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Abstract—Large-scale (or massive) multiple-input multiple-
output (MIMO) is expected to be one of the key technologies
in next-generation multi-user cellular systems based on the
upcoming 3GPP LTE Release 12 standard, for example. In this
work, we propose—to the best of our knowledge—the first VLSI
design enabling high-throughput data detection in single-carrier
frequency-division multiple access (SC-FDMA)-based large-scale
MIMO systems. We propose a new approximate matrix inver-
sion algorithm relying on a Neumann series expansion, which
substantially reduces the complexity of linear data detection. We
analyze the associated error, and we compare its performance
and complexity to those of an exact linear detector. We present
corresponding VLSI architectures, which perform exact and
approximate soft-output detection for large-scale MIMO systems
with various antenna/user configurations. Reference implemen-
tation results for a Xilinx Virtex-7 XC7VX980T FPGA show that
our designs are able to achieve more than 600Mb/s for a 128
antenna, 8 user 3GPP LTE-based large-scale MIMO system. We
finally provide a performance/complexity trade-off comparison
using the presented FPGA designs, which reveals that the detector
circuit of choice is determined by the ratio between BS antennas
and users, as well as the desired error-rate performance.

Index Terms—Approximate matrix inversion, FPGA design,
large-scale (or massive) MIMO, linear soft-output detection,
minimum mean square error (MMSE), Neumann series, VLSI.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) in combination
with spatial multiplexing [3] builds the foundation of most
modern wireless communication standards, such as 3GPP
LTE [4]–[6] or IEEE 802.11n [7]. MIMO technology offers
significantly higher data rates over single-antenna systems by
transmitting multiple data streams concurrently and in the
same frequency band. Conventional MIMO wireless systems,
however, already start to approach their throughput limits.
Consequently, the deployment of novel transceiver technolo-
gies is of paramount importance in order to meet the ever-
growing demand for higher data rates, better link reliability,
and improved coverage, without further increasing the com-
munication bandwidth [8]–[10].
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A. Blessing and Curse of Massive MIMO

Large-scale (or massive) MIMO is an emerging technology,
which postulates the use of antenna arrays having orders of
magnitude more elements at the base station (BS) compared to
conventional (small-scale) MIMO systems, while serving tens
of users simultaneously and in the same frequency band [8].
This technology promises significant improvements in terms
of spectral efficiency, link reliability, and coverage compared
to conventional (small-scale) systems [9], [11], [12].

Unfortunately, the promised benefits of large-scale MIMO
come at the cost of significantly increased computational
complexity in the BS, as opposed to small-scale MIMO
systems, which commonly deploy 2-to-4 antennas at both
ends of the wireless link. In particular, data detection in the
large-scale MIMO uplink is expected to be among the most
critical tasks in terms of complexity and power consumption,
as the presence of hundreds of antennas at the BS and a large
number of users will increase the computational complexity
by orders of magnitude. In addition, current cellular systems,
such as 3GPP-LTE [4], [5] or LTE-Advanced (LTE-A) [6],
rely on single-carrier frequency division multiple access (SC-
FDMA), which further increases the dimensionality (and hence
the complexity) of the underlying detection problem. As a con-
sequence, optimal data detection methods, such as maximum-
likelihood (ML) detection [13]–[15] or soft-output sphere
decoding (SD) [16]–[18], whose (average) computational com-
plexity scales exponentially in the number of transmitted data
streams [19], [20], would simply result in prohibitive com-
plexity. Hence, one has to resort to low-complexity (but sub-
optimal) linear detection schemes [9] or stochastic detection
algorithms [21] that deliver acceptable error-rate performance
and scale favorably to the high-dimensional detection prob-
lems faced in SC-FDMA-based large-scale MIMO systems.

B. Contributions

This paper addresses the complexity issue of data detection
in SC-FDMA-based large-scale MIMO systems in the uplink,
i.e., where multiple users communicate with the BS. We
focus on linear soft-output detection in combination with
a new approximate matrix inversion method relying on a
Neumann series expansion, which significantly reduces the
computational complexity compared to that of an exact matrix
inversion method. We analyze the implementation trade-offs
associated with approximate and exact linear data detection in
the large-scale MIMO uplink, and we show analytically that
the approximation error caused by the proposed approximate
inversion method depends on the ratio between BS antennas
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and users. We show that the proposed approximation performs
well for medium to large ratios between BS antennas and
users, while exact linear detection is advantageous for small
antenna ratios. We present reference FPGA designs for both,
the approximate and exact matrix inversion, and for various
antenna configurations, which enables us to characterize the
associated hardware complexity vs. error-rate performance
trade-offs. The resulting FPGA designs are—to the best of
our knowledge—the first data detection engines for massive
MIMO systems reported in the open literature that achieve a
peak uplink throughput exceeding the 300 Mb/s specified in
3GPP LTE-Advanced operating at 20 MHz bandwidth [6].

C. Notation

Lowercase boldface letters stand for column vectors; up-
percase boldface letters designate matrices. For a matrix A,
we denote its transpose and conjugate transpose AT and AH ,
respectively. The entry in the kth row and `th column of a
matrix A is denoted by Ak,`; the kth entry of a vector a
is designated by ak. The Frobenius norm and `2-norm of
a matrix A and vector a are denoted by ‖A‖F and ‖a‖2,
respectively. The M ×M identity matrix is denoted by IM ,
and FM refers to the M×M discrete Fourier transform (DFT)
matrix, normalized as FH

MFM = IM . In order to simplify
notation, we make frequent use of the superscript (·)(i,j)
to indicate the ith base-station antenna and jth user; the
subscript (·)w designates the SC-FDMA subcarrier index.

D. Paper Outline

The remainder of the paper is organized as follows. Sec-
tion II introduces the uplink system model and outlines
the basics of linear detection for SC-FDMA-based systems.
The approximate matrix inversion approach, a correspond-
ing error analysis, and an error-rate performance/complexity
comparison are shown in Section III. Section IV details
our VLSI architecture. Section V provides reference FPGA
implementation results and a trade-off analysis. We conclude
in Section VI. All proofs are relegated to the Appendices.

II. LARGE-SCALE MIMO IN LTE UPLINK

We next introduce the LTE uplink model and present a new
and efficient method for linear soft-output minimum mean-
square error (MMSE) detection in SC-FDMA-based systems.

A. LTE Uplink Model

We consider the large-scale multi-user (MU) MIMO uplink
with B antennas at the base-station (BS) communicating with
U ≤ B single-antenna users.1 To reduce the peak-to-average
power ratio of the user equipment, LTE uplink employs SC-
FDMA (short for single-carrier frequency division multiple
access) [5]. The U users first encode their own transmit bits
using channel encoders and then, map the coded bit stream

1More generally, instead of having U single-antenna users, the proposed
system may equivalently support U spatial streams, which can, for example,
be shared among a smaller number of user terminals that are equipped with
more than one antenna.

to time-domain constellation points in the finite alphabet O
with cardinality M = |O| and average transmit power Es

per symbol. An L-point discrete Fourier transform (DFT)
block2 is used to perform modulation of these time-domain
symbols onto orthogonal frequency bands. The L time-domain
constellation points for the ith user are subsumed in the
vector x(i) =

[
x
(i)
1 , . . . , x

(i)
L

]T
. The output of the DFT block,

namely the frequency-domain symbol, is defined as s(i) =[
s
(i)
1 , . . . , s

(i)
L

]T
= FLx(i). Subsequent processing performed

for each user corresponds to that of conventional orthogonal
frequency-division multiplexing (OFDM) transmission [22].
Specifically, for each user, the frequency-domain symbols are
first mapped onto data-carrying subcarriers and then, trans-
formed back to the time domain with an inverse DFT (IDFT).
After prepending the cyclic prefix to the time-domain symbols,
all U users transmit their time-domain signals simultaneously
over the wireless channel.

At the BS, each receive antenna obtains a mixture of
the time-domain signals from all users. For data detection,
the time-domain signals received at each antenna are first
transformed back into the frequency domain using a DFT.
The data-carrying symbols are then extracted from the DFT’s
output. Assuming a sufficiently long cyclic-prefix (i.e., longer
than the delay spread of the channel’s impulse response), the
received frequency-domain symbols can be modeled using the
standard input-output relation y = Hs+n, with the following
definitions:

y =

 y(1)
...

y(B)

 , H =

 H(1,1) · · · H(1,U)
...

