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Abstract—Massive multi-user (MU) multiple-input multiple-
output (MIMO) is widely believed to be a core technology
for the upcoming fifth-generation (5G) wireless communication
standards. The use of low-precision digital-to-analog convert-
ers (DACs) in MU-MIMO base stations is of interest because it
reduces the power consumption, system costs, and raw baseband
data rates. In this paper, we develop novel algorithms for down-
link precoding in massive MU-MIMO systems with 1-bit DACs
that support higher-order modulation schemes such as 8-PSK
or 16-QAM. Specifically, we present low-complexity nonlinear
precoding algorithms that achieve low error rates when combined
with blind or training-based channel-estimation algorithms at the
user equipment. These results are in stark contrast to linear-
quantized precoding algorithms, which suffer from a high error
floor if used with high-order modulation schemes and 1-bit DACs.

I. INTRODUCTION

Massive multi-user (MU) multiple-input multiple-output
(MIMO) is a promising technology for fifth-generation (5G)
wireless communication standards, which enables substantial
improvements in spectral efficiency, energy efficiency, reliabil-
ity, and coverage compared to traditional multi-antenna systems.
These gains are a result of equipping the base station (BS) with
hundreds of antennas and serving tens of user equipments (UEs)
in the same time-frequency resource [2], [3]. Increasing the
number of radio frequency (RF) chains at the BS leads, however,
to a significant growth in system costs and circuit power
consumption. Therefore, a successful deployment of massive
MU-MIMO requires the use of low-cost and power-efficient
hardware components at the BS. This paper considers the
downlink of massive MU-MIMO systems. We assume that the
BS is equipped with 1-bit digital-to-analog converters (DACs)
and transmits data using higher-order modulation schemes
(such as 8-PSK or 16-QAM) to multiple UEs.
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Parts of this paper have been submitted to a journal [1]. The present paper
focuses on higher-order modulation schemes and channel training aspects.

A. Benefits of Quantized Massive MU-MIMO

Data converters at the BS are among the most dominant
sources of power consumption in a massive MU-MIMO BS.
Traditional multi-antenna BSs deploy high-resolution DACs
(e.g., 10-bit or more) at each RF port. However, for massive
MU-MIMO systems with hundreds or thousands of antenna
elements, this approach would lead to excessively high power
consumption and system costs. A natural solution is to reduce
the DAC resolution until the power budget and costs fall within
tolerable levels.

B. Relevant Prior Results

While the impact of low-precision analog-to-digital convert-
ers (ADCs) on the massive MU-MIMO uplink has been studied
extensively [4]–[8], far less is known about the use of low-
precision DACs in the massive MU-MIMO downlink. Recent
results in [9]–[11] show that linear-quantized precoders, which
perform traditional linear precoding followed by quantization,
enable reliable transmission for relatively large antenna arrays
in the high signal-to-noise ratio (SNR) regime, even in systems
that use 1-bit DACs. Nonlinear precoding algorithms have been
proposed only recently in [1], [12]. Such precoding algorithms
significantly outperform linear-quantized methods in the case
of 1-bit DACs by approximating the optimal precoding problem
(which is of combinatorial nature) using, for example, convex
relaxation techniques. All these results, although encouraging,
focus on low-order modulation schemes such as QPSK. It is
therefore an open question whether higher-order modulation
schemes, such as 16-QAM, can be transmitted reliably in
massive MU-MIMO systems that use 1-bit DACs.

C. Contributions

We develop novel nonlinear precoding algorithms that relax
the optimal 1-bit precoding problem and compute accurate
solutions at low complexity. Our precoding algorithms rely
on semidefinite and convex relaxation techniques to enable
low-complexity precoding, even for systems with hundreds of
antenna elements. We also investigate training-based and blind
estimation techniques of the channel gain at the UEs. This
estimation step is crucial for higher-order (and nonconstant
modulus) constellations, such as 16-QAM. We demonstrate
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Fig. 1. Overview of a massive MU-MIMO downlink system with 1-bit DACs.
Left: a massive MU-MIMO BS with B antennas that performs 1-bit precoding
to enable the use of 1-bit DACs; Right: U single-antenna UEs.

that the proposed nonlinear precoding and channel-gain esti-
mation algorithms enable reliable transmission of higher-order
modulation schemes, for moderately-sized antenna arrays.

