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Abstract—Optimal data detection in multiple-input multiple-
output (MIMO) communication systems with a large number
of antennas at both ends of the wireless link entails prohibitive
computational complexity. In order to reduce the computational
complexity, a variety of sub-optimal detection algorithms have
been proposed in the literature. In this paper, we analyze the
optimality of a novel data-detection method for large MIMO
systems that relies on approximate message passing (AMP). We
show that our algorithm, referred to as individually-optimal (IO)
large-MIMO AMP (short IO-LAMA), is able to perform IO data
detection given certain conditions on the MIMO system and the
constellation set (e.g., QAM or PSK) are met.

I. INTRODUCTION

We consider the problem of recovering the MT-dimensional
data vector s0 ∈ OMT from the noisy multiple-input multiple-
output (MIMO) input-output relation y = Hs0 + n, by per-
forming individually-optimal (IO) data detection [2], [3]

(IO) sIO
` = arg max

s̃`∈O
p(s̃` |y,H).

Here, sIO
` denotes the `-th IO estimate,O is a finite constellation

(e.g., QAM or PSK), p(s̃` |y,H) is a probability density func-
tion assuming i.i.d. zero-mean complex Gaussian noise for the
vector n ∈ CMR with variance N0 per complex dimension, MT
and MR denotes the number of transmit and receive antennas,
respectively, y ∈ CMR is the receive vector, and H ∈ CMR×MT

is the (known) MIMO system matrix. In what follows, we
assume that the entries of the MIMO system matrix H are
i.i.d. zero-mean complex Gaussian with variance 1/MR, and
we define the so-called system ratio as β = MT/MR.

Although IO detection achieves the minimum symbol error-
rate [4], the combinatorial nature of the (IO) problem [2],
[3] requires prohibitive computational complexity, especially
in large (or massive) MIMO systems [4], [5]. In order to
enable data detection in such high-dimensional systems, a
large number of low-complexity but sub-optimal algorithms
have been proposed in the literature (see, e.g., [6]–[8]).

A. Contributions

In this paper, we propose and analyze a novel, compu-
tationally efficient data-detection algorithm, referred to as
IO-LAMA (short for IO large MIMO approximate message
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(a) MIMO system with IO-LAMA as the data detector.
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(b) Equivalent decoupled system with effective noise variance σ2
t .

Fig. 1. IO-LAMA decouples large MIMO systems (a) into a set of parallel
and independent AWGN channels with equal noise variance; (b) equivalent
system in the large-system limit, i.e., for β =MT/MR with MT →∞.

passing). We show that IO-LAMA decouples the noisy MIMO
system into a set of independent additive white Gaussian noise
(AWGN) channels with equal signal-to-noise ratio (SNR); see
Fig. 1 for an illustration of this decoupling property. The
state-evolution (SE) recursion of AMP enables us to track the
effective noise variance σ2

t of each decoupled AWGN channel
at every algorithm iteration t. Using these results, we provide
precise conditions on the MIMO system matrix, the system
ratio β, the noise variance N0, and the modulation scheme for
which IO-LAMA exactly solves the (IO) problem.

B. Relevant Prior Art
Initial results for IO data detection in large MIMO systems

reach back to [9] where Verdú and Shamai analyzed the
achievable rates under optimal data detection in randomly-
spread CDMA systems. Tanaka [10] derived expressions for
the error-rate performance and the multi-user efficiency for
IO detection using the replica method. While Tanaka’s results
were limited to BPSK constellations, Guo and Verdú extended
his results to arbitrary discrete input distributions [3], [11]. All
these results study the fundamental performance of IO data
detection in the large-system limit, i.e., for β = MT/MR with
MT →∞. Corresponding practical detection algorithms have
been proposed for BPSK constellations [12], [13]—to the best
of our knowledge, no computationally efficient algorithms for
general constellation sets and complex-valued systems have
been proposed in the open literature.



Our data-detection method, IO-LAMA, builds upon approx-
imate message passing (AMP) [14]–[16], which was initially
developed for the recovery of sparse signals. AMP has been
generalized to arbitrary signal priors in [17]–[19] and enables
a precise performance analysis via the SE recursion [14], [15].
Recently, AMP-related algorithms have been proposed for
data detection [20]–[22]; these algorithms, however, lack of a
theoretical performance analysis.