. . .
...

H(B,1) · · · H(B,U)

 ,
s =

 s(1)...
s(U)

 , and n =

 n(1)
...

n(B)

 .
Here, the vector y(i) =

[
y
(i)
1 , . . . , y

(i)
L

]T
contains the received

symbols on the ith antenna in the frequency domain, where y(i)w

is the symbol received on the wth subcarrier of the ith antenna.
The L × L diagonal matrix H(i,j) = diag

(
h
(i,j)
1 , . . . , h

(i,j)
L

)
contains the channel’s frequency response of length L between
the ith receive antenna and jth transmit antenna on its main
diagonal, and n(i) =

[
n
(i)
1 , . . . , n

(i)
L

]T
models thermal noise

at the ith receive antenna in the frequency domain. The entries
of the vector n(i) are assumed to be i.i.d. zero-mean Gaussian
with variance N0 per complex entry.

B. Linear MMSE Detection

The task of a data detector for MIMO systems is to
compute soft-estimates in the form of log-likelihood ratio
(LLR) values for each coded bit, given the channel matrix3 H
and receive vector y. In order to arrive at low computational
complexity for data detection in SC-FDMA-based large-scale

2In practice, the DFT and inverse DFT are carried out by fast (inverse)
Fourier transform (I/FFT) units.

3In practice, channel-state information is acquired using pilot sequences
specified by the standard [23]. For the sake of simplicity, we assume perfect
channel state information (CSI) throughout the paper. An investigation of the
impact of imperfect CSI on the error-rate performance is left for future work.
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MIMO systems, we focus exclusively on linear soft-output
detection [24]. Linear detection for SC-FDMA mainly consists
of the following two steps: (i) channel equalization to generate
estimates of the frequency domain symbols, and (ii) soft-output
computation to generate LLRs from the equalized frequency
domain symbols. Both of these steps are detailed next.

(i) Channel equalization: The most common approach to
linear MIMO detection is the minimum-mean square error
(MMSE) equalizer, which computes equalized frequency-
domain symbols as ŝ = Wy with the MMSE equalization
matrix defined as follows [3]:

W =
(
HHH +N0Es

−1ILU

)−1
HH .

Since the effective channel matrix H is built from diagonal
L×L submatrices, we can apply MMSE equalization on a per-
subcarrier basis. Specifically, the received frequency symbols
on the wth subcarrier in the frequency domain can be modeled
as yw = Hwsw + nw, where

yw =

 y
(1)
w...
y
(B)
w

 , Hw =

 h
(1,1)
w · · · h

(1,U)
w...

. . .
...

h
(B,1)
w · · · h

(B,U)
w

 ,
sw =

[
s
(1)
w , . . . , s

(U)
w

]T
, and nw =

[
n
(1)
w , . . . , n

(B)
w

]T
.

Here, y(i)w is the frequency symbol received on the wth sub-
carrier for the ith antenna, and h

(i,j)
w is the frequency gain

(or attenuation) on the wth subcarrier between the ith receive
antenna and jth transmit antenna. The scalar s(j)w denotes the
symbol transmitted by the jth user on the wth subcarrier; the
scalar n(i)w models thermal noise at the ith receive antenna
on the wth subcarrier. With this reformulation, the equalized
symbols on the wth subcarrier are given by ŝw = Wwyw, with
the per-subcarrier MMSE equalization matrix defined as

Ww =
(
HH

w Hw +N0Es
−1IU

)−1
HH

w . (1)

A key method to arrive at low-complexity linear MMSE de-
tection was put forward in [25]. This approach first computes
the matched-filter (MF) output as yMF

w = HH
w yw and the Gram

matrix Gw = HH
w Hw for each subcarrier w, followed by

forming the regularized Gram matrix Aw = Gw+N0Es
−1IU .

The equalized symbols per subcarrier are then computed as
ŝw = A−1w yMF

w , which requires the explicit computation of a
U × U -dimensional matrix inverse.4

(ii) LLR computation: To obtain symbol estimates in the
time domain, the MMSE detector performs an IDFT on
the equalized frequency domain symbols for each user. The
time-domain symbol estimates for the ith user are given by
x̂(i) = FH

L ŝ(i), where FH
L is the IDFT matrix and x̂(i) =[

x̂
(i)
1 , . . . , x̂

(i)
L

]T
contains the time-domain symbol estimates

of the symbols transmitted by the ith user. To extract LLRs
from the time-domain symbol estimates, we approximate each
estimate as an independent Gaussian random variable. In

4We are aware of the fact that the estimate ŝw could be computed without
forming the explicit inverse A−1

w , e.g., via the Cholesky decomposition
combined with forward/backward substitution [26]. However, soft-output
detection as performed here requires the explicit inverse A−1

w to compute
the post-equalization SINR (see Section II-B).

particular, the estimated tth symbol transmitted from the ith

user is modeled as x̂(i)t = µ(i)x
(i)
t + e

(i)
t , where µ(i) is the

effective channel gain and e(i)t is the post-equalization noise-
plus-interference (NPI) variance. Let ν2i be the variance of e(i)t

and b be the bit index of the LLR associated with the tth

symbol transmitted from the ith user. With this model, the
max-log LLRs can be computed as [25], [27]

L
(i)
t (b) = ρ2i

min
a∈O0

b

∣∣∣∣∣ x̂(i)t

µ(i)
− a

∣∣∣∣∣
2

− min
a′∈O1

b

∣∣∣∣∣ x̂(i)t

µ(i)
− a′

∣∣∣∣∣
2
 , (2)

where ρ2i =
(
µ(i)
)2
/ν2i is the post-equalization signal-to-

noise-plus-interference ratio (SINR), and O0
b and O1

b corre-
spond to the sets of constellation symbols for which the bth

bit equals to 0 and 1, respectively.
In order to obtain an explicit formulation of the effective

channel gain µ(i) as well as the NPI variance ν2i , we can
write the tth symbol estimate of the ith user as follows:

x̂
(i)
t = fHt ŝ(i) = fHt W(i,:)y.

Here, W(i,:) =
[
W(i,1), . . . ,W(i,B)

]
is a horizontal con-

catenation of the ith block row of (diagonal) submatrices
of W. The row vector fHt corresponds to the tth row of
the IDFT matrix FH

L . Let H(:,j) =
[
H(1,j), . . . ,H(B,j)

]T
be the horizontal concatenation of the jth block column of
(diagonal) submatrices of H, consisting of the frequency-
domain channel responses between the receive antennas and
the transmit antenna associated with the jth user. We first
compute the effective channel gain:

µ(i)x
(i)
t = E

[
fHt W(i,:)y |x(i)t

]
= L−1tr(W(i,:)H(:,i))x

(i)
t .

Since W(i,j) and H(i,j) are both diagonal matrices, we can
write µ(i) as a sum of per-subcarrier operations. In particular,
let wH

i,w be the ith row of Ww and hi,w be the ith column of
Hw. Then, we obtain the effective channel gain as

µ(i) = L−1
L∑

w=1

wH
i,whi,w. (3)

We next compute the post-equalization NPI variance ν2i of
the residual noise plus interference as

ν2i = E

[∣∣∣x̂(i)t

∣∣∣2]− E

[∣∣∣µ(i)x
(i)
t

∣∣∣2]
= E

[
fHt W(i,:)(Hs + n)(Hs + n)H(W(i,:))Hft

]
−Es

∣∣∣µ(i)
∣∣∣2.

The MMSE equalization matrix can be written in two
ways [25], i.e., either

W =
(
HHH +N0Es

−1ILU×LU

)−1
HH or

W =HH
(
HHH +N0Es

−1ILB×LB

)−1
.

Hence, we have W
(
EsHHH +N0ILB×LB

)
= EsH

H ; this
allows us to rewrite the post-equalization NPI in compact form
as follows [25]:

ν2i = Esµ
(i) − Es

∣∣∣µ(i)
∣∣∣2 . (4)
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We emphasize that both parameters µ(i) and ν2i are functions
of A−1w , ∀w. Consequently, an explicit computation of the
inverses A−1w , ∀w, is necessary for the computation of LLR
values using the approach detailed above.