D. Notation

Lowercase and uppercase boldface letters designate column
vectors and matrices, respectively. For a matrix A, we denote its
transpose and Hermitian transpose by AT and AH , respectively.
The entry on the kth row and `th column of A is [A]k,`. The
kth entry of the vector a is [a]k. We use A � 0 to indicate
that A is positive semidefinite. The M ×M identity matrix
is denoted by IM . The real and imaginary parts of a complex
vector a are <{a} and ={a}, respectively. We use sgn(·) to
denote the signum function, which is applied entry-wise to a
vector and defined as sgn(a) = +1 for a ≥ 0 and sgn(a) = 1
for a < 0. The `2-norm and the `∞-norm of a are ‖a‖2 and
‖a‖∞, respectively; ‖A‖F is the Frobenius norm of A.

II. 1-BIT QUANTIZED PRECODING

A. Downlink System Model

As illustrated in Fig. 1, we consider a 1-bit massive MU-
MIMO downlink system consisting of a BS with B antennas
that serves U single-antenna UEs simultaneously and in the
same frequency band. We consider a block-fading scenario
with the following narrowband input-output relation:

y[k] = Hx[k] + n[k], k = 1, 2, . . . ,K. (1)

The vector y[k] = [y1[k], . . . , yU [k]]T contains the received
signals at all UEs, where yu[k] ∈ C is the signal received at
the uth UE in time slot k. The matrix H ∈ CU×B models the
downlink channel, which is assumed to remain constant for K
time slots and to be known perfectly at the BS. The vector
n[k] ∈ CU in (1) models additive noise, which is assumed to be
i.i.d. circularly-symmetric complex Gaussian with variance N0

per complex entry; the noise variance is assumed to be known
perfectly at the BS. The 1-bit precoded vector at time slot k
is denoted by x[k] ∈ XB , where X = {±`± j`} for a given
(and fixed) ` > 0 that determines the transmit power. In what
follows, we will often rewrite (1) in the following equivalent
matrix form: Y = HX + N, with Y =

[
y[1], . . . ,y[K]

]
,

X =
[
x[1], . . . ,x[K]

]
, and N =

[
n[1], . . . ,n[K]

]
.

B. Precoding in a Nutshell

The goal of precoding is to transmit constellation points
su[k] ∈ O for u = 1, . . . , U to each UE u at time slot k.
Here, O is the constellation set (e.g., QPSK or 16-QAM).
The BS uses the knowledge of H to precode the symbol
vector s[k] =

[
s1[k], . . . , sU [k]

]T
into a B-dimensional

precoded vector x[k] = P(s[k],H). The function P(·, ·) :
OU × CU×B → XB represents the precoder. We assume
that the precoding vectors x[k], k = 1, 2, . . . ,K, satisfy the
instantaneous power constraint ‖x[k]‖22 = P , and we define
ρ = P/N0 as the SNR. For 1-bit DACs, this assumption leads
to X =

{
± `± j`

}
with ` =

√
P/(2B).

Coherent transmission of data using multiple BS antennas
leads to an array gain that depends on the channel matrix.
We assume that the uth UE is able to rescale the received
signals yu[k], k = 1, 2, . . . ,K, by the so-called precoding
factor βu ∈ R+ in order to compute estimates ŝu[k] ∈ C of
the transmit symbol su[k] ∈ O as follows:

ŝu[k] = βuyu[k], k = 1, 2, . . . ,K. (2)

In Section IV, we will discuss methods that enable the UEs to
estimate the precoding factors βu for block-fading channels.

In essence, the goal of precoding is to increase the signal
power to the intended UEs while simultaneously reducing
multi-user interference (MUI) [13]. While there exist multiple
formulations of this optimization problem based on different
performance metrics, e.g., sum-rate throughput, worst-case
throughput, or error probability (see [14] for a survey), we
focus exclusively on precoders that minimize the mean-square
error (MSE) between the estimated symbol vectors ŝ[k] =[
ŝ1[k], . . . , ŝU [k]

]T
and the transmitted symbol vectors s[k]

under an instantaneous power constraint.