C. Notation
Lowercase and uppercase boldface letters designate vectors

and matrices, respectively. For a matrix H, we define its
conjugate transpose to be HH. The `-th column of H is denoted
by hc

`. We use 〈·〉 to write 〈x〉 = 1
N

∑N
k=1 xk. A multivariate

complex-valued Gaussian probability density function (pdf) is
denoted by CN (m,K), where m is the mean vector and K the
covariance matrix. EX [·] and VarX [·] denotes the expectation
and variance operator with respect to the pdf of the random
variable X , respectively.

II. IO-LAMA: LARGE-MIMO DETECTION USING AMP
We now present IO-LAMA and the SE recursion, which is

used in Section III for our optimality analysis.

A. The IO-LAMA Algorithm
We assume that the transmit symbols s`, ` = 1, . . . ,MT,

of the transmit data vector s are taken from a finite set O =
{aj : j = 1, . . . , |O|} with constellation points aj chosen,
e.g., from a QAM or PSK alphabet. We assume an i.i.d. prior
p(s) =

∏MT
`=1 p(s`), with the following distribution for each

transmit symbol s`:

p(s`) =
∑
a∈O paδ(s` − a). (1)

Here, pa designates the (known) prior probability of each
constellation point a ∈ O and δ(·) is the Dirac delta function;
for uniform priors, we have pa = |O|−1.

The IO-LAMA algorithm summarized below is obtained by
using the prior distribution in (1) within complex Bayesian
AMP. A detailed derivation of the algorithm is given in [1].

Algorithm 1. Initialize ŝ1
` = ES [S] for ` = 1, . . . ,MT, r1 = y,

and τ1 = β VarS [S]/N0. Then, for every IO-LAMA iteration
t = 1, 2, . . . , compute the following steps:

zt = ŝt + HHrt

ŝt+1 = F(zt, N0(1 + τ t))

τ t+1 = β
N0
〈G(zt, N0(1 + τ t))〉

rt+1 = y −Hŝt+1 + τt+1

1+τt r
t.

The functions F(s`, τ) and G(s`, τ) correspond to the message
mean and variance, and are computed as follows:

F(ŝ`, τ) =
∫
s`
s`f(s`|ŝ`, τ)ds` (2)

G(ŝ`, τ) =
∫
s`
|s`|2 f(s`|ŝ`, τ)ds` − |F(ŝ`, τ)|2 .

Here, f(s`|ŝ`, τ) is the posterior pdf defined by f(s`|ŝ`, τ) =
1
Z p(ŝ`|s`, τ)p(s`) with p(ŝ`|s`, τ) ∼ CN (s`, τ) and a nor-
malization constant Z. Both functions F(ŝ`, τ) and G(ŝ`, τ)
operate element-wise on vectors.

In order to analyze the performance of IO-LAMA in the
large-system limit, we next summarize the SE recursion. The
SE recursion in the following theorem enables us to track the
effective noise variance σ2

t for the decoupled MIMO system
for every iteration t (cf. Fig. 1), which is key for the optimality
analysis in Section III. A detailed derivation is given in [1].

Theorem 1. Fix the system ratio β = MT/MR and the constel-
lation set O, and let MT →∞. Initialize σ2

1 = N0 +β VarS [S].
Then, the effective noise variance σ2

t of IO-LAMA at iteration t
is given by the following recursion:

σ2
t = N0 + βΨ(σ2

t−1). (3)

The so-called mean-squared error (MSE) function is defined by

Ψ(σ2
t−1) = ES,Z

[∣∣F(S + σt−1Z, σ
2
t−1

)
− S

∣∣2],
where F is given in (2) and Z ∼ CN (0, 1).

B. IO-LAMA Decouples Large MIMO Systems
In the large-system limit and for every iteration t, IO-LAMA

computes the marginal distribution of s`, ` = 1, . . . ,MT, which
corresponds to a Gaussian distribution centered around the
original signal s0` with variance σ2

t . These properties follow
from [16, Sec. 6], which shows that zt = ŝt + HHrt is
distributed according to CN (s0, σ

2
t IMT). Hence, the input-

output relation for each transmit stream zt` = ŝt` + (hc
`)

Hrt` is
equivalent to the following single-stream AWGN channel:

zt` = s0` + nt`.