III. APPROXIMATE MMSE DETECTION
VIA NEUMANN SERIES EXPANSION

The computation of all per-subcarrier inverses A−1w , ∀w,
in (1) is responsible for the main computational complexity
of linear MMSE detection in SC-FDMA-based large-scale
MIMO systems. For a conventional small-scale LTE uplink
scenario, i.e., where the number of receive antennas B and
users U is small (on the order of U,B ≤ 6), existing VLSI
designs for linear detection, such as [28]–[30], compute the
exact inverse explicitly. For large-scale MIMO systems with
a large number of users U however, the computation of
the inverse A−1w can quickly result in excessive complexity.
Hence, practical solutions for large-scale MIMO detection in
LTE necessitate low-complexity matrix inversion methods—a
corresponding approximate solution is proposed next.

A. Neumann Series Approximation

For large-scale MIMO systems, where the number of receive
antennas is larger than the number of single-antenna users, i.e.,
for U � B, the Gram matrices Gw, and, consequently Aw,
become diagonally dominant [9]. In fact, for i.i.d. Gaussian
channel matrices Hw (with properly normalized entries) and
in the large antenna limit, [8] shows that Gw → IU . Inspired
by this central property of large-scale MIMO, one can derive a
low-complexity approximation of the inverse. In particular, let
Aw ≈ Dw, where Dw is the main diagonal of Aw. As a result,
the inverse A−1w can be approximated by D−1w , which requires
evidently much lower complexity than that of the exact inverse.
Unfortunately, for realistic antenna/user configurations, such a
crude approximation would cause a significant performance
loss. Hence, to arrive at an accurate approximation of the
inverse at low computational complexity, we propose to use a
Neumann series expansion.

We start by rewriting the inverse A−1w with the following
Neumann series expansion [31]:

A−1w =

∞∑
n=0

(
X−1 (X−Aw)

)n
X−1, (5)

which holds if limn→∞(I −X−1Aw)n = 0U×U is satisfied.
By decomposing the regularized Gram matrix Aw such that
Aw = Dw + Ew, where Dw is the main diagonal of Aw

and Ew is the hollow, regularized Gram matrix, we can rewrite
the Neumann series in (5) as

A−1w =

∞∑
n=0

(−D−1w Ew)nD−1w , (6)

where we substitute X in (5) by Dw. Note that if
limn→∞(−D−1w Ew)n = 0U×U , then the series expansion
in (6) is guaranteed to converge.

The key idea of the proposed approximate inversion method
is to keep only the first K terms of the Neumann series (6).
Concretely, we compute a K-term approximation as follows:

Ã−1w |K =

K−1∑
n=0

(−D−1w Ew)nD−1w , (7)

which can be computed at low computational complexity
for approximations consisting of only a few Neumann series
terms, i.e., for small values of K. With this approximation, the
resulting approximate MMSE equalization matrix is given by
W̃w |K = Ã−1w |KHH

w . For K = 1, we obtain Ã−1w | 1 = D−1w ,
which is simply a scaled version of the MF detector, as
W̃−1

w | 1 = D−1w HH
w . We emphasize that the row-wise scaling

induced by D−1w does not affect the detection process, as
long as D−1w exists. Hence, the proposed approximation (7)
simply coincides with the MF detector for K = 1. For
K = 2, we obtain Ã−1w | 2 = D−1w − D−1w EwD−1w , whose
computational complexity only scales with O(U2) operations;
this is in contrast to the O(U3) complexity scaling required by
computing an exact inverse. Hence, a second-order Neumann
series approximation can be obtained at lower computational
complexity. For K = 3, we obtain

Ã−1w | 3 = D−1w −D−1w EwD−1w + D−1w EwD−1EwD−1w , (8)

whose complexity scales with O(U3), which is equivalent to
that of an exact inverse. Nevertheless, evaluating (8) requires
fewer arithmetic operations than an explicit evaluation of A−1.
Note that for K ≥ 4, computing the exact inverse can be of
lower complexity than the proposed approximation, e.g., when
using a Cholesky factorization (see Section III-D).5

B. Analysis of the Approximation Error

We next analytically characterize the error induced by the
approximate inverse (7) for MMSE estimation. To this end,
we define the approximation error as ∆w |K = A−1w −Ã−1w |K ,
which is equivalent to

∆w |K =

∞∑
n=K

(−D−1w Ew)nD−1w

=
(
−D−1w Ew

)K ∞∑
n=0

(−D−1w Ew)nD−1w

=
(
−D−1w Ew

)K
A−1w .

Now, consider the situation of using the approximate Ã−1w |K
in place of A−1w to compute the equalized frequency-domain
symbols, i.e.,

ŝw |K = Ã−1w |KHH
w yw = A−1w yMF

w −∆w |KyMF
w

with yMF
w = HH

w yw and ŝw = A−1w yMF
w being the exact

estimate. We can bound the `2-norm of the residual estimation

5For approximations with K = 2n terms and n ≥ 2, efficient ways of
evaluating (7) exist. In particular, a clever re-arrangement and factorization of
terms yields solutions which only require 2(n− 1) matrix multiplications.
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error resulting from this approximate equalization by

‖∆w |KyMF
w ‖2 = ‖(−D−1w Ew)KA−1w yMF

w ‖2
≤ ‖(−D−1w Ew)K‖F ‖A−1w yMF

w ‖2
≤ ‖D−1w Ew‖KF ‖ŝw‖2. (9)

From (9), we see that if the condition

‖D−1w Ew‖F < 1 (10)

is satisfied, then the approximation error approaches zero
exponentially fast as K → ∞. Moreover, one can show
that (10) is a sufficient condition for (6) to converge.

We now show that the condition ‖D−1w Ew‖F < 1 is
satisfied with high probability for large-scale MIMO systems
with a larger number of BS antennas B than users U , and
if the entries of Hw ∈ CB×U are assumed to be i.i.d.
circularly symmetric complex Gaussian with unit variance.
More specifically, we arrive at a condition that only depends
on U and B for (i) the proposed Neumann series to converge
and (ii) the residual approximation error (9) to be small. The
following theorem, which is proven in Appendix A, makes
this behavior explicit.

Theorem 1. Let B > 4 and the entries of Hw ∈ CB×U

be i.i.d. circularly symmetric complex Gaussian with unit
variance. Then, we have

Pr
{
‖D−1w Ew‖KF < α

}
≥ 1−

(
U2−U

)
α

2
K

√
2B(B+1)

(B−1)(B−2)(B−3)(B−4)
. (11)

We emphasize that this theorem provides conditions6 for
which the Neumann series converges with a certain prob-
ability; this can be accomplished by setting α = 1 and
K = 1 and by inspecting the convergence condition (10).
Furthermore, Theorem 1 provides conditions for which the
residual estimation error (9) is small. In both cases, we can see
from Theorem 1 that increasing the ratio between the number
of BS antennas B and the number of users U increases the
probability of convergence. Moreover, for α < 1, increasing K
also increases the probability that the residual estimation error
caused by a K-term approximation in (9) is smaller than α.

We note that Theorem 1 also provides insight into the behav-
ior in the large-antenna limit, i.e., for B →∞ while U is held
constant. In this case, we have Pr

{
‖D−1w Ew‖KF < α

}
→ 1

for α ∈ (0, 1], which implies (i) that the Neumann series
converges with probability 1 and (ii) that the approximation
error for any K-term approximation is arbitrary small, which
includes the MF detector (corresponding to K = 1). We note
that this behavior is in accordance with existing results for MF
detection in large-scale MIMO systems [8], [32].

6The result in (11) also holds for the case where the regularization term
N0E

−1
s vanishes, which coincides to ZF detection. As a consequence, the

condition (11) is rather pessimistic and is likely to be sub-optimal, especially
for N0E

−1
s > 0. The derivation of a tighter condition is left for future work.

C. Channel Gain and NPI Variance Computation

Computation of the max-log LLRs via the proposed Neu-
mann series approximation is carried out by simply replacing
the exact inverse A−1w by the approximation Ã−1w |K to perform
MMSE equalization (2). For this approximation, the effec-
tive channel gain µ̃

(i)
K and the variance of the residual post-

equalization NPI variance ν̃2i |K now depend on the number of
Neumann series terms.