C. Linear and Nonlinear Quantized Precoding

In the infinite-resolution case, linear precoders multiply the
symbol vector s[k] with a precoding matrix P ∈ CB×U so
that x[k] = Ps[k]. This approach requires low complexity and
simple linear precoders, such as maximum ratio transmission
(MRT) or zero-forcing (ZF), approach optimal performance in
the large-antenna limit [2]. In the 1-bit case, linear-quantized
precoders perform linear precoding followed by quantization
to the finite transmit set XB as

x[k] =

√
P

2B

(
sgn(<{Ps[k]}) + j sgn(={Ps[k]})

)
(3)

for each time slot k = 1, 2, . . . ,K. Linear-quantized precoders
have low complexity and their performance can be character-
ized analytically. However, nonlinear precoders significantly
outperform such precoders [1]. The nonlinear precoders for
block-fading systems considered in this paper minimize the
total MSE between all transmit symbols S =

[
s[1], . . . , s[K]

]
and their estimates Ŝ = βY (over all K time slots):

EN

[∥∥S− Ŝ
∥∥2

F

]
= ‖S− βHX‖2F + β2UKN0. (4)



Here, we have restricted ourselves to the case in which the
precoder results in the same gain β ∈ R+ for all UEs over
all K time slots. This expression allows us to formulate the
MSE-optimal 1-bit quantized precoding (QP) problem as

(QP) minimize
X∈XB×K , β∈R+

‖S− βHX‖2F + β2UKN0 (5)

which simultaneously finds the optimal precoding vectors
xQP[k], k = 1, . . . ,K, and the associated precoding factor βQP.
We emphasize that for fixed β, the problem (QP) is a closest
vector problem that is known to be NP-hard; this implies that
there is no known efficient algorithm. To enable near-optimal
nonlinear precoding in practice, we will introduce in Section III
approximate algorithms whose complexity is moderate even
for large BS antenna arrays.

III. NONLINEAR PRECODING FOR 1-BIT DACS

Since optimal 1-bit precoding is NP-hard, the use of a brute-
force search would result in prohibitive complexity in massive
MU-MIMO systems with hundreds of BS antennas. We next
propose two nonlinear precoding algorithms that yield accurate
but approximate solutions at low computational complexity.

A. Problem Transformation

Before detailing our algorithms, we rewrite the problem in (5)
in a more convenient way. We start by defining an auxiliary
vector b[k] = βx[k]. We further define B =

[
b[1], . . . ,b[K]

]
and rewrite (5) in the following equivalent form:

minimize
B∈BB×K

‖S−HB‖2F +
UN0

P
‖B‖2F (6)

where B =
{√

P/(2B) (±β ± jβ) , for all β > 0
}

. Here,
we have used the fact that β2 = ‖B‖2F /(KP ). Let BQP be
the solution to (6). Then, the resulting precoding vectors are
obtained by scaling each entry of BQP so that it belongs to
the set X of 1-bit quantization outcomes.

It will be convenient to transform the complex-valued
problem (6) into an equivalent, real-valued problem using

BR =

[
<{B}
={B}

]
, SR =

[
<{S}
={S}

]
, HR =

[
<{H} −={H}
={H} <{H}

]
.

These definitions enable us to rewrite (6) as

minimize
BR∈B2B×K

R

‖SR −HRBR‖2F +
UN0

P
‖BR‖2F (7)

where BR =
{
±
√
P/(2B)β, for all β > 0

}
.

As a last step, we vectorize the problem in (7). We make
use of the vectorization operator vec(·) and the well-known
Kronecker product property vec(ABC) = (CT ⊗A)vec(B).
Since ‖A‖F = ‖vec(A)‖2, we can rewrite (7) as

minimize
b̄R∈B2BK

R

∥∥s̄R − H̄Rb̄R
∥∥2

2
+
UN0

P

∥∥b̄R
∥∥2

2
(8)

where b̄R = vec(BR) and H̄R = IK ⊗HR. We are now ready
to detail our nonlinear precoding algorithms.

B. Semidefinite Relaxation

Semidefinite relaxation (SDR) is a well-established technique
to approximately solve a variety of discrete programming
problems [15]. In our case, proceeding as in [1], we relax (8)
to the following semidefinite program (SDP):

(SDR-QP)


minimize
B̄R∈S2BK+1

tr
(
T̄RB̄R

)
subject to [B̄R]1,1 = [B̄R]b,b, b = 2, . . . , 2BK

[B̄R]2BK+1, 2BK+1 = 1
B̄R � 0.