Here, s0` is the `-th original transmitted signal and nt` is
AWGN with variance σ2

t per complex entry. As a consequence,
IO-LAMA decouples the MIMO system into MT parallel and
independent AWGN channels with equal noise variance σ2

t in
the large-MIMO limit; see Fig. 1(b) for an illustration.

III. OPTIMALITY OF IO-LAMA
We now provide conditions for which IO-LAMA exactly

solves the (IO) problem.

A. Fixed points of IO-LAMA’s State Evolution
For t → ∞, the SE recursion in Theorem 1 converges to

the following fixed-point equation [1], [15]:

σ2
IO = N0 + βΨ(σ2

IO), (4)

which coincides with the “fixed-point equation” developed
for IO detection by Guo and Verdú using the replica method
in [3, Eq. (34)]. We note that (4) may have multiple fixed-point
solutions. In the case of such non-unique fixed points, Guo
and Verdú choose the solution that minimizes the “free energy”
[3, Sec. 2-D], whereas IO-LAMA converges, in general, to the
fixed-point solution with the largest effective noise variance σ2.
We note that if the fixed-point solution to (4) is unique, then
IO-LAMA recovers the solution with minimal effective noise
variance σ2 and thus, performs IO detection. However, if there
are multiple fixed-points solutions to (4), IO-LAMA is, in
general, sub-optimal and does not necessarily converge to the
fixed-point solution with the minimal “free energy.”1 We next

1Convergence to another fixed-point solution is possible if IO-LAMA is
initialized sufficiently close to such a fixed point; see [1], [23] for the details.



provide conditions for which there is exactly one (unique) fixed
point with minimum effective noise variance σ2 and—as a
consequence—IO-LAMA solves the (IO) problem.

B. Exact Recovery Thresholds (ERTs)
We start by analyzing IO-LAMA in the noiseless setting. We

provide conditions on the system ratio β and the constellation
set O, which guarantee exact recovery of an unknown transmit
signal s0 ∈ OMT in the large-system limit, i.e., β is fixed and
MT →∞. In particular, we show that if β < βmax

O , where βmax
O

is the so-called exact recovery threshold (ERT), then IO-LAMA
perfectly recovers s0; for β ≥ βmax

O , perfect recovery is not
guaranteed, in general.2 To make this behavior explicit, we need
the following technical result; the proof is given in Appendix A.

Lemma 2. Fix the constellation set O. If VarS [S] is finite, then
there exists a non-negative gap σ2 −Ψ(σ2) ≥ 0 with equality
if and only if σ2 = 0. As σ2 → 0, the MSE Ψ(σ2) → 0 and
as σ2 →∞, MSE Ψ(σ2)→ VarS [S].

For all σ2 > 0, Lemma 2 guarantees that Ψ(σ2) < σ2.
Suppose that for some β > 1, βΨ(σ2) < σ2 also holds for
all σ2 > 0. Then, as long as β > 1 is not too large to also
ensure βΨ(σ2) < σ2 for all σ2 > 0, there will only be a single
fixed point at σ2 = 0. Therefore, LAMA can still perfectly
recover the original signal s0 by Theorem 1 since Ψ(σ2) = 0.
Leveraging the gap between Ψ(σ2) and σ2 will allow us to
find the exact recovery threshold (ERT) of LAMA for values of
β > 1. For the fixed (discrete) constellation set O, the largest
β that ensures βΨ(σ2) < σ2 is precisely the ERT defined next.

Definition 1. Fix O and let N0 = 0. Then, the exact recovery
threshold (ERT) that enables perfect recovery of the original
signal s0 using IO-LAMA is given by

βmax
O = min

σ2>0

{(
Ψ(σ2)

σ2

)−1
}
. (5)

With Definition 1, we state Theorem 3, which establishes op-
timality in the noiseless case; the proof is given in Appendix B.

Theorem 3. Let N0 = 0 and fix a discrete set O. If β < βmax
O ,

then IO-LAMA perfectly recovers the original signal s0 from
y = Hs0 + n in the large system limit.

Note that for a given constellation set O, the ERT βmax
O

can be computed numerically using (5). Furthermore, the
signal variance, VarS [S], has no impact on the ERT as the
MSE function Ψ(σ2) and σ2 scale linearly with VarS [S].
Table I summarizes ERTs βmax

O for common QAM and PSK
constellation sets.