In order to compute the effective channel gain µ̃
(i)
K , we

first construct the LU × LU matrix W̃−1
· |K from the sub-

carrier equalization matrices W̃−1
w |K , ∀w, as explained in Sec-

tion II-B. With this, we have µ̃(i)
K x

(i)
t = E

[
fHt W̃

(i,:)
K y |x(i)t

]
,

which can be rewritten as in (3) by replacing W(i,:) with
W̃

(i,:)
· |K . Consequently, the effective channel gain is given by

µ̃
(i)
K = L−1

∑L
w=1 w̃H

i,w |Khi,w, where w̃H
i,w |K is the ith row

of W̃
(i,i)
w |K and hi,w |K the ith column of H

(i,i)
w .

In order to compute the post-equalization NPI variance ν̃2i|K
one might assume that it simply corresponds to Esµ̃

(i)
K −

Es|µ̃(i)
K |2 as in (4). Unfortunately, this expression no longer

holds, because of the following fact:

W̃· |K(EsHHH +N0ILB) 6= HH .

Furthermore, the above NPI variance expression is not guaran-
teed to be non-negative and hence, using it to compute LLR
values inevitably results in poor error-rate performance. As
a consequence, an alternative expression for ν̃2i|K is required
when using the approximate matrix inverse for data detection.
Following the steps of the derivation of ν̃2i in Section II-B and
by replacing W(i,:) with W̃

(i,:)
· |K , the exact post-equalization

NPI variance can be expressed as:

ν̃2i|K =fHt W̃
(i,:)
· |K(EsHHH + . . .

N0ILB)(W̃
(i,:)
· |K)Hft − Es

∣∣∣µ̃(i)
K

∣∣∣2 . (12)

Since HH(EsHHH + N0ILB) = (EsH
HH + N0ILU )HH ,

we have:

ν̃2i|K = Esf
H
t (Ã−1· |K)(i,:)AG(Ã−1· |K)(i,:)ft − Es

∣∣∣µ̃(i)
K

∣∣∣2 .
As (Ã−1· |K)(i,i) is diagonal, we can decompose the computa-
tion as the sum of per-subcarrier operations. To this end, let
ãH
i,w|K be the ith row of Ã−1w|K , then:

ν̃2i|K = Es

L∑
w=1

ãH
i,w|KAwGwãi,w|K − Es

∣∣∣µ̃(i)
K

∣∣∣2 . (13)

This expression, however, is computational intensive, as it
involves the L matrix multiplications, each requiring O(U3)
operations. In order to reduce the complexity of computing
ν̃2i |K , we can use the K = 1 term approximation NPI

ν̃2i|1 = Es

L∑
w=1

(d(i,i)w )−2aH
i,wgi,w − Es

∣∣∣µ̃(i)
1

∣∣∣2 (14)

as a substitute for ṽ2i |K . Here, d(i,i)w is the ith diagonal entry
of Dw, aH

i,w is the ith row of Aw, and gi,w is the ith column
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of Gw. This approximation requires low computational com-
plexity as it involves only L inner products, each requiring U
operations. In addition, the larger K is, the closer the approx-
imate inversion in (7) is to the exact inverse (assuming the
Neumann series converges). Hence, for K > 1, the exact NPI
variance would be lower than ν̃2i |K , which reveals that (14) is
a pessimistic approximation.

We emphasize that we can further reduce the computational
complexity of the NPI approximation in (14). In particular, let
a
(i,j)
w be the ith entry of the vector aj,w and g

(i,j)
w be the ith

entry of the vector gj,w. Since Aw = Gw + N0Es
−1IU , we

have the following identity:

(d(i,i)w )−2aH
i,wgi,w = (d(i,i)w )−2a(i,i)w g(i,i)w +

∑
j,i 6=j

(a(i,j)w )Hg(i,j)w .

Since (i) ai,jw = gi,jw , ∀i 6= j, (ii) d(i,i)w = a
(i,i)
w , and (iii)

d
(i,i)
w � a

(i,j)
w in the case where U � B, we can use the ap-

proximation (d
(i,i)
w )−2aH

i,wgi,w ≈ (d
(i,i)
w )−1g

(i,i)
w . Hence, we

propose the following low-complexity NPI approximation:

ν̃2i ≈ Es

L∑
w=1

(d(i,i)w )−1g(i,i)w − Es

∣∣∣µ̃(i)
1

∣∣∣2 . (15)

Note that our own simulations show that the low-complexity
NPI approximation (15) performs well compared to the exact
NPI variance (13). For example, the performance loss caused
by the approximation compared to the exact NPI computation
for U = 4, B = 8, and K = 3 is less than 0.02 dB at a BLER
of 10−2 (cf. Section III-D2 for the simulation settings).

D. Simulation Results

We next demonstrate the advantages and limitations of the
proposed approximate matrix inversion approach in terms of
computational complexity and error-rate performance. To as-
sess the error-rate performance for practically relevant antenna
configurations, we note that the Samsung Full-Dimensional
MIMO prototype [33] consists of 64 BS antennas, whereas
the massive MIMO research platform developed at Rice Uni-
versity [34] currently consists of 96 BS antennas (with plans
for larger array sizes). Hence, we focus our results on the
following cases: B = 64, B = 128, and B = 256.

1) Computational complexity: To demonstrate that the pro-
posed approximate inverse exhibits (often significantly) lower
complexity than an exact inverse, we chose a Cholesky
decomposition-based inverse as a reference (see Section IV-E
for algorithm details), as this method exhibits lower com-
plexity compared to other inversion algorithms, including (but
not limited to) direct matrix inversion, QR decomposition,
or LU factorization [14], [26]. The computational complexity
(characterized by the sum of real-valued division7, addition,
and multiplication8 operations) of an exact Cholesky-based
inverse scales with O(U3), whereas the complexity of a K = 1
and K = 2 Neumann series expansion scales only with O(U)

7The number of divisions is not significant for the total operation count.
8To obtain the real-valued multiplication count, we assumed four real-

valued multiplications per one complex-valued multiplication. One could
further reduce the number of the real-valued multiplications by using strength-
reduction; this approach, however, maintains the trends observed in Fig. 1.
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Fig. 1. Number of real-valued multiplications depending on the number of
users U . The proposed approximation with K ≤ 3 requires substantially lower
complexity than that of an exact inverse based on the Cholesky decomposition.

and O(U2), respectively. The computational complexity of
K ≥ 3 is dominated by matrix-by-matrix multiplications,
where the number of such operations grows linearly with
K. For example, K = 3 requires one matrix-by-matrix
multiplication, whereas K = 4 requires two. In general, a
K ≥ 3 term approximation requires K − 2 matrix-by-matrix
multiplications. As a result, the complexity of a K ≥ 3 term
approximation is O((K − 2)U3). Hence, we have O(U3) for
K = 3, which is equivalent to that of an exact Cholesky-based
inverse. Consequently, a Neumann series approximation with
K ≥ 3 does not appear to be advantageous.

The overall operation counts of both methods are dominated
by the number of real-valued multiplications and additions,
where real-valued multiplication is more expensive than real-
valued addition. Since asymptotic complexity scalings do not,
in general, reveal the full truth, we count the number of real-
valued multiplications of both methods in Fig. 1 for varying
numbers of users U . We observe that for K ≤ 3, the Neumann
series approach results in substantially lower complexity than
the exact inversion approach. As expected, K ≥ 4 results in
higher complexity than a Cholesky-based exact inversion.

