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Abstract—We study the problem of ranking test items, i.e.,
the ordering of items according to the amount of information
they provide on the latent trait of the respondents. We focus
on educational applications, where instructors are interested in
ranking questions so as to select a small set of informative ques-
tions in order to efficiently assess the students’ understanding
on the course material. Using the Rasch model for modeling
student responses, we prove that the simple algorithm of sorting
the item level parameters of the Rasch model is optimal in
the setting where the goal is to maximize the entropy of the
student responses. We demonstrate the optimality of the sorting
algorithm using both theoretical results and using empirical
results on several real-world datasets. Furthermore, we also
demonstrate how the sorting algorithm can be used in a batch
adaptive manner for predicting unobserved student responses.

I. INTRODUCTION

Tests and surveys that consist of tens to hundreds of items
remain to be among the most effective ways to probe the
latent traits/opinions of respondents [1]. Depending on the
application, the latent trait can refer to the ability of a student
in answering questions in a test or refer to the psychological
type of a human subject when participating in a survey. Over
the past few decades, there have been several advances in
designing tests and surveys that can be used to effectively
measure the latent trait of a respondent [2]–[5]. A practical
application of these computerized adaptive testing (CAT)
techniques are seen in standardized tests such as the SAT,
the GRE, and the GMAT.

Despite the prevalence of CATs and other test design
strategies, there has been very limited theory in trying to
understand the performance of various test design strategies.
For example, consider the problem of trying to select q items
from a test bank of Q items to design a test for N students
in a class. If we assume that all students will receive the
same test, a common item selection strategy is to select
the items that are neither too difficult nor too hard. This
strategy for item selection can be formalized using the Rasch
model [6], where each item is associated with a difficulty
parameter and the item selection strategy simply selects items
that are close to the mean difficulty parameter. Although this
simple algorithm is well known there is—to the best of
our knowledge—no theoretical analysis in the literature that
quantifies the performance of the algorithm.

Our main contribution in this paper is to quantify the
performance of the simple algorithm that sorts the item
difficulty parameters of the Rasch model to rank items. Our

analysis reveals that the simple sorting algorithm, which
we refer to as Rank-Rasch, is equivalent to the optimal
algorithm (which is not possible to implement in practice)
based on maximizing the entropy of student responses when
the number of students N is large. We supplement the
theoretical results with empirical results on real-world data.
Our results have important consequences in online settings,
such as Massive open online courses (MOOCs)1, where
several thousands of students take courses simultaneously on
an on-line platform [7], [8]. Our theoretical results indicate
that since a large number of students are taking a course,
instructors can use Rank-Rasch to select items on a test.
This strategy has potential to increase the efficiency of item
selection when an instructor is managing a course with
thousands of students. Although our analysis is limited to
the setting where all students receive the same test, we also
show that Rank-Rasch is compatible with adaptive testing
by grouping items into batches and grouping students with
similar abilities [9].

The rest of the paper is organized as follows. Section II
reviews the Rasch model. Section III reviews the Rank-
Rasch algorithm. Section IV presents our main results on the
optimality of Rank-Rasch. Section V presents experimental
results on real educational data. We conclude in Section VI.

II. THE RASCH MODEL

We study the ranking of items in an educational setting,
where items correspond to questions and the respondents
correspond to students. To mathematically characterize the
students’ responses to items, we make use of the classical
Rasch model [6]. We analyze the responses of N students to
Q items. Our main objective is to rank the Q items so that
an instructor can easily select the top subset of items for a
test. The Rasch model relies on two sets of parameters:
• Difficulty parameters µ1, . . . , µQ associated with the Q

items. If µi > µi′ , then item i is considered to be more
difficult than item i′.
• Ability parameters a1, . . . , aN associated with the N

students. If aj > aj′ , then student j is considered to have
a better chance of answering the items correctly when
compared to student j′.

Let Yi,j be a binary-valued random variable that represents
the correct/incorrect (1/0) response of student j to item i.

1See, e.g., coursera.org, edX.org, and udacity.com.