Here, B̄R = [b̄TR 1]T [b̄TR 1] and

T̄R =

[
H̄T

RH̄R + UN0

P I2BK −H̄T
R s̄R

−s̄TRH̄R ‖s̄R‖22

]
. (9)

We note that the key difference between (SDR-QP) and the
precoding problem given in [1] is that the method presented
here is for the block fading channel in (1) with transmission
over K time slots; the method in [1] considers a single time-slot
only, i.e., it deals with the special case of K = 1.

If the solution B̄SDR-QP
R has rank one, then SDR found the

exact solution to the 1-bit precoding problem in (8). If, however,
the rank of B̄SDR-QP

R exceeds one, then we have to extract a
precoding vector that belongs to the discrete set XBK . Such
a vector can be obtained by first performing an eigenvalue-
decomposition of BSDR-QP

R followed by quantizing the first
2BK entries of the leading eigenvector (see [1] for the details).

The problem (SDR-QP) can be solved via standard convex
optimization methods, whose worst-case complexity scales
as (BK)4.5 [15]. Unfortunately, SDR lifts the problem to
a higher dimension: from 2BK dimensions to (2BK + 1)2

dimensions. Hence, even for a small number of time slots and/or
BS antennas, the memory requirements and computational
complexity of this approach becomes prohibitively large.
Furthermore, implementing numerical solvers for SDP entails,
in general, high hardware complexity [16]. Hence, for large
antenna arrays and a large number of time slots, alternative
precoding algorithms are necessary. A suitable method that
avoids lifting the problem to a higher dimension and requires
low computational complexity is described next.

C. Squared `∞-Norm Relaxation

We start by rewriting the real-valued problem in (8) as

minimize
b̄R∈R2BK

∥∥s̄R − H̄Rb̄R
∥∥2

2
+

2UBKN0

P

∥∥b̄R
∥∥2

∞

subject to [b̄R]21 = [b̄R]2b for b = 2, . . . , 2BK.
(10)

Here, we used that
∥∥b̄R

∥∥2

2
= 2BK

∥∥b̄R
∥∥2

∞. By dropping the
nonconvex constraints [b̄R]21 = [b̄R]2b for b = 2, . . . , 2BK,
we obtain the following convex relaxation of (10)

(`2∞-QP) minimize
b̄R∈R2BK

∥∥s̄R − H̄Rb̄R
∥∥2

2
+

2UBKN0

P

∥∥b̄R
∥∥2

∞

which we can solve efficiently using the squared `∞-norm
relaxation algorithm (SQUID, for short) proposed in [1]. Each



iteration of the SQUID algorithm requires only simple matrix-
vector operations. Hence, SQUID enables nonlinear precoding
for very large antenna arrays and large number of time slots.

IV. ESTIMATING THE PRECODING FACTOR β

Accurate estimates of the precoding factor β are crucial when
one uses higher-order constellations that are not of constant
modulus, such as 16-QAM. We next discuss two methods that
enable each UE to acquire an accurate estimate of β.

A. Pilot-Based Estimation

A straightforward way to acquire an estimate β̂u of the
precoding factor β at the uth UE is to use pilots that are
known at the UE side. We propose to transmit a pilot signal
in the first time slot (k = 1), i.e., we set su[1] =

√
Es for all

u = 1, 2, . . . , U . The remaining K − 1 time slots can then be
used for payload transmission. By transmitting the precoding
vector x[k] obtained from (5), the effective input-output relation
for the uth UE is given by

yu[k] = β−1su[k] + eu[k] + nu[k] (11)

where eu[k] contains quantization errors and residual MUI.
Assuming that eu[k] + nu[k] is Gaussian distributed and
independent of su[k], each UE can compute a maximum-
likelihood estimate (MLE) for β as follows:

β̂MLE
u = <

{√
Es/yu[1]

}
, u = 1, 2, . . . , U.

While one could transmit a large number of pilot symbols to
enable more accurate estimates of the precoding factor, our
results in Section V reveal that one pilot signal is typically
sufficient to enable reliable downlink communication.