2) Error-rate performance: Evidently, the reduction in com-
plexity for K ≤ 3 Neumann series terms comes at the cost
of an approximation error (cf. Section III-B). To characterize
the associated performance loss, we now compare the error-
rate performance of the proposed approximate matrix inverse
with the error-rate performance of the exact inversion for an
LTE-based large-scale MIMO uplink system. To this end, we
show simulation results of an SC-FDMA LTE uplink system
with B antennas at the BS and U ≤ B single-antenna users.
In particular, we study a challenging communication scenario
(from an error-rate perspective) and focus on the MCS (mod-
ulation and coding scheme) of the highest rate (i.e., MCS 28)
and 20 MHz bandwidth with 1200 subcarriers, as specified
by the LTE standard [4]; this mode corresponds to 64-QAM,
and a rate ≈ 0.75 3GPP LTE turbo code. In order to generate
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channel matrices that reflect a potential9 real-world scenario,
we use the WINNER-Phase-2 model [35]. In addition, we
assume a linear antenna array with an antenna spacing of
10/128 ≈ 0.0781 m, which resembles that of the real-world
channel measurement campaign in [36]. At the BS, we use the
exact and approximate soft-output MMSE detectors detailed
above. Furthermore, we use a log-MAP LTE turbo decoder
that performs 16 (full-)iterations. Further, we define signal-
to-noise-ratio (SNR) as BEs/N0, which corresponds to the
average SNR per receive antenna.

Figures 2(a), 2(b), and 2(c) show the block-error rate (BLER)
performance of the proposed approximate detection algorithm
compared to that of an exact MMSE detector for U = 4,
U = 8 and U = 12, respectively.

We see that for small ratios between BS antennas and users,
the MF detector (equivalent to K = 1) and the Neumann series
approximation for K = 2 result in large residual errors.10

Hence, considering the 10% BLER requirement for LTE [4],
the MF detector and K = 2 term approximation are not
suitable in practice in the considered 64-QAM cases (note that
this fact is also reflected by Theorem 1). For a larger number of
BS antennas, this error floor can be recovered partially. Our
own simulations have shown that the MF detector achieves
< 10−2 BLER for U = 4 and B = 512. Furthermore, for
16-QAM, our approximation method requires smaller values
of K (see [1], [2] for corresponding 16-QAM simulations in
a large-scale MIMO-OFDM setting).

We see that for 64-QAM, the proposed approximate in-
version method with K = 3 terms is able to approach the
performance of the exact detector, i.e., the BLER performance
loss is less than 0.25 dB SNR at 10−2 BLER in all of the
K = 3, U = 4 cases and the K = 3, U = 8, B = 256
case. Hence, the proposed approximate inverse for K = 3
can deliver the performance of an exact inversion at (often
substantially) lower complexity for large ratios between BS
antennas and users. For small antenna ratios, however, the
approximate inverse with K = 3 exhibits an error floor.

We conclude that systems with small ratios between BS and
user antennas will need to resort to an exact inverse, while
systems with large ratios can take advantage of the proposed
approximate inverse. Hence, we next propose corresponding
MIMO detection architectures for both, the approximate in-
verse and an exact Cholesky-based inverse.

IV. VLSI ARCHITECTURE

We now detail two VLSI architectures suitable for large-
scale MIMO detection in 3GPP LTE-A. The first design im-
plements the proposed approximate inversion approach and the
second design implements an exact inverse; this enables us to
perform a fair hardware complexity vs. error rate performance
comparison (see Section V for the comparison).

9To the best of our knowledge, no specific channel model for large-scale
MIMO systems is available in the open literature.

10Compared to lower modulation orders, such as 16-QAM (not shown
here), 64-QAM requires a relatively high SNR to perform well.
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Fig. 2. Block error-rate (BLER) performance comparison for (a) U = 4 (b)
U = 8, and (c) U = 12 single-antenna users where M = 64 and MCS = 28;
‘FP’ designates the performance of a fixed-point implementation.

A. Architecture Overview

The proposed general architecture is depicted in Fig. 3
and consists of the following parts. The preprocessing
unit performs matched filter computation, i.e., computes
yMF
w = HH

w yw, the regularized Gram matrix, and the (approx-
imate) inverse. Note that for the approximate inversion unit,
we also output D−1w and Gw, which are needed to compute
the SINR (cf. Section III-C). To achieve the peak throughput
specified in LTE-A [6], while being able to handle the (worst)
case where the channel estimates change from subcarrier to
subcarrier and from SC-FDMA symbol to SC-FDMA sym-



8 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING

wy
Matched

filter

Gram 
& Inverse

Equalizer

SINR

Data
buffer

IFFT LLR

wH

MF

wy

1

w


A

0N

1, ww


G D

ˆ
ws

Preprocessing Subcarrier processing User processing

( ) ( )i

tL b( )ˆ i

tx

2 1,i i  

( )ˆ i

ts

SINR
buffer

Fig. 3. High-level VLSI architecture of the large-scale MIMO detection engine for 3GPP LTE-A.

bol (see, e.g, [37]), we use multiple instances of the prepro-
cessing unit.11 The matched filter output, the (approximate)
inverse, and the regularized Gram matrix, are then passed to
the subcarrier processing unit. This unit performs equalization,
i.e., computes ŝw = A−1w yMF

w and the post-equalization SINR
(detailed in Section II-B for the exact inverse and in Sec-
tion III-C for the Neumann series approximation). To perform
per-user data detection, a buffer is required that aggregates all
equalized symbols and SINR values, which are computed on a
per-subcarrier basis. The architecture then performs an IFFT,
which transforms the equalized symbols from the subcarrier
domain into the user domain (or time domain). The LLR
computation unit finally computes, together with the buffered
post-equalization NPI values, soft-output information in the
form of max-log LLRs (2). We next provide the details for
the key blocks of the proposed detector architecture.

B. Approximate Inversion and Matched Filter Units

1) Approximate inverse computation: In order to achieve
high throughput, we propose a single systolic array that com-
putes both, the regularized Gram matrix and the approximate
inverse in four phases. The proposed architecture is detailed
in Fig. 4 and is capable of computing inverses for various K-
term expansions, i.e., the number of Neumann series terms
can be selected at run-time. As shown in Fig. 4, the lower
triangular systolic array consists of two distinct processing el-
ements (PEs): (i) PEs on the main diagonal of the systolic array
(referred to as PE-D) and PEs on the off-diagonal (referred to
as PE-OD). As detailed next, both PEs have different modes
in the four computation phases.

In the first phase, the U × U normalized regularized Gram
matrix Aw/B = (Gw + N0E

−1
s IU )/B is computed in B

clock cycles. Since Aw is diagonally dominant with diagonal
entries close to B, i.e., the number of BS antennas, we reduce
its dynamic range by computing a normalized version, whose
entries on the main diagonal are close to 1 by the ‘scale
down’ unit shown in Fig. 4; this trick mitigates dynamic-
range issues, which are common for matrix inversion circuits

11In many practical scenarios, the channel estimates may change only
slowly. Hence, one does not need to compute the inverse for every SC-FDMA
symbol. This fact could be either exploited to reduce the power consumption
or to increase the achievable throughput of our detector designs.

implemented with fixed-point arithmetic. The systolic array
also computes D−1w B from the diagonal entries of Aw/B.
These entries are computed in reciprocal units (denoted by
‘inv’ in Fig. 4) residing in the PE-D units. The results D−1w B
and Ew/B are then stored in register files distributed in the
systolic array.

In the second phase, the systolic array computes −D−1w Ew,
by using the matrices D−1w B and Ew/B computed in the
first phase. Since the matrix −D−1w Ew is not Hermitian, the
systolic array computes the upper- and lower-triangular parts
of −D−1w Ew separately. As D−1w is a diagonal matrix, com-
putation of −D−1w Ew only requires a series of scalar multi-
plications (rather than a matrix multiplication).

In the third phase, the systolic array computes the
K = 2 term Neumann series approximation, i.e., Ã−1w | 2B =

(D−1w B − D−1w EwD−1w B). To this end, it is important to
realize that the matrix D−1w B −D−1w EwD−1w B is Hermitian,
implying that only the lower triangular part needs to be
computed. Furthermore, since D−1w B is diagonal, computation
of −D−1w EwD−1w B only requires entry-wise multiplications
(instead of costly matrix multiplications). These scalar mul-
tiplications are carried out by loading D−1w B and −EwD−1w

into all PEs and performing a scalar multiplication to compute
D−1w EwD−1w B. Then, we add D−1w B to the result in the diago-
nal PEs. The result of this phase, i.e., D−1w B−D−1w EwD−1w B,
is stored in the distributed register files.