Using the item difficulty parameter µi and the student ability
parameter aj , the response Yi,j is characterized as a Bernoulli
random variable satisfying

P (Yi,j = 1|µi, aj) =
1

1 + exp(−(aj − µi))
. (1)

The Rasch model not only allows for a predictive model
for student responses, but also allows for an interpretable
model to understand the item difficulties and the student
abilities. Define the vectors µ = [µ1, . . . , µQ]

T and a =
[a1, . . . , aN ]T . Under the Rasch model, we also have the
following joint distribution:

P ({Yi,j = yi,j , i = 1, . . . , Q}|µ, a)

=

Q∏
i=1

P (Yi,j = yi,j |µ, a) , (2)

P (Yi,j = yi,j |µ, a) = P (Yi,j = yi,j |ai, µj) , (3)

where yi,j is the response observed from student j answering
item i. In words, (2) implies that when conditioned on all the
difficulty and ability parameters, the responses to the items
are independent of each other for a given student. Equation (3)
implies that when conditioned on all the difficulty and ability
parameters, Yi,j only depends on the difficulty of item i and
the ability of student j.

III. RANKING ITEMS USING THE RASCH MODEL

In this section, we review the simple ranking algorithm
based on the Rasch model. Given Q items, we aim to rank
the items so that the items at the top of the list are more
informative than the items at the bottom. Informally, an
item i is more informative than item j if responding to
item i provides for information about a student’s ability
parameter than responding to item j. See Section IV for a
formal definition of item informativeness.

In addition to using the Rasch model in (1), we make the
following two assumptions:

(A1) The difficulty parameters µ1, . . . , µQ are known.

(A2) The ability parameters a1, . . . , aN are assumed to be
independent and identically distributed samples drawn
from a random variable with mean zero and probability
density function f(a), which is symmetric around 0,
i.e., f(a) = f(−a), and non-increasing for a ≥ 0.

Assumption (A1) can be easily satisfied by using data
obtained from prior offerings of a course. In particular,
given some data on a given number of students answering
the Q items, we can infer the difficulty parameters using
standard maximum-likelihood estimation algorithms [10],
[11]. Assumption (A2) makes the Rasch model identifiable
and enables an analysis of the optimality of our ranking
algorithm in Section IV. To rank items using the Rasch
model, we simply sort the items based on the absolute value
of the difficulty parameters:

Ranking Item using the Rasch Model (Rank-Rasch)
Find a ranking i1, i2, . . . , iQ s.t. |µi1 | ≤ · · · ≤ |µiQ |;

ties are borken arbitrarily.

In words, Rank-Rasch selects items whose difficulty
parameters closely match the mean ability parameters over
all the students in a course. Rank-Rasch is commonly used
as a heuristic for initializing adaptive testing systems [2].
Despite the simplicity of Rank-Rasch, we show in Section IV
that Rank-Rasch performs as well as an algorithm that uses
information about the unknown ability parameter of each
student in order to select items that minimize the error in
estimating the ability parameters of all the students.

IV. OPTIMALITY OF RANK-RASCH

In this section, we present our main result regarding the
optimality of Rank-Rasch. Section IV-A presents an optimal
algorithm, which is impossible to implement in practice,
based on maximizing mean student entropy. Section IV-B
presents our result on comparing the performance of the
Rank-Rasch and the optimal algorithm.

A. Item Ranking using Entropy

In order to study the item-ranking problem, we use
the notion of entropy of the student responses, as it is
characterizes how informative a question is on estimating the
latent abilities of the students. More specifically, the entropy
of a binary random variable X is given by

H(X) = −p0 log(p0)− (1− p0) log(1− p0), (4)

where p0 = p(X = 0) and log is the natural logarithm.
Informally, the entropy measures the uncertainty of the
random variable X . When ranking two items, it is preferable
to select an item whose responses are more uncertain than
the other across different students. The reason is that if all
the N students submit their responses to the more uncertain
item, then their responses to the remaining items can be
better predicted than if the students submit their responses
to the less uncertain item. In this way, we can say that the
most uncertain item (i.e., the item with the highest entropy)
is also the most informative item.

The entropy of an item i is the entropy of the random
vector yi = [yi,1, . . . , yi,N ]T , which corresponds to the
responses submitted by the N students to the item i. Using
the Rasch model in (1), the definition of entropy in (4), and
the conditional independence relationship in (2), the entropy
of item i can be written as

Si =

N∑
j=1

H(Yi,j ;µi, aj) , (5)

=

N∑
j=1

[
log(1 + e(aj−µi))− aj − µi

1 + e−(aj−µi)

]
, (6)

where µi is the difficulty of item i, aj is the ability of
student j, and H(Yi,j |µi, aj) is the entropy of Yi,j given µi



and aj . Recall that we want to rank items in such a way that
the items with highest entropy are at the top of the ranking.
Therefore, a natural criterion for item ranking is to sort Ei
for i = 1, . . . , Q. This leads to the following Optimal-Rank
algorithm:

Optimal-Rank
Step 1. Compute Si, defined in (5), for i = 1, . . . , Q.
Step 2. Find a ranking i1, i2, . . . , iQ such that Si1 ≥

Si2 ≥ · · · ≥ SiQ ; ties are broken arbitrarily.

