance of estimating bias is under-
lined in Figure 4(a), where we include an additional baseline
Self-Scored + Graded (no bias) (light solid line). This
baseline combines self-assessment and instructor-grades but
does not incorporate the explicit student-bias parameter. As
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Figure 4: User study results. Rank correlation across students obtained using three different models (i) Self-scored: a model
that relies entirely on student-submitted self-assessments, (ii) Graded: a model that relies entirely on instructor-provided
grades, as a function of the number of graded questions (x-axis), and (iii) Self-scored + Graded: a model that aggregates
students’ self-assessment scores on all questions and a variable number of instructor-graded questions (x-axis). (a) Computes
rank correlation across all students using Kendall Tau, and (b) decomposes rank correlation across the first two quartiles
using the Precision@Quartile metric. The model that combines self- and instructor-assigned scores is significantly better at
predicting the top-performing students (first quartile). Combining instructor grades with self-assessment significantly improves
both rank measures, especially when only a few questions are graded. Note that the total number of questions in the study
was 30; we display the results up to 15, as the differences between both models is not substantial beyond that.
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Figure 5: Bias vs. ability (centered). Both parameters were
inferred using all of the available data. Each point in the
scatter-plot corresponds to one student. A weak, but signifi-
cant correlation between bias and ability exists.

evident from the graph, estimating bias is critical for com-
bining self-grading and instructor-grading: without the bias
parameter, the model is not able to leverage the benefits of
both signals.

It is potentially insightful to investigate the relationship
between self-assessment bias and ability. We consider the
inferred bias parameter after incorporating instructor-grades
for all questions, and compare it to the inferred ability pa-
rameter of each student. The result is illustrated in the
scatter-plot in Figure 5. While the relationship between the
two is not strong, there exists a negative correlation between
ability and self-assessment bias (Pearson’s correlation: 0.17,
p-value = 0.013). Students that are more able tend to under-
estimate their ability, and students that are less able tend
to inflate their ability. This finding is consistent with the
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Figure 6: Inferred bias parameter of each student (sorted in
an increasing order). The bias parameter was inferred using
all of the available data.

literature in self-assessment [17, 16].

5. CONCLUSION AND FUTURE WORK
In this work, we have developed a novel approach for per-
forming calibrated, summative self-assessment by combin-
ing (i) student’s self-evaluations obtained via an incentive-
compatible scoring mechanism and (ii) a minimal number
of instructor-graded responses. We have shown that when
the scoring rule is quadratic, the standard IRT Rasch model
reduces to standard linear regression. We have demonstrated
that the quality of the inferred assessment using self-scoring
alone without additional instructor input is, on-average, com-
parable to the performance obtained using the standard
IRT that requires significant instructor effort. Furthermore,
by incorporating a minimum number of instructor-graded
responses, we have shown that our approach substantially
improves the estimates of the students’ abilities and the



questions’ difficulties. Finally, we have addressed the long-
standing issue of applying scoring rules in practice: dealing
with the consequences of individuals’ biases and non-risk-
neutrality. We have proposed to explicitly model the com-
bined effect of these two factors within the standard IRT
framework, allowing the model to effectively de-bias these
individual differences.

Our results open an interesting direction of inquiry: are there
other scoring functions that are more efficient at estimating
IRT parameters, and if so, can the scoring functions be
adapted to individual students and questions, improving the
efficiency of adaptive testing? In order to facilitate further
research in this direction, we release all code and data used
in this study.
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