In the fourth phase, the K-term Neumann series approxi-
mation is computed with the results residing in the distributed
register files. In particular, the systolic array first performs a
matrix multiplication of −D−1w Ew with Ã−1w |K−1B, and then
adds D−1w B to the diagonal PE. The resulting K-term approx-
imation Ã−1w |KB is then stored in the register files. This phase
can be repeated for a configurable number of iterations, which
allows us to compute an arbitrary K-term approximation.

2) Matched filter computation: The matched filter (MF)
unit consists of a linear array of U PEs. Each PE is associated
with one row of the Hermitian matrix HH

w , and contains a
single multiply accumulate unit (MAC) and a scaling unit to
normalize the result to yMF

w /B. The MF unit reads a new
entry of yw every clock cycle, and multiplies it with the
corresponding entries in HH

w in each PE and then, adds it the
previous results; the final result is then normalized by 1/B.
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Fig. 4. Architecture details of the Gram matrix computation and approximate matrix inversion unit. The lower-triangular systolic array shown on the left
consists of two processing elements (PEs); their architectural details are shown on the right.

C. Equalization and SINR Computation Units

1) Equalization unit: The equalization unit consists of a
linear array of U MAC units, and reads the normalized ap-
proximate inverse Ã−1w |KB and the yMF

w /B from the matched
filter unit. For each clock cycle, this unit takes one column
of Ã−1w |KB, multiplies it with one element from yMF

w /B, and
adds the scaled column to the previous results. The unit outputs
an equalized symbol ŝw every U clock cycles.

2) SINR computation unit: The SINR computation unit sim-
ply consists of U MAC units that sequentially compute the
approximate effective channel gain µ̃(i)

K . This unit furthermore
computes the approximate NPI (15) using a single MAC unit.
Subsequently, the unit multiplies µ̃(i)

K with the reciprocal of
the approximate NPI ν̃2i to obtain the post-equalization SINR
ρ2i . The same unit computes the reciprocal of µ̃(i)

K which is
used in the LLR computation unit detailed next.

D. IFFT and LLR Computation Units

1) IFFT unit: In order to transform the per-subcarrier data
into the user (or time) domain, we deploy a single Xilinx
Discrete Fourier Transform IP LogiCORE unit (see [38] for the
specifications). This unit supports all forward and inverse DFT
modes specified in 3GPP LTE [4], but we only make use of its
IDFT capabilities. The IFFT unit reads and outputs data in a
serial manner. For an IFFT transform size of 1200 subcarriers,
the core can process a new set of data every 3779 clock cycles.
This FFT unit achieves more than 317 MHz on a Virtex-7
XC7VX980T FPGA and hence, achieves a throughput beyond
600 Mb/s for 8 users, 64-QAM, and 20MHz bandwidth.

2) LLR computation unit: The LLR computation unit
(LCU) generates max-log soft output values given the ef-
fective channel gains µ(i) from the IFFT block and the
post-equalization SINR values ρ2i obtained from the SINR
block. Since LTE specifies Gray mappings for all modulation
schemes (BPSK, QPSK, 16-QAM, and 64-QAM), one can
simplify the computation of the max-log LLR values in (2)
by rewriting L

(i)
t (b) = ρ2iλb(x̂

(i)
t ) and realizing that λb(·) is

a piecewise linear function that depends on the bit index
(see [25] for the details). To this end, the LCU first scales the
real and imaginary parts of the equalized time-domain symbol

with the reciprocal of the effective channel gain 1/µ(i). Then,
it evaluates the piecewise linear function λb(x̂

(i)
t ) and scales

the result with the post-equalization SINR ρ2i . The resulting
max-log LLR value is then delivered to the output of the unit.
In order to minimize the circuit area, the proposed architecture
evaluates each piecewise linear function with logical shifts and
additions only. The reciprocals are computed with a lookup
table that is stored in B-RAM units (see [1] for architectural
details). A single instance of the resulting LCU is able to
processes one symbol every clock cycle, resulting in a peak
throughput of 1.89 Gb/s for 64-QAM at 317 MHz.

E. Reference Cholesky-based Inversion Unit
In order to enable a fair performance/complexity assessment

of the proposed approximate matrix inversion unit, we also
implemented a reference unit that performs an exact matrix
inversion. This unit simply replaces the approximate inverse
unit detailed in Section IV-B. We next summarize the used
Cholesky-based inversion algorithm and then, outline the cor-
responding VLSI architecture.

1) Inversion algorithm: In the proposed exact inversion
unit, we compute A−1w in three steps: (i) we form the reg-
ularized Gram matrix Aw = Gw + N0E

−1
s IU ; (ii) we per-

form a Cholesky decomposition according to Aw = LwLH
w ,

where Lw is a lower-triangular matrix with real-values on the
main diagonal [26]; (iii) we compute the inverse A−1w using
an efficient forward/backward substitution procedure proposed
in [25]. Specifically, we first solve Lwui = ei for ui, i =
1, . . . , U , where ei is the ith unit vector, via forward substi-
tution. We then solve LH

w vi = ui for vi, i = 1, . . . , U , via
back substitution, which leads to the desired inverse A−1w =
[ v1 · · ·vU ]. Note that this approach avoids a costly matrix-
by-matrix multiplication, which would be needed by directly
computing A−1w = (LH

w )−1L−1w .
2) Cholesky decomposition architecture: The VLSI archi-

tecture for the Cholesky-based inverse differs from the one
in Section IV-B. In particular, we deploy three separate units
that compute (i) the regularized Gram matrix, (ii) the exact in-
verse using the above algorithm, and (iii) a forward/backward
substitution unit to compute the inverse A−1w . All units are
detailed next and separated by pipeline stages.
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The regularized Gram matrix is computed as a sum of outer
products, i.e., as Gw =

∑B
i=1 rir

H
i , where ri designates the

ith row of Hw. Since the Gram matrix is symmetric, it can
be computed efficiently with a triangular systolic array of
multiply and accumulate units (MACs), similar to the array
detailed in Section IV-B. The Gram computation unit reads one
row of Hw at a time and is able to output a Gram matrix every
Bth clock cycle. To obtain the regularized Gram matrix Aw,
we add N0E

−1
s to the diagonal of Gw in the final clock cycle.

We then perform the Cholesky decomposition of Aw with
a lower-triangular systolic array to obtain the lower-triangular
matrix Lw. The systolic array consists of two distinct process-
ing elements (PEs): (i) the PEs on the main diagonal and (ii)
the PEs on the off-diagonal. The data flow is similar to the
linear systolic array (the “obvious case”) proposed in [39]. The
difference is that our design processes an incoming column
of Aw with multiple PEs, whereas an incoming column is
processed with a single PE in [39]. As a result, our design is
able to achieve the peak throughput requirements of LTE-A.
In our design, the pipeline of one column of PEs is 16 stages
deep and streams out one column of Lw every clock cycle
(after a latency of 16(U − 1) clock cycles). Consequently, the
achieved throughput corresponds to one Cholesky decomposi-
tion every U clock cycles.

3) Forward/backward-substitution architecture: The for-
ward/backward substitution unit (FBSU) receives a lower-
triangular matrix Lw as input, and computes A−1w =
(LH

w )−1L−1w as outlined in Section IV-E1. The FBSU con-
sists of three major components: (i) a forward substitution
unit (FSU), which solves for Lwui = ei, (ii) a backward
substitution unit (BSU), which solves for LH

w vi = ui, and
(iii) a Hermitian transpose unit, which computes LH

w . Since
the computations for the FSU and the BSU are symmetric,
we implement the forward substitution architecture and re-
use it for the backward substitution, by reversing the order
of the columns of the matrix LH

w and vector ui before
reading them into the BSU. To simplify notation, we assume
that the equation to be solved by the forward substitution
corresponds to Lx = b for some x and b. Since the forward
substitution of solving the equation Lxi = bi for each bi

(i = 1, . . . , U) is independent, we use U processor elements
(PEs) to solve for all xi in parallel. Each PE is implemented
using a fully pipelined architecture, which consists of U stages
of computation logic. Each stage contains two multiplexers, a
complex-valued multiplier, and a complex-valued subtraction.
In each stage, either ∆i = bi −

∑
j Li,jxj or ∆i/Li,i is

computed according to the control signals. Therefore, for an
input matrix Lw of dimension U , the FSU uses U2 complex-
valued multipliers; the entire FBSU utilizes 2U2 complex-
valued multipliers. The matrix conjugate unit is implemented
using multiplexers and U FIFOs (realized by on-chip B-RAMs
in the FPGA). The conjugate matrix LH

w is also reordered
based on the pattern of the input sequence of the BSU.