We note that Optimal-Rank cannot be implemented in
practice as computing Si requires knowledge of the unknown
ability parameters of each student. On the other hand, Rank-
Rasch only depends on the known difficulty parameter, and
can hence easily be implemented in practice.

B. Main Theoretical Result

Having shown that the optimal item ranking algorithm,
which selects items with the highest entropy first, is prac-
tically infeasible, we now characterize the performance of
Rank-Rasch. For notational simplicity, we assume that the
item difficulty parameters are sorted so that

|µ1| < · · · < |µQ| . (7)

From (7) it is clear that Rank-Rasch will rank the items as
1, 2, . . . , Q. We assume that there are no ties in (7) so that
Rank-Rasch identifies a unique ranking. Our main result is
given as follows.

Theorem 1. Suppose the responses of N students to the
Q items are modeled using the Rasch model (1). Assume
that the independence conditions in (2)–(3) holds, (A1)–(A2)
hold with m = 0, the items are sorted as in (7), and Rank-
Rasch outputs the ranking σ over items 1, 2, . . . , Q. Then,
P(σ = σopt) ≥ 1− 2Q exp(−NE2

min/2 log 2), where

Emin = min
i=1,...,Q−1

Ea[H(Yi; a, µi)−H(Yi+1; a, µi+1))] ,

(8)
where σopt is the output of Optimal-Rank, and the expectation
Ea[ · ] is with respect to the distribution of the ability
parameters defined in (A2).

Theorem 1 characterizes the probability that the ranking
computed by Rank-Rasch is equal to the ranking computed
by Optimal-Rank. The proof of Theorem 1 is given in
the Appendix. The main idea of the proof is to first use
concentration results to approximate (5) and then to show
that Assumption (A2) ensures that Rank-Rasch solves the
approximated problem with high probability. Furthermore, it
is clear that if Q and Emin are fixed as N increases, then
limN→∞ P(σ = σopt) = 1. We now make some additional
remarks regarding Theorem 1.

Remark 1. A simple calculation shows that to guarantee
that P(σ 6= σopt) ≤ ε, the number of students N needs
to be at least log(2Q log(2)/ε)/(2E2

min). Thus, Emin plays

an important role in determining the performance of Rank-
Rasch. In particular, a smaller value of Emin requires a
larger number of students for optimal item selection using
Rank-Rasch. Furthermore, since Emin can be numerically
approximated, we can easily quantify how hard the problem
of ranking items is for a particular set of items.

Remark 2. Figure 1 illustrates the dependence of the perfor-
mance of Rank-Rasch on the problem parameters, namely
the number of students N , the number of items Q, and
the quantity Emin defined in (8). In particular, Figure 1
studies the probability that σ = σopt as N , Q, and Emin are
varied. The ability parameters are sampled from a standard
normal distribution. Each pixel in the figure corresponds to
the empirical probability of accurate item selection computed
over 100 trials. Brighter regions correspond to the probability
being close to one and the darker regions correspond to the
probability being close zero. As a consequence of Theorem 1,
smaller values of Emin require a larger number of students
for accurate item selection.

Remark 3. The main assumption in Theorem 1 involves the
distribution of the ability parameters in (A2). In particular,
we assume that the density f(a) of the ability parameters
is symmetric around 0 and non-increasing for a ≥ 0. This
includes several common unimodal distributions including
the Gaussian, Laplacian, and uniform distributions.

Remark 4. We note that our optimality criterion was to
maximize the entropy of the responses. Alternatively, we
could have used other metrics to define the notion of an
optimal ranking. For example, metrics based on the Fisher
information matrix are popular in the adaptive testing litera-
ture [2], [3], [5]. Although we do not show the computations
here, under similar conditions as in Theorem 1, Rank-Rasch
is also nearly optimal under the criterion for maximizing the
Fisher information.

V. REAL EDUCATIONAL DATA EXPERIMENTS

In this section, we verify the optimality of Rank-Rasch
using real educational datasets. Section V-A describes the
datasets. Section V-B presents empirical results for Rank-
Rasch. Section V-C presents empirical results of a batch-
adaptive version of Rank-Rasch.