C. Optimality Conditions for IO-LAMA
We now study the optimality of IO-LAMA in the presence

of noise, where exact recovery is no longer guaranteed.
In particular, we provide conditions for which IO-LAMA
converges to the fixed point with minimal effective noise
variance σ2, which corresponds to solving the (IO) problem.

2We assume the initialization in Algorithm 1. IO-LAMA may recover the
original signal for β ≥ βmax

O if initialized appropriately; see, e.g., [23].

TABLE I
ERTS βMAX

O , MRTS βMIN
O , AND CRITICAL NOISE LEVELS Nmin

0 (βmin
O ) AND

Nmax
0 (βmax

O ) OF IO-LAMA FOR COMMON CONSTELLATION SETS

Constellation βmin
O Nmin

0 (βmin
O ) βmax

O Nmax
0 (βmax

O )

BPSK 2.9505 2.999 · 10−1 4.1709 2.432 · 10−1

QPSK 1.4752 1.499 · 10−1 2.0855 1.216 · 10−1

16-QAM 0.9830 3.000 · 10−2 1.3629 2.454 · 10−2

64-QAM 0.8424 7.144 · 10−3 1.1573 5.868 · 10−3

8-PSK 1.4576 4.440 · 10−2 1.8038 3.826 · 10−2

16-PSK 1.4728 1.143 · 10−2 1.8005 9.953 · 10−3

TABLE II
SUMMARY OF (SUB-)OPTIMALITY REGIMES OF IO-LAMA

β ≤ βmin
O βmin

O <β<βmax
O βmax

O ≤ β

N0 < Nmin
0 (β) optimal optimal suboptimal

Nmin
0 (β) ≤ N0 ≤ Nmax

0 (β) optimal (sub-)optimal3 suboptimal
Nmax

0 (β) < N0 optimal optimal optimal

Note that such a minimum free-energy solution is also the
fixed point for the IO detector in [3, Eq. (34)]. We call the
fixed point with minimum effective noise variance optimal fixed
point; other fixed points are called suboptimal fixed points.

We identify three different operation regimes for IO-LAMA
depending on the system ratio β (see Table II). To make these
three regimes explicit, we need the following definition.

Definition 2. Fix the constellation set O. Then, the minimum
recovery threshold (MRT) βmin

O is defined by

βmin
O = min

σ2>0

{(
dΨ(σ2)

dσ2

)−1
}
. (6)

The definition of MRT shows that for all system ratios
β ≤ βmin

O , the fixed point of (4) is unique. The following lemma
establishes a fundamental relationship between MRT and ERT;
the proof is given in Appendix C.

Lemma 4. The MRT never exceeds the ERT.

We next define the minimum critical and maximum guar-
anteed noise variance, Nmin

0 (β) and Nmax
0 (β), that determine

boundaries for the optimality regimes when β > βmin
O .

Definition 3. Fix β ∈ (βmin
O , βmax

O ). Then, the minimum critical
noise Nmin

0 (β) that ensures convergence to the optimal fixed
point is defined by

Nmin
0 (β) = min

σ2>0

{
σ2 − βΨ(σ2) : β

dΨ(σ2)

dσ2
= 1

}
.

Definition 4. Fix β > βmin
O . Then, the maximum guaranteed

noise Nmax
0 (β) that ensures convergence to the optimal fixed

point is defined by

Nmax
0 (β) = max

σ2>0

{
σ2 − βΨ(σ2) : β

dΨ(σ2)

dσ2
= 1

}
.

We recall that all the zero crossings of the function

g(σ2, β,N0)O = N0 + βΨ(σ2)− σ2 (7)

3For certain constellation sets (e.g., 16-PSK), there exist sub-intervals in
[Nmin

0 (β),Nmax
0 (β)] where IO-LAMA is still optimal; see [1] for the details.
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(a) β ≤ βmin
O : IO-LAMA always converges to the

unique, optimal fixed point (FP) irrespective of N0.
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(b) β ∈ (βmin
O , βmax

O ): IO-LAMA converges to the
optimal FP if N0 < Nmin

0 (β) or N0 > Nmax
0 (β).
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(c) β ≥ βmax
O : IO-LAMA converges to the optimal

fixed point if N0 > Nmax
0 (β).