V. IMPLEMENTATION RESULTS AND TRADE-OFFS

The approximate detection engine for 3GPP-LTE and the
exact Cholesky-based detector have been implemented on a

TABLE I
IMPLEMENTATION RESULTS ON A XILINX VIRTEX-7 XC7VX980T FPGA

Antenna configurationa 128× 8 64× 4
Inversion algorithmb K = 3 Cholesky K = 3 Cholesky

Clock frequency [MHz] 317 317 317 317
Throughput [Mb/s] 603 603 301 301

LUT slices 168 125 208 161 34 631 78 756
(28%) (34%) (6%) (12.9%)

FF slices 193 451 213 226 39 492 39 602
(16%) (17.4%) (3.2%) (3.2%)

DSP48 units 1 059 1 447 233 329
(30%) (40.2%) (7%) (9.14%)

Block RAMs 18 65 12 32
(0.6%) (2.17%) (0.4%) (1.07%)

a128× 8 refers to B = 128 BS antennas and U = 8 single-antenna users.
bK = 3 designates the approximate inversion with 3 Neumann series terms.

Xilinx Virtex-7 XC7VX980T FPGA. The fixed-point parame-
ters, FPGA implementation results, and the associated perfor-
mance/complexity trade-offs are presented next.

A. Fixed-Point Design Parameters

In order to minimize the hardware complexity, fixed-point
arithmetic is used in the entire design. The associated fixed-
point parameters were determined via extensive simulations. In
the following, the word-lengths refer to the real or imaginary
part of a complex-valued number.

The channel matrices Hw, the receive-vectors yw, and the
noise variance N0E

−1
s , are all quantized to 15 bit. The word-

length of the output of the Gram matrix and inversion unit
are also set to 15 bit; equivalently, the matched filter unit
has 15 bit at the input and output. For both matrix inversion
circuits, all multiplications have been mapped onto Xilinx
DSP48 slices. In order to achieve sufficient precision at min-
imum implementation complexity, the MAC registers within
the DSP48 units are set to 22 bit. The LUT in the reciprocal
unit consists of 1024 addresses with 12 bit outputs. Hence, it
can be implemented efficiently using a single block-RAM (B-
RAM) available on the FPGA. The equalizer module uses a
15 bit input and its output, which is stored in the data buffer, is
quantized to 12 bit. The buffer stores (complex-valued) data for
1200 subcarriers and U users. The SINR computation module
has a 15 bit input and 12 bit output. The input and output of the
IFFT unit are 12 bit; the precision of the internal multipliers is
set to 18 bit. The inputs of the LLR computation are quantized
to 12 bit and the computed LLRs are represented by 8 bit.

The resulting fixed-point performance is shown in Fig. 2
(labeled by ‘FP’) for 64×4 and 128×8 systems. As it can be
seen, the fixed-point implementation is virtually indistinguish-
able from the floating-point golden model. In particular, the
implementation loss is less than 0.05 dB SNR at 10% BLER.

B. FPGA Implementation Results

Table I summarizes the key (post-place-and-route) imple-
mentation results of the proposed approximate and exact soft-
output data detector for LTE-based massive MIMO wireless
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systems. We parameterized the architecture for U and B to
explore the impact on the required FPGA resources and the
corresponding throughput. The implementation results for an-
tenna configurations of 128 × 8 and 64 × 4 are detailed in
Table I. In order to support 75 Mb/s data rate for each LTE-A
user in 20 MHz bandwidth, we use multiple instances of the
preprocessing unit. Specifically, we used 8 and 5 instances
of approximate matrix inversion units for the 128 × 8 and
64 × 4 system, respectively. For the exact inverse, we used
6 and 3 regularized Gram matrix units for the 128 × 8 and
64×4 system, respectively. In addition, we used one Cholesky
decomposition unit and one forward and backward substitution
unit for both cases to meet the data rate requirements.

As shown in Table I, all designs are capable of running at
317 MHz and the critical path is the routing between different
blocks of the detector. For the 128×8 and 64×4 systems, the
proposed units can achieve 603 Mb/s and 301 Mb/s, respec-
tively. For the 64 × 4 system, the design meets the 300 Mb/s
peak data rate requirement specified in LTE-A with 4 users and
20MHz bandwidth. In addition, our design can scale beyond
LTE-A specifications, i.e., the proposed designs can support
up to 8 users and still achieve a 75 Mb/s per-user requirement.

In terms used resources on the Virtex-7 XC7VX980T FPGA,
the approximate soft-output data detector is smaller than the
Cholesky-based unit. There are notable saving in logic slices
and DSP48 units. For 64 × 4, K = 3 uses 56% fewer LUT
slices and 29% fewer DSP48 units compared to that of the
Cholesky-based unit. For 128 × 8, K = 3 uses 19% fewer
LUT slices and 26% fewer DSP48 units compared to that of
the Cholesky-based unit. We emphasize that the savings in
hardware resources become significantly larger as the number
of users U increases.

C. Performance/Complexity Trade-off

Based on the simulated BLER results in Fig. 2 and the
associated FPGA implementation results, we are now ready to
characterize the error-rate performance vs. hardware complex-
ity trade-offs associated with the detector containing the pro-
posed approximate matrix inversion and the Cholesky-based
exact inversion. To this end, we show the associated hardware
complexity against the minimum SNR required to achieve 10%
BLER in Fig. 5. Since both designs are dominated by multi-
pliers, we define the hardware complexity as the number of
multipliers required to achieve a 75 Mb/s per-user throughput.

From Fig. 5, we observe that the hardware complexity of the
Cholesky-based detector is larger than that of the approximate
inversion circuit for K = 3 and K = 2. In addition, for large
ratios between the number of BS antennas to the number of
users B/U , we clearly see that the SNR performance of the
approximate inverse with K = 3 and the exact inverse are
very similar. For small ratios B/U , however, the performance
difference between the approximate inverse and the exact in-
verse is rather large, which is reflected in the analysis shown
Section III-B. Hence, the ratio B/U determines whether an
approximate or exact inversion is beneficial in a practical large-
scale MIMO system. Note that for 128 × 8 and 64 × 4, the
approximate inverse with K = 2 is unable to achieve 10%
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Fig. 5. Performance/complexity trade-off. Hardware complexity is defined as
the number of DSP48E1 slices required to achieve the LTE-A uplink 75Mb/s
per-user peak throughput.

BLER (cf. Fig. 2). We note that when considering 16-QAM
modulation (rather than 64-QAM modulation, as shown here),
the approximate inversion for K = 2 is capable of achiev-
ing similar performance as the exact inverse (see [1], [2] for
corresponding simulation results).

D. Related FPGA Designs for Linear Data Detection

A host of FPGA designs for linear data detection in conven-
tional (small-scale) MIMO systems have been proposed in the
literature [28]–[30], [40]–[44]. Unfortunately, all these designs
differ in various ways. First, the corresponding architectures
rely on different matrix inversion algorithms, such as the QR
decomposition [29], [40], [43], [44], Gram-Schmidt orthog-
onalization [30], [45], LU decomposition [25], direct matrix
inversion [42], divide-and-conquer methods [41], [46]. Second,
all FPGA implementations do not generate soft outputs, with
the exception of [47]. Third, the designs were implemented
on different FPGA types.

Since the soft-output detector implementations proposed in
this paper are for large-scale MIMO systems having hundreds
of BS antennas and none of the small-scale MIMO detec-
tor designs in [28], [29], [40]–[46] was implemented on a
Xilinx Virtex-7 FPGA, a fair comparison of our design with
the above-mentioned implementations is difficult. Hence, we
decided to resort to the comparison with our own reference cir-
cuit, i.e., the Cholesky-based inverse, as shown in Section V-C.