A. Datasets

We use six educational datasets that consist of binary-
valued (correct/incorrect) graded student responses to illus-
trate the performance of Rank-Rasch. Table 1 summarizes
these datasets. A brief description of the datasets is as follows:
MT: A dataset from a high-school algebra test conducted on

Amazon’s Mechanical Turk.

UD1 and UD2: Two datasets from a high school admission
test that consists of questions from physics, chemistry,
mathematics, and biology. The test is scored so that
that students receive +3 points for a correct response
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Fig. 1. Empirical probability illustrating the space of problem parameters over which the item ranking is optimal for (a) Q = 10 items, (b) Q = 20
items, and (c) Q = 30 items. Brighter (darker) regions indicate that the probability of the item ranking being optimal is close to one (zero).

TABLE I
DESCRIPTION OF THE EDUCATIONAL DATASETS. N IS THE NUMBER OF

STUDENTS, Q IS THE NUMBER OF ITEMS, AND % MISSING IS
PERCENTAGE OF MISSING DATA FROM THE NQ DATA POINTS

Dataset N Q % missing

MT 99 34 0.00
UD1 1714 60 39.3
UD2 1567 60 29.3
CT1 53 82 21.3
CT2 97 203 0.00
ET 3193 438 93.3

(mapped to yi,j = 1), −1 points for an incorrect
response (mapped to yi,j = 0), and 0 points for
not providing any response (mapped to yi,j being
unobserved).

CT1 and CT2: Datasets from a university course on intro-
duction to signal processing and another course on
introduction to computer engineering.

ET: A dataset from a testing company which gives questions
to programmers and then grades their responses to assess
their employability for software engineering jobs.

For all the datasets, we used all the items to learn the
Rasch model parameters.

B. Performance of Rank-Rasch

We now evaluate the performance of Rank-Rasch. We
denote each dataset by a Q × N ′ matrix Y. We split the
dataset into a training set Ytrain and a testing set Ytest,
where Ytest is of size Q × N and N = bN ′/2c. We
treat Ytrain as data from a prior offering of a course and
use this data to estimate the difficulty parameters of the
items and the probability distribution of the students’ ability
parameters f(a).

Fig. 2. Boxplot showing the ratios of the cumulative prediction performance
(CPP) between different algorithms for six different education datasets
computed using 25 different splits of the data. The ratios correspond to
the Optimal-Rank CPP over the Rank-Rasch CPP and the Random CPP
over the Rank-Rasch CPP, respectively. We clearly see that (i) Rank-Rasch
outperforms randomly ranking the items, and (ii) Rank-Rasch has nearly
the same performance as Optimal-Rank, which is infeasible in practice.

We evaluate the performance of ranking on Ytest by
computing the cumulative prediction performance (CPP).
In particular, if Iq represents the top q items in a ranking,
we evaluate the prediction performance on the items Icq using
the responses to Iq for each q = 1, . . . , Q− 1. In this way,
we compute the CPP score as follows:

CPP =
1

N(Q− 1)

Q−1∑
`=1

1

Q− `

Q∑
i=`+1

N∑
j=1

I(ytest
i,j = ŷ test

i,j ),

ŷ test
i,j = I

(
1

1 + exp(−(â ij − µi))
> 0.5

)
, (9)



where I(x = y) = 1 if x = y and 0 otherwise, I(x > y) = 1
if x > y and 0 otherwise, and â ij is the ability parameter
of student j computed using the responses from the top i
responses in a ranking. Note that we have assumed that the
ranking is 1, 2, . . . , Q to compute (9). Informally, the CPP
measures how well the students’ responses to items at the
bottom of the ranking can be predicted from their responses
to the items at the top of the ranking. It is clear that 0 ≤
CPP ≤ 1 and a larger CPP corresponds to a better ranking.

Since we have shown that Rank-Rasch is nearly optimal
for large enough N in Theorem 1, we compare Rank-Rasch
to the optimal ranking algorithm Optimal-Rank outlined
in Section IV-A. However, recall that Optimal-Rank is
impractical as it requires knowledge about the unknown
ability parameters of each student. To approximate Optimal-
Rank, we estimate the ability parameter for each student
using Ytest. In addition to Optimal-Rank, we also compare
Rank-Rasch to an algorithm that randomly ranks the Q items.