Fig. 2. Plot of the function (7) for three regimes (a) β ≤ βmin
O , (b) β ∈ (βmin

O , βmax
O ), and (c) β ≥ βmax

O for QPSK modulation, uniform priors, and
VarS [S] = Es = 1. The optimal fixed points are designated by ◦; suboptimal fixed points are designated by ⊗.

correspond to all fixed points of the SE recursion of IO-LAMA;
we use this function to study the algorithm’s optimality.

Figure 2 illustrates our optimality analysis for a large-MIMO
system with QPSK constellations. We show (7) depending on
the effective noise variance σ2 and for different system ratios β.
The regimes β ≤ βmin

O , β ∈ (βmin
O , βmax

O ), and β ≥ βmax
O are

shown in Fig. 2(a), Fig. 2(b), and Fig. 2(c), respectively. The
special case for β = 1 with N0 = 0 corresponds to the solid
blue line, along with the corresponding (unique) fixed point at
the origin. In the following three paragraphs, we discuss the
three operation regimes of IO-LAMA in detail.

(i) β ≤ βmin
O : In this region, the SE recursion of IO-LAMA

always converges to the unique, optimal fixed point. For
β < βmin

O , the slope of (7) for all σ2 is strictly-negative. Hence,
as (7) is always decreasing, there exists exactly one unique
fixed point of the SE recursion regardless of the noise variance
N0. Thus, IO-LAMA converges to the optimal fixed point and
consequently, solves the (IO) problem.

We emphasize that we still obtain exactly one fixed point
even when β is equal to the MRT. Since β = βmin

O , there exists
at least one σ2

? that satisfies βmin
O

d
dσ2 Ψ(σ2)

∣∣
σ2=σ2

?
= 1. By

definition of βmin
O , (7) at σ2

? implies that σ2
? is a saddle-point,

so (7) has exactly one zero at σ2
?. We observe that if σ2

? is
unique, then Nmin

0 (βmin
O ) = Nmax

0 (βmin
O ). For all other σ2 6= σ2

? ,
the construction of σ2

? implies that βmin
O

d
dσ2 Ψ(σ2) < 1, so the

fixed point of (7) remains to be unique.
The green, dash-dotted and red, dotted line in

Fig. 2(a) shows (7) for β = βmin
O with N0 = 0 and

N0 = Nmin
0 (βmin

O ) = Nmax
0 (βmin

O ), respectively. In both cases,
we see that the SE recursion of IO-LAMA converges to the
unique fixed point.

(ii) βmin
O < β < βmax

O : In this region, the SE recursion of
IO-LAMA converges to the unique, optimal fixed point if
N0 < Nmin

0 (β) or N0 > Nmax
0 (β).

The green, dash-dotted line, cyan, dashed line, and magenta,
dotted line in Fig. 2(b) shows (7) for β? = (βmin

O +βmax
O )/2 with

N0 = 0, N0 > Nmax
0 (β?) and N0 < Nmin

0 (β?), respectively.
We note that for the three cases, the fixed point is unique,
labeled in Fig. 2(b) by a circle. On the other hand, the
red, dotted line in Fig. 2(b) shows (7) with β? under noise

N0 ∈ [Nmin
0 (β?), Nmax

0 (β?)]. In this case, however, we observe
that SE recursion of IO-LAMA converges to the rightmost
suboptimal fixed point labeled by the crossed circle ⊗. Hence,
IO-LAMA does not, in general, solve the (IO) problem when
Nmin

0 (β) ≤ N0 ≤ Nmax
0 (β).

(iii) β ≥ βmax
O : In this region, the SE recursion of IO-

LAMA converges to the unique, optimal fixed point when
N0 > Nmax

0 (β). As β → βmax
O , the low noise N0 < Nmin

0 (β)
(or high SNR) region of optimality disappears because
Nmin

0 (β)→ 0 as β → βmax
O from (5).

The green, dash-dotted line and red, dotted line in Fig. 2(c)
shows (7) for β = βmax

O with N0 = 0 and 0 < N0 ≤ Nmax
0 (β),

respectively. We observe that the SE recursion of IO-LAMA
converges to the suboptimal fixed point when β = βmax

O even
with N0 = 0. On the other hand, the cyan, dashed line refers
to (7) for β = βmax

O with N0 > Nmax
0 (β). While the noiseless

case resulted the SE recursion of IO-LAMA to converge to
the suboptimal fixed point, we observe that for strong noise
(or equivalently low SNR), the SE recursion of IO-LAMA
actually recovers the IO solution. Therefore, when β ≥ βmax

O ,
IO-LAMA solves the (IO) problem when the noise is greater
than the maximum guaranteed noise Nmax

0 (β).
As a final remark, we note that the ERT βmax

O and MRT
βmin
O in Table I do not depend on VarS [S]; the critical noise

levels Nmin
0 (β) and Nmax

0 (β), however, depend on VarS [S].