B. Blind Estimation

An alternative method to acquire an estimate of βu for
the uth UE is to use blind estimation. The advantage of this
approach is that all time slots can be used for data transmission.
Assume that the transmit signals su[k], residual errors eu[k],
and the noise nu[k] are zero mean and independent. Then,
the sample variance of the received signals at the uth UE
satisfies 1

K

∑K
k=1 |yu[k]|2 → E

[
|yu|2

]
as K →∞. From (11),

it follows that the variance is given by

E
[
|yu|2

]
= E

[
|β−1su + eu + nu|2

]
= β−2Es + E0 +N0

where Es = E
[
|su|2

]
is the average symbol energy, E0 =

E
[
|eu|2

]
is the average error energy, and N0 = E[|nu|]2 is the

noise variance. By noting that 1
K

∑K
k=1 |yu[k]| ≈ E

[
|yu|2

]
for

sufficiently large K and by assuming that Es, E0, and N0 are
known at the UE side, we propose that each UE computes a
blind estimate for β as follows:

β̂blind
u =

√
Es

1
K

∑K
k=1 |yu[k]|2 − E0 −N0

, u = 1, 2, . . . , U.

While Es and N0 are typically known at the UE, E0 is generally
unknown as it depends on the precoding algorithm, the channel
statistics, and the transmit symbols. We therefore set E0 = 0,
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Fig. 2. Comparison of different modulation schemes with linear-quantized
ZF precoding (a) and nonlinear SQUID precoding (b) for a 128-BS-antenna,
16-UE massive MU-MIMO system with blind β estimation (K = 10).

which—as we will shown in Section V—yields sufficiently
accurate estimates and enables reliable transmission, even for
a small number of time slots K.1

V. NUMERICAL RESULTS

We now present numerical simulation results for 1-bit
precoding with higher-order modulation schemes. Throughout
this section, we consider the bit-error rate (BER) for uncoded
transmission as the main performance metric. Furthermore, we
focus on i.i.d. Rayleigh fading channel matrices.

A. Comparison of Modulation Schemes

Fig. 2 compares the performance of several constellations
for the case of linear-quantized ZF precoding [1] and nonlinear
SQUID-based precoding in a 128-BS-antenna, 16-UE massive
MU-MIMO system with blind β estimation over K = 10
time slots. We make the following observations: (i) nonlinear
precoding significantly outperforms linear-quantized precoding
for all modulation schemes; (ii) nonlinear precoding enables
reliable transmission of modulation schemes of higher or-
der, such as 8-PSK, 16-QAM, and 16-PSK; (iii) 16-QAM
outperforms 16-PSK transmission, which implies that tightly
packing constellation points is advantageous even if this

1Hybrid methods that combine pilot-based and blind estimation techniques
may further improve the accuracy of the estimation of β.
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requires an accurate estimate of β (note that for constant-
modulus constellations, such as QPSK, 8-PSK, and 16-PSK,
the precoding factor does not need to be estimated under
minimum distance decoding [1]); and (iv) 64-QAM results in a
high SNR floor and reliable transmission would require either
more BS antennas or forward error correction.

B. Pilot-Based vs. Blind β Estimation

Fig. 3 compares the BER with 16-QAM signaling for
training-based and blind estimation of the precoding factor β
in a 128-BS-antenna, 16-UE massive MU-MIMO system and
K = 10 time slots. We see that both estimation methods
yield similar BER performance, independent of the precoding
algorithm. Fig. 4 shows, the impact of the number of time
slots K over which the precoding factor β is computed via blind
estimation. We see that only a few time slots (e.g., K = 10)
are sufficient to achieve near genie-aided (G) performance (i.e.,
assuming perfect knowledge of β at the UEs). We furthermore
see that SDR-based precoding performs slightly worse than
SQUID-based precoding. The reason is that our implementation
of SDR-based precoding operates over a single time slot, to
minimize the complexity; SQUID, in contrast, is able to solve
the block-based nonlinear precoding problem.

VI. CONCLUSIONS

We have investigated the performance of higher-order modu-
lation schemes for massive MU-MIMO downlink systems with
1-bit ADCs. We have developed two low-complexity, nonlinear
precoding algorithms suitable for block-fading transmission
and large BS antenna arrays. To enable reliable transmission of
higher-order constellations, such as 16-QAM, we have proposed
two algorithms for estimating the precoding factor β at the
UE side. Our simulation results demonstrate that (i) nonlinear
precoding algorithms significantly outperform linear-quantized
methods, (ii) higher-order modulation schemes, such as 8-
PSK, 16-QAM, and 16-PSK can be transmitted reliably with
nonlinear precoding algorithms, and (iii) 64-QAM requires
large BS antenna arrays in combination with coding. Put simply,
1-bit massive MU-MIMO enables the use of low-cost and low-
power RF circuitry, while supporting high data rates.
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