Figure 3 shows the boxplot of the ratios of CPPs between
different algorithms over 25 random splits of the six datasets.
In the first plot, we show the ratio between the Optimal-Rank
CPP and the Rank-Rasch CPP. In the second plot, we show
the ratio between the Random CPP and the Rank-Rasch CPP.

Remark 5. As expected by Theorem 1, Rank-Rasch has
similar performance to that of Optimal-Rank, with Optimal-
Rank performing slightly better in some instances. This is
seen by observing that the ratio of the Optimal-Rank CPP and
Rank-Rasch CPP mostly lies in the interval [1, 1 + ε], with
ε being at most 0.013. Furthermore, Rank-Rasch performs
significantly better than the Random algorithm. This result
verifies that Rank-Rasch is very effective in ranking test items.

Remark 6. We observe that the variation in the difference
between Rank-Rasch and Optimal-Rank is much smaller for
the larger datasets (ET, UD1, and UD2) when compared to
the smaller datasets (CT1, CT2, and MT). This suggests that
Rank-Rasch is better suited in settings where the ranking of
items needs to be performed for a large number of students.

C. Adaptive Version of Rank-Rasch

In this section, we show that Rank-Rasch can be applied
adaptively in real-world testing scenarios, although the item
ranking is produced in a non-adaptive manner. The key idea
is to apply Rank-Rasch to batches of items and groups of
students, and iteratively update the item rankings and student
groupings after each batch of questions.

As described in Section V-B, we split the dataset into a
training set Ytrain to estimate the probability distribution of
the students’ ability parameters f(a), and a testing set Ytest

to test the performance of Rank-Rasch. Using the estimate of
f(a), we generate an initial ranking of the items. Next, we
select the first batch of items to be the ones at the top of the
initial ranking using the Rank-Rasch algorithm. Once students
respond to these items, we obtain estimates of each student’s
ability parameter using their responses to these items in the
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Fig. 3. Plot of the cumulative prediction performance (CPP) versus the
number of student groups Ng with different item batch sizes for the
batch-adaptive Rank-Rasch approach on the UD2 dataset. The prediction
performance increases as Ng increases and batch size decreases. Note that
the curve with batch size = 60 corresponds to applying Rank-Rasch in a
fully non-adaptive manner, while the point with Ng = 500 on the curve
with batch size = 1 corresponds to applying Rank-Rasch in a fully adaptive
manner.

testing set, and group them by putting students with similar
ability parameters into the same group. Next, we update the
item rankings for each group of students individually using
the estimates of the ability parameters of students in that
group, and select the next batch of items for each group
using these updated rankings. We repeat the above process
until we have used all the items in the testing set.

Figure 4 shows the CPP versus the number of student
groups Ng ∈ {1, 3, 5, 10, 20, 50, 100, 500} for various values
of batch sizes over 25 random splits of the UD2 dataset.

Remark 7. We observe that smaller batch sizes and larger
number of student groups lead to higher CPP values (better
prediction performance on the unobserved student responses).
Note that in Figure 4, the curve with batch size equal to 60
corresponds to applying Rank-Rasch in a fully non-adaptive
manner, while the data point with the number of student
groups equal to 500 on the curve with batch size equal to
1 corresponds to applying Rank-Rasch in a fully adaptive
manner [3]–[5], as in every batch one new item is selected
and each student belongs to their own group.

Remark 8. Compared to the Rank-Rasch algorithm applied
in a fully non-adaptive manner, Rank-Rasch applied in
a batch-adaptive manner utilizes the differences between
groups of students (weak, average and strong) to obtain a
better estimate of the students’ ability parameter distribution
f(a) within each group. Thus, this approach leads to better
prediction performance on the unobserved student responses.
Ideally, a fully adaptive testing approach results in the
best prediction performance. However, in some real-world
educational scenarios, adaptivity is forbidden due to either
fairness concerns or technology limitations. In these scenarios,
applying Rank-Rasch in either a fully non-adaptive manner



(e.g., in traditional classrooms) or a batch-adaptive manner
(e.g., in today’s MOOCs) will not only meet these constraints
but also provide comparable prediction performance to the
fully adaptive approach, as demonstrated by the experimental
results above.

VI. CONCLUSION

We have shown that the simple algorithm of sorting item
level parameters of the Rasch model is theoretically optimal
when ranking items for a large number of students. We
have validated our results using both theory and experiments
on real-world educational datasets with over 3000 students.
Moreover, we show how the sorting algorithm can be applied
in a batch-adaptive manner, connecting the algorithm to many
existing fully adaptive item selection algorithms [3], [5].