D. ERT, MRT, and Critical Noise Levels
The ERT, MRT, as well as Nmin

0 (β) and Nmax
0 (β) for

common constellations are summarized in Table I. We assume
equally likely priors with the transmit signal normalized to
Es = VarS [S] = 1.4 We note that the calculations of ERT
and MRT for the simplest case of BPSK constellations
involve computations of a logistic-normal integral for which
no closed-form expression is known [24]. Consequently, the
following results were obtained via numerical integration for
computing the MSE function Ψ(σ2). As noted in Table I
for a QPSK system under complex-valued noise, the ERT is
βmax

QPSK ≈ 2.0855, and the MRT is given as βmin
QPSK ≈ 1.4752.

4The critical noise levels depend linearly on Es. Hence, we assume that
Es = 1 without loss of generality.



The MRTs for 16-QAM and 64-QAM indicate that small
system ratios β < 1 are required to always guarantee
that IO-LAMA solves the (IO) problem in the presence
of noise. For instance, we require β ≤ βmin

64-QAM ≈ 0.8424,
i.e. MT ≤ 0.8424MR, to ensure that IO-LAMA solves
the IO problem for 64-QAM in the large system limit.
As β → βmax

64-QAM ≈ 1.1573, IO-LAMA is only optimal for
N0 > Nmax

0 (βmax
64-QAM) ≈ 5.868 · 10−3. From Table I, we see

that IO-LAMA is a suitable candidate algorithm for the
detection of higher-order QAM constellations in massive multi-
user MIMO systems as one typically assumes MR �MT [25].

IV. CONCLUSIONS

We have presented the IO-LAMA algorithm along with
the state-evolution recursion. Using these results, we have
established conditions on the MIMO system matrix, the noise
variance N0, and the constellation set for which IO-LAMA
exactly solves the (IO) problem. While the presented results
are exclusively for the large-system limit, our own simulations
indicate that IO-LAMA achieves near-optimal performance in
realistic, finite-dimensional systems; see [1] for more details.

APPENDIX A
PROOF OF LEMMA 2

Since the variance of S is finite, denote VarS [S] = σ2
s . By

[26, Prop. 5], we have the following upper bound:

Ψ(σ2) ≤ σ2
s

σ2
s + σ2

σ2 =
1

1 + σ2/σ2
s

σ2. (8)

Here, equality holds for all σ2 if and only if S is complex
normal with variance σ2

s [26]. Note that if σ2 = 0, then (8) is
achieved for any σ2

s . If σ2 > 0, then Ψ(σ2) < σ2 by (8).
The first part follows directly from (8) as Ψ(σ2) is non-

negative. The second part requires one to realize that σ2 →∞
also implies F(·, σ2)→

∑
a∈O apa = ES [S], and hence,

lim
σ2→∞

Ψ(σ2)→ ES
[
|S − ES [S]|2

]
= VarS [S].

APPENDIX B
PROOF OF THEOREM 3

We assume the initialization in Algorithm 1. Since N0 = 0, if
LAMA perfectly recovers the original signal s0, then the fixed
point in (4) is unique at σ2 = 0. This happens if the system
ratio is strictly less than the ERT βmax

O because otherwise, i.e.,
β ≥ βmax

O , there exists a non-unique fixed point to (4) for some
σ2 > 0 by Definition 1.

APPENDIX C
PROOF OF LEMMA 4

We show that under a fixed constellation set O, βmin
O ≤ βmax

O .
The proof is straightforward as,

βmin
O

(a)
= min

σ2>0

{(
dΨ(σ2)

dσ2

)−1
}
≤
(

dΨ(σ2)
dσ2

)−1 ∣∣∣
σ2=βmax

O Ψ(σ2)

(b)
=
(

1
βmax
O

)−1

= βmax
O ,

where (a) and (b) follow from the MRT and ERT definitions.
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