VI. CONCLUSIONS

We have proposed a new soft-output data detector for
large-scale (or massive) MIMO-based 3GPP LTE-Advanced
(LTE-A) systems. The proposed solution is capable of per-
forming high throughput detection in single-carrier frequency
division multiple access (SC-FDMA)-based large-scale MIMO
systems equipped with hundreds of antennas at the base sta-
tion (BS). In order to achieve low computational complexity,
we have proposed a new approximate linear detector relying
on a Neumann series approximation of the matrix inverse.
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We have designed two reference VLSI architectures, one
relying on the approximate inverse, the other on an exact
Cholesky-based matrix inversion. Both architectures have been
successfully implemented on a state-of-the-art Xilinx Virtex-7
FPGA, are suitable for systems equipped with 128 BS an-
tennas or fewer while serving up to 8 users, and achieve
more than 600 Mb/s, exceeding the peak data rates specified in
the 3GPP LTE-A uplink for 20 MHz bandwidth. Our FPGA
implementation results reveal that for systems with a large
ratio between the number of BS antennas and the number of
users, the approximate matrix inversion is able to significantly
reduce the hardware implementation complexity (compared to
that of the exact inversion) with only a slight error-rate per-
formance degradation. For systems with small ratios between
the number of BS antennas and the number of users (as it
is the case in, e.g., conventional, small-scale MIMO systems)
one must resort to an exact inverse in order to avoid poor
error-rate performance. This behavior is in accordance with
the analytical results we have developed for the approximate
matrix inverse. In summary, our FPGA implementation results
demonstrate the practical feasibility of high-throughput data
detection for 3GPP LTE-based large-scale MIMO systems. We
finally note that a corresponding high-throughput ASIC design
has recently been published in [48].

There are many avenues for future work. The development
of detection algorithms that are able to perform iterative de-
tection and decoding (as, e.g., in [25]) in large-scale MIMO
systems is left for future work. Furthermore, the design of
high-performance, near-optimal detection methods (e.g., based
on the algorithms in [17], [49]) that require low computational
complexity for large-dimensional antenna configurations and
for SC-FDMA is a challenging open research problem.

APPENDIX A
PROOF OF THEOREM 1

To prove Theorem 1, we need the following three Lemmata.

Lemma 2. Let the scalars x(k) and y(k) for k = 1, . . . , B be
i.i.d. circularly symmetric complex Gaussian with unit vari-

ance. Then, E
[∣∣∣∑B

k=1 x
(k)y(k)

∣∣∣4] = 2B(B + 1).

Proof: We have

E

∣∣∣∣∣
B∑

k=1

x(k)y(k)

∣∣∣∣∣
4
=E

( B∑
k=1

x(k)y(k)
B∑

k=1

(
x(k)y(k)

)∗)2


=

(
B

2

)
E
[
|x(k)|2|y(k)|2

]
+ 4E

[
|x(k)|4|y(k)|4

]
= 2B(B − 1) + 4B = 2B2 + 2B.

The above steps can be summarized as follows. After expand-
ing the quadratic expression, the non-zero terms can be written
as |x(k)|4|y(k)|4 and |x(k)|2|y(k)|2, where k = 1, . . . , B. Then,
there are B terms of the form |x(k)|4|y(k)|4 and

(
B
2

)
of the

form |x(k)|2|y(k)|2. The facts that E
[
|x(k)|4

]
= E

[
|y(k)|4

]
=

2 and E
[
|x(k)|2

]
= E

[
|y(k)|2

]
= 1 concludes the proof.

Lemma 3. Let B > 4 and x(k), k = 1, . . . , B be i.i.d.
circularly symmetric complex Gaussian with unit variance and
g =

∑B
k=1 |x(k) | 2. Then,

E
[∣∣g−1∣∣4] = ((B − 1)(B − 2)(B − 3)(B − 4))

−1
. (16)

Proof: We first rewrite g as 2−1
∑2B

k=1 | s(k) | 2 where
s(k), k = 1, . . . , 2B, are i.i.d. zero-mean real-valued Gaussian
with unit variance. Then, 2g−1 is an inverse chi-square random
variable with 2B degrees of freedom. The inverse chi-square
distribution with 2B degrees of freedom χ(2B) corresponds to
an inverse-Gamma distribution with 2B degrees-of-freedom.
The 4th moment of this inverse chi-square distribution is given
by 1

16 (B − 1)(B − 2)(B − 3)(B − 4) [50] and, hence, we
obtain (16).

Lemma 4. Let B > 4 and the entries of Hw ∈ CB×U be i.i.d.
circularly symmetric complex Gaussian with unit variance.
Then, we have

E
[
‖D−1w Ew‖2F

]
≤
(
U2 − U

)√ 2B(B + 1)

(B − 1)(B − 2)(B − 3)(B − 4)

Proof: The regularized Gram matrix corresponds to Aw =
Dw + Ew = Gw +N0Es

−1IU×U . Thus, each element on the
ith row and jth column of Aw, a(i,j)w can be written as:

a(i,j)w =

 g
(i,j)
w =

∑B
k=1

(
h
(k,i)
w

)∗
h
(k,j)
w , i 6= j

g
(i,i)
w +N0E

−1
s =

∑B
k=1

∣∣∣h(k,i)w

∣∣∣2+N0E
−1
s , i = j,

with g(i,j)w corresponding to the ith row and jth column of the
Gram matrix Gw. We now have the following inequality:

E
[
‖D−1w Ew‖2F

]
= E

i=U∑
i=1

j=U∑
j=1,i6=j

∣∣∣∣∣g(i,j)w

a
(i,i)
w

∣∣∣∣∣
2


≤
i=U∑
i=1

j=U∑
j=1,i6=j

E

∣∣∣∣∣g(i,j)w

g
(i,i)
w

∣∣∣∣∣
2
 ,

which is obtained by omitting the non-negative regularization
term N0E

−1
s . By applying the Cauchy-Schwarz inequality, we

can bound E
[
‖D−1w Ew‖2F

]
from above as

E
[
‖D−1w Ew‖2F

]
≤

i=U∑
i=1

j=U∑
j=1,i6=j

√√√√E

[∣∣∣g(i,j)w

∣∣∣4]E[∣∣∣∣(g(i,i)w

)−1∣∣∣∣4
]
.

Application of Lemmata 2 and 3 to the first and second ex-
pected values, respectively, we obtain

E
[
‖D−1w Ew‖2F

]
≤

i=U∑
i=1

j=U∑
j=1,i6=j

√
2B(B+1)

(B−1)(B−2)(B−3)(B−4)

=
(
U2−U

)√ 2B(B+1)

(B−1)(B−2)(B−3)(B−4)
.
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We are now in position to prove Theorem 1. To this end,
we start by using Markov’s inequality to obtain the following
straightforward inequality:

Pr
{
‖D−1w Ew‖KF ≥ α

}
= Pr

{
‖D−1w Ew‖2F ≥ α

2
K

}
≤ α− 2

K E
[
‖D−1w Ew‖2F

]
.

With Pr
{
‖D−1w Ew‖KF < α

}
= 1−Pr

{
‖D−1w Ew‖KF ≥ α

}
and

by using the upper bound for E
[
‖D−1w Ew‖2F

]
from Lemma 4,

we finally obtain (11).
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dissertation, ETH Zürich, Switzerland, 2006.

[15] A. Burg, M. Borgmann, M. Wenk, M. Zellweger, W. Fichtner, and
H. Bolcskei, “VLSI implementation of MIMO detection using the sphere
decoding algorithm,” IEEE J. Solid-State Circuits, vol. 40, no. 7, pp.
1566–1577, Jul. 2005.

[16] K. Wong, C. Tsui, R. Cheng, and W. Mow, “A VLSI architecture of a
K-best lattice decoding algorithm for MIMO channels,” in IEEE ISCAS,
vol. 3, Scottsdale, AZ, May 2002, pp. 273–276.

[17] B. M. Hochwald and S. ten Brink, “Achieving near-capacity on a
multiple-antenna channel,” IEEE Trans. Commun., vol. 51, no. 3, pp.
389–399, 2003.

[18] C. Studer, A. Burg, and H. Bölcskei, “Soft-output sphere decoding:
Algorithms and VLSI implementation,” IEEE J. Sel. Areas Commun.,
vol. 26, no. 2, pp. 290–300, Feb. 2008.
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