The results in this paper motivate simple algorithms for
ranking items in a Massive open online course (MOOC). Our
future work will involve working closely with the instructor
of a MOOC and design an experiment to showcase the
effectiveness of using the sorting algorithm vs using standard
policy by an instructor for selecting test items.

APPENDIX

Recall from (A2) that a1, . . . , aN are i.i.d. samples of a
random variable. Thus, for a fixed i, the entropy E(ai, µj) =
H(Yi,j |ai, µj), for j = 1, . . . , N , are also i.i.d. samples
of a random variable. Furthermore, it is easy to see that
0 ≤ E(ai, µj) ≤ log(2). Using Hoeffding’s inequality [12],
we have

P
(∣∣E(µi)− Ea[E(a, µi)]

∣∣ ≥ ε) ≤ 2 exp

(
−2Nε2

log 2

)
,

where E(µi) =
1
N

∑N
j=1E(ai, µj). According to Lemma 1,

we have

Ea[E(a, µ1)] < · · · < Ea[E(a, µQ)], (10)

if the questions are sorted as in (7) and Assumption (A2)
holds. Thus, we see that the ranking σ obtained using Rank-
Rasch can be interpreted as sorting Ea[E(a, µi)] for i =
1, . . . , Q.

Define the event Ei =
∣∣E(µi)− Ea[E(a, µi)]

∣∣ < Emin/2,
where Emin is defined in (8). A sufficient condition for
σ = σopt is that that the events E1, . . . , EQ all hold. Therefore,
we have

P(σ = σopt) ≥ P

(
Q⋂
i=1

Ei

)
= 1− P

(
Q⋃
i=1

Eci

)
≥ 1− 2Q exp(−NE2

min/(log 2)) , (11)

where we used the union bound and (10) with ε = Emin/2
to get (11).

Define E(a, µ) = log(1 + e(a−µ))− (a− µ)
1 + e−(a−µ)

. We
have the following lemma.

Lemma 1. Under the assumptions in Theorem 1, g(µ) =
Ea[E(a, µ)] is symmetric and non-increasing for µ ≥ 0.

Proof. We first prove symmetry. Using the definition of g(µ),
we have

g(−µ) =
∫ ∞
−∞

f(a)E(a,−µ)da

=

∫ ∞
−∞

f(−a)E(−a,−µ)da

=

∫ ∞
−∞

f(a)

(
log(1 + e(−a+µ))− (−a+ µ)

1 + e(a−µ)

)
da

=

∫ ∞
−∞

f(a)

(
log

(1 + e(−a+µ))e−a+µ

e−a+µ
− (−a+ µ)

1 + e(a−µ)

)
da

= g(µ),

where the last step follows by simple algebra. Next, we prove
that g(µ) is non-increasing for µ ≥ 0. It is sufficient to show
that g′(µ) ≤ 0 whenever µ ≥ 0. If µ ≥ 0, then

g′(µ) =

∫ ∞
−∞

f(a)E′(a, µ)da

=

∫ ∞
−∞

f(a)
(a− µ)

(1 + e−(a−µ))(1 + e(a−µ))
da.

Let b = a− µ. We have,

g′(µ) =

∫ ∞
−∞

f(b+ µ)
b

(1 + e−b)(1 + eb)
db

=

∫ 0

−∞
f(b+ µ)

b

(1 + e−b)(1 + eb)
db

+

∫ ∞
0

f(b+ µ)
b

(1 + e−b)(1 + eb)
db

=

∫ 0

∞
f(−b+ µ)

−b
(1 + e−b)(1 + eb)

d(−b)

+

∫ ∞
0

f(b+ µ)
b

(1 + e−b)(1 + eb)
db

=

∫ ∞
0

f(−b+ µ)
−b

(1 + e−b)(1 + eb)
db

+

∫ ∞
0

f(b+ µ)
b

(1 + e−b)(1 + eb)
db

=

∫ ∞
0

b

(1 + e−b)(1 + eb)
(f(b+ µ)− f(−b+ µ))db

=

∫ ∞
0

b

(1 + e−b)(1 + eb)
(f(b+ µ)− f(|b− µ|))db

≤ 0,

where we have used the assumption that f(a) is symmetric
and non-increasing for a ≥ 0 and the fact that b + µ ≥
|b− µ| ≥ 0 when b > 0 and µ ≥ 0.
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