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Abstract Multiple-input multiple-output (MIMO)
wireless is an enabling technology for high spectral
efficiency and has been adopted in many modern

wireless communication standards, such as 3GPP-LTE
and IEEE 802.11n. However, (optimal) maximum a-
posteriori (MAP) detection suffers from excessively

high computational complexity, which prevents its de-
ployment in practical systems. Hence, many algorithms
have been proposed in the literature that trade-off per-

formance versus detection complexity. In this paper, we
propose a flexible N -Way MIMO detector that achieves
excellent error-rate performance and high throughput

on graphics processing units (GPUs). The proposed
detector includes the required QR decomposition step
and a tree-search detector, which exploits the massive

parallelism available in GPUs. The proposed algorithm
performs multiple tree searches in parallel, which leads
to excellent error-rate performance at low computa-

tional complexity on different GPU architectures, such
as Nvidia Fermi and Kepler. We highlight the flexibil-
ity of the proposed detector and demonstrate that it

achieves higher throughput than existing GPU-based
MIMO detectors while achieving the same or better
error-rate performance.

1 Introduction

Multiple-input multiple-output (MIMO) wireless is a
key technology used in many modern communication
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standards, such as 3GPP-LTE, WiMAX, and IEEE
802.11n. The use of multiple antennas at both ends
of the wireless link enables significant improvements

(compared to single-antenna systems) in terms of spec-
tral efficiency. Most standards employing MIMO use
spatial multiplexing, which transmits multiple indepen-

dent data streams concurrently and within the same
frequency band. The received signal mixture (caused
by multi-path propagation) necessitates a MIMO de-

tector, which separates the received mixture of trans-
mitted data streams. Traditionally, corresponding de-
tector solutions are implemented on ASICs or FPGAs,

due to the excessive complexity of MIMO detection.
In this paper, we aim to utilize off-the-shelf graphi-
cal processing units (GPUs) in order to perform high

throughput MIMO detection. The massive amount of
computational power provided by GPUs is particularly
useful for platforms in need of great flexibility, such as

software defined radios, or to speed up MIMO system
simulations.

1.1 MIMO Detection

Among different MIMO detection schemes, soft-output

maximum a-posteriori (MAP) detection is the opti-
mal detection scheme in coded systems. This nonlinear
detector requires an exhaustive search over all candi-

date vectors, which results in prohibitive computational
complexity, even for MIMO systems transmitting a few
spatial streams. Consequently, exact MAP detection is

impractical as wireless systems typically have stringent
hardware constraints (silicon area and power consump-
tion), as well as challenging throughput and latency

requirements. As a result, most practical solutions to
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MIMO detection rely on suboptimal but low complex-

ity algorithms [2–4, 10, 11, 16, 18, 23].

Suboptimal detection algorithms can mainly be cat-
egorized into linear detection algorithms and non-linear
tree-search-based methods. Although the complexity of

linear detection methods is very low, the associated
error-rate performance is rather poor in practical sys-
tems [4, 11, 23]. Non-linear tree-search-based detection

methods, however, are capable of achieving excellent
error-rate performance at low computational complex-
ity. Such detectors can mainly be divided into two cat-

egories: (i) depth-first tree-search algorithms, such as
sphere decoding [3, 16], and (ii) breadth-first search al-
gorithms, such as the K-best algorithm [18]. For both

approaches, the search space, i.e., the set of all pos-
sible transmit vectors, can be represented as a tree.
To reduce the computational complexity of data detec-

tion, these detectors use heuristics to eliminate useless
branch extensions during the tree-search process.

Depth-first sphere detectors traverse the tree from

top to bottom recursively and prune branches with
large partial distances during backtracking. As the
traversal path is not deterministic, parallel implemen-

tations of depth-first search require load balancing to
achieve high efficiency [8]; this requires global synchro-
nization which is inefficient on GPUs. In addition to the

random runtime of depth-first tree-search algorithms,
they usually evaluate a large and small number of tree
branches at low and high SNR, respectively. Breadth-

first search algorithms, such as the K-best algorithm,
reduce the complexity by pruning branches level by
level. Although the K-best algorithm has a determin-

istic run-time, the algorithm requires a global sort at
each tree level to find the best K nodes, which is the
main bottleneck for corresponding software implemen-

tations [7].

More recently, the authors in [10] proposed the se-
lective spanning with fast enumeration (SSFE) MIMO
detection algorithm, which can be viewed as a sort-free

approximation to the K-best algorithm; related MIMO
detection algorithms were also proposed in [2, 5]. The
SSFE method, however, results in a substantial error-

rate performance loss. In order to recover part of this
performance loss, one can run a small number of in-
stances of SSFE in parallel, where each instance oper-

ates with a different permuted detection order [13, 20].
Since these instances perform the same set of operations
but work on different input data, this improved algo-

rithm maps very well onto GPU architectures [14, 22].

1.2 Contributions

Our contributions are as follows. We propose a flexible
MIMO detector that achieves excellent error-rate per-

formance and high throughput on GPUs. We show that
the proposed design achieves a wide range of trade-offs
between throughput and error-rate performance, and

is able to approach the error-rate performance of the
optimal soft-output MAP detector within 0.25 dB. We
then describe our complete implementation, including

both the required QR decomposition and the MIMO
detection algorithm. We optimize our QR decomposi-
tion kernel for processing on many small dense matrices

in parallel, which is different from conventional decom-
position methods, such as the one in [9]. In addition,
we improve the throughput of our previous work in [22]

using a variety of optimizations. We furthermore char-
acterize the achieved throughput of our kernel on both
Fermi and Kepler GPUs. Finally, we show that our im-

plementation on Nvidia GPUs achieves a substantially
higher throughput than existing soft-output MIMO de-
tectors implemented on GPUs [14, 19].

1.3 Outline of the Paper

This paper is organized as follows. Section 2 introduces
the MIMO system model. Section 3 describes the pro-
posed detection algorithm and its GPU implementa-
tion. Section 4 characterizes the performance and com-

plexity of the detector. We conclude in Section 5.

2 MIMO System Model

The considered MIMO system transmits Nt indepen-

dent data streams, and the destination receives sig-
nals on Nt antennas. At the transmit-side, given a
binary-valued vector x = [x0, . . . , xL−1]

T with L =

Nt log2 M , the modulation function maps the vector x
to s = [s0, . . . , sNt−1]

T , where si is a complex number
in a finite constellation alphabet Ω with cardinality M .

For example, the constellation alphabet for QPSK is
{−1 − j,−1 + j, 1 − j, 1 + j} with M = 4. The source
then transmits the modulated signal vector s over Nt

antennas. The received symbols can be modeled as

y = Hs+ n, (1)

where y = [y0, . . . , yNt−1]
T is the received symbol vec-

tor, H = [h0, . . . ,hNt−1] is the Nt × Nt channel ma-

trix. We consider a Rayleigh fading channel model,
where each entry of H, denoted by hij , is modeled by
an i.i.d. circularly symmetric complex Gaussian (ZM-

CSCG) random variable with variance σ2
h per complex
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dimension. Each element of the additive noise vector,

n = [n0, . . . , nNt−1]
T , is assumed to be i.i.d. ZMCSCG

with variance σ2
n per complex dimension.

2.1 Modified Real-Valued Decomposition

To perform MIMO detection in the real domain instead

of the complex domain, we first perform a real-valued
decomposition of the input-output relation (1). Specif-
ically, we rewrite (1) as(
R(y)

I(y)

)
=

(
R(H) −I(H)

I(H) R(H)

)(
R(s)

I(s)

)
+

(
R(n)

I(n)

)
, (2)

where R(x) and I(x) denote the real and imaginary

part of the complex variable x, respectively. In order
to improve the error-rate performance of the proposed
detector, we deploy the modified real-valued decompo-

sition (MRVD) put forward in [1]. In particular, we per-
mute the vector and matrix elements such that the real
and imaginary part of the same complex entry are adja-

cent to each other. With this, the resulting input-output
relation is given by

R(y0)

I(y0)
R(y1)
I(y1)
...

R(yNR−1)

I(yNR−1)


= H̃



R(s0)

I(s0)
R(s1)
I(s1)
...

R(sNR−1)

I(sNR−1)


+



R(n0)

I(n0)
R(n1)
I(n1)

...
R(nNR−1)

I(nNR−1)


which we abbreviate by ỹ = H̃ŝ+ñ.

Compared to the original (complex-valued) system
model in (1), MRVD doubles the number of elements
in each vector and quadruples the dimensionality of H̃.

Furthermore, each element of s̃i is drawn from a smaller
(real-valued) alphabet, Ω′, which has cardinality Q =√
M . For example, with QPSK, the MRVD-equivalent

constellation alphabet is {−1,+1} with Q = 2.

2.2 Soft-Output MIMO Detection

Given the received vector after performing the MRVD,
ỹ, and the MRVD-equivalent channel matrix H̃, the

soft-output MIMO detector at the receiver computes
the a-posteriori probability log-likelihood (log-APP) ra-
tio, Lk

D, for each bit. Assuming equally likely trans-

mitted bits, the log-likelihood ratio (LLR) of the kth

transmitted bit can be approximated via the max-log
approximation [6]:

Lk
D ≈ 1

2σ2
n

(
min

x∈Xk,0

∥∥∥ỹ − H̃s̃
∥∥∥2− min

x∈Xk,1

∥∥∥ỹ − H̃s̃
∥∥∥2). (3)

Here, Xk,0 is the set of all binary-valued vectors with

the kth bit equals to 0, and Xk,1 is the set of all bi-
nary vectors with the kth bit equal to 1. For the sake
of brevity, the vector s̃ corresponds to the modulated

binary vector x. The number of binary vectors in Xk,0

and Xk,1 scales exponentially with Nt. As a result, the
computational complexity of evaluating (3) scales ex-

ponentially with Nt.

To reduce the complexity of (3), we can approxi-
mate Lk

D with a reduced set of transmit vectors, or a

candidate list, L. This candidate list, L, is generated
by excluding transmit vectors with large Euclidean dis-
tances. We then split L into two sublists for Lk,0 and

Lk,1. The list Lk,0 contains the candidates with the kth

bit equal to 0 while the list Lk,1 contains the candidates
with the kth bit equal to 1. We then approximate Lk

D

via (4), where the list Lk,0 is used for computing the
0-hypothesis part of the Lk

D, while the list Lk,+1 is used
for computing the 1-hypothesis part of the Lk

D.

Lk
D ≈ 1

2σ2
n

(
min

x∈Lk,0

∥∥∥ỹ − H̃s̃
∥∥∥2︸ ︷︷ ︸

0-hypothesis

− min
x∈Lk,1

∥∥∥ỹ − H̃s̃
∥∥∥2︸ ︷︷ ︸

1-hypothesis

)
. (4)

3 Soft-Output N-Way MIMO Detector on

Nvidia GPU

Most wireless standards employ orthogonal frequency

division multiplexing (OFDM), which simplifies equal-
ization by dividing the available bandwidth into mul-
tiple orthogonal subcarriers. With OFDM, each sub-

carrier corresponds to an independent MIMO detec-
tion problem. As a result, the receiver needs to perform
MIMO detection on every subcarrier. Since many wire-

less standards use a large number of subcarriers and
GPUs consist of many independent processing cores,
GPUs are very suitable for this application as hun-

dreds of independent MIMO detection problems can
run in parallel on GPUs, which allows one to achieve
high throughput.

Since Nvidia GPUs can be viewed as multi-core
SIMD processors, a suitable algorithm needs to be data

parallel to maximize the use of the available execution
units. In addition, the device memory latency is high on
GPUs. To reduce the memory latency, a small amount

of on-chip resources, such as registers and shared mem-
ory, can be used. As a result, a good algorithm needs
to have a memory footprint small enough to fit into

the available on-chip memory to reduce the number of
expensive device-memory accesses.

We implemented the soft-output N -way MIMO de-

tector on GPU using the CUDA C programming lan-
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Algorithm 1 Modified Gram-Schmidt CUDA Kernel:
computations performed at the kth thread.
1. Input: y,H
2. Initialization:

(a) s = 0, where s is stored in shared memory

(b) Fetch y and H to construct V = [H̃|ỹ] in shared
memory

3. for step i = 0 to 2Nt − 1 do
4. if (k = i)
5. ei,i = ∥vi∥2
6. s = 1/

√
ei,i

7. end if
8. syncthreads()
9. vk,i = vk,i · s

10. syncthreads()
11. if (k ≥ i)
12. ei,k+1 = vH

i vk+1

13. vk+1 = vk+1 − vi · ei,k+1

14. end if
15. end for

guage.1 In this programming model, the programmer
specifies a kernel, or a set of computations. At runtime,
threads execute the same set of computations speci-

fied by the kernel on different input data to perform
the task. The proposed MIMO detector implementa-
tion consists of two kernels. The first kernel performs a

QR decomposition on the channel matrix. The second
kernel searches for likely transmit vectors via a gener-
ated candidate list. Then, the algorithm uses this can-

didate list to compute soft-output information for each
transmitted bit. In the following two sections, these two
kernels are described in detail.

3.1 QR Decomposition

To reduce the complexity of the candidate search, we
first perform QR decomposition on H̃. With this, we

can rewrite (4) as follows:

Lk
D ≈ 1

2σ2
n

(
min

x∈Lk,0

∥ŷ −Rs̃∥2︸ ︷︷ ︸
0-hypothesis

− min
x∈Lk,1

∥ŷ −Rs̃∥2︸ ︷︷ ︸
1-hypothesis

)
. (5)

Here, R is the upper-triangular matrix obtained from

the QR decomposition applied to H̃, and ŷ is the effec-
tive received vector obtained from QT ỹ.

To achieve low computational complexity and good
numerical stability, we implemented the Modified

Gram-Schmidt QR factorization [17] on the GPU. Algo-
rithm 1 shows the pseudo-code for the modified Gram-
Schmidt CUDA kernel function, which corresponds to a

parallel implementation of the modified Gram-Schmidt

1 We assume the reader is familiar with CUDA. A detailed
description and explanation can be found in [12].

algorithm. At runtime, 2Nt threads execute the set of

instructions defined in Algorithm 1 to perform one QR
decomposition. The kernel function can be summa-
rized as follows. In the initialization part, 2Nt threads

fetch the complex-valued inputs, the received signals
y and the channel H, from device memory. To per-
form MRVD, the threads use the input data to con-

struct a real-valued extended matrix, V = [H̃|ỹ] =
[v0, . . . ,v2Nt ], in shared memory. The vector vi is the
ith column ofV and the scalar vk,i is the k

th entry of vi.

Next, 2Nt threads perform QR decomposition on
the extended matrix V. The result is an extended up-
per triangular matrix E = [R|ŷ] which is stored in de-

vice memory, where the scalar ek,i is the kth element
of the ith column of E. The whole process consumes
2Nt iterations. Each iteration consists of a set of serial

operations and a set of parallel operations.

The serial operations are summarized in Lines 4–7
of Algorithm 1, where we compute ∥vi∥2, the squared

ℓ2 norm of the ith column of V, and the corresponding
scaling factor s. These serial computations are handled
by one thread. In our implementation, these serial com-

putations are handled by the ith thread.2

Subsequent computations are done in parallel. In
Line 9, 2Nt threads compute the ith orthogonal projec-

tion, vi, in parallel. In Lines 11-14, we assign one thread
to each column of V and the number of columns (of V)
updated decreases by one after each iteration. For the

ith iteration, only threads k ≥ i update the columns of
V, which leads to the condition k ≥ i in Line 11. Line
12 constructs the remaining elements in the ith row of

E in parallel. In Line 13, the matrix V is updated for
subsequent iterations. In this instance, the kth thread
updates vk+1 by subtracting the projection of vk+1 on

to the vi from vk+1.

The matrix V is stored in shared memory as ele-
ments ofV are accessed repeatedly. StoringV in shared

memory is much faster than storing the matrix in device
memory. Storing the entire matrix in shared memory is
possible as the number of elements in the matrix V

is small for typical MIMO systems. Furthermore, the
memory access pattern of this kernel is very regular. A
column-major layout for V results in bank-conflict-free

shared memory accesses.

3.2 1-Way MIMO Detection

Given ŷ and R, the MIMO detector computes LLR val-
ues in two steps. The first step finds candidate vectors

2 The serial computations can be handled by any thread.
For example, it is possible to always pick the 1st thread to
compute the squared ℓ2-norm.
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Real(antenna 1)
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Figure 1: An example of the search process for a 2×2
16-QAM MIMO system

with small distances. The second step computes an LLR
value for each transmitted bit using the candidate list.

3.2.1 Candidate Search

The search algorithm is essentially an SSFE MIMO de-
tector [2, 5, 10] operating in the real domain. The search

algorithm attempts to find candidate vectors with small
distances in a greedy fashion. As R is an upper triangu-
lar matrix, the search algorithm evaluates transmitted

symbols in reverse order, from antenna Nt − 1 to an-
tenna 0. The procedure is equivalent to a tree traversal.
For example, a complete tree search for a 2× 2 MIMO

system using 16-QAM is shown in Figure 1. This search
keeps all branches of antenna 1 by fully expanding the
first two levels of the tree. For the subsequent tree lev-

els, the branches of the tree are pruned by keeping the
best outgoing paths. All surviving paths at the end of
the procedure are in our candidate list which in this

example would be sixteen.
Let the kth path be pk =

[
pk2Nt−1, . . . , p

k
t

]
, the set

of nodes along the path from the root node to pkt , a

node on level t. The best outgoing path can be found
using Schnorr-Euchner enumeration [15]. The partial
distance, the distance from pkt to the ith node on level

t− 1, w
⟨t−1⟩
k,i , can be computed as

w
⟨t−1⟩
k,i = ||ŷt−1 −

t∑
j=2Nt−1

rk,jp
k
j − rt−1,t−1si||2, (6)

= ||bkt−1 − rt−1,t−1si||2, (7)

where rk,i is the k
th row of the ith column of R and ŷt

is the tth row of ŷ. To expand this path, the best node
in level t−1 that minimizes w

⟨t−1⟩
k,i is simply the closest

constellation point in Ω′ to γj = (rt−1,t−1)
−1bkt−1, the

zero-forcing solution. If node i is the best node found at
level t− 1, the kth distance can be updated by adding

the partial distance, w
⟨t−1⟩
k,i , to the distance from the

previous level t as follows:

dk = dk + w
⟨t−1⟩
k,i . (8)

Algorithm 2 Candidate search CUDA kernel: the kth

thread search for the kth candidate
1. Input: E = [R|ŷ]
2. Initialization:

(a) Q =
√
M

(b) pk = [0, 0, . . . , 0, I(Ωk),R(Ωk)]
3. dk = (ŷ2Nt−1 − r2Nt−1,2Nt−1 · pk2Nt−1)

2,

4. dk = dk +
(
ŷ2Nt−2 −

∑2Nt−1
i=2Nt−2 r2Nt−2,i · pki

)2

5. for step i = 2Nt − 3 to 0 do
6. bki = ŷi,
7. for step j = 2Nt − 1 to i+ 1
8. bki = bki − ri,j · pkj
9. end for

// Find the best outgoing node
10. γk = bk

i/ri,i

11. pki = round
(
1
2
(γk +Q− 1)

)
· 2−Q+ 1

12. if (|pki | > Q− 1) pki =sign(pki ) · (Q− 1)

// Update the distance of the kth path

13. dk = dk + (bki − ri,i · pki )2
14. end for

The search algorithm is implemented with one ker-

nel. The corresponding CUDA kernel function is shown
in Algorithm 2. At runtime, M threads execute the set
of instructions defined in Algorithm 2 in parallel to per-

form the candidate search. Each thread is assigned to
one modulation point, where the kth thread is assigned
to the kth modulation point in the finite alphabet Ω.
The first two levels of the tree are fully expanded as

shown in Lines 3-4. For the subsequent levels, level
2Nt − 3 to level 0, the algorithm first computes par-
tial distances and then prunes outgoing branches by

keeping the best outgoing paths. The partial distance
for the kth path is computed in Lines 6-9. Line 10 com-
putes γk, which is used to find the best node at level i

in lines 11-12. The best node is selected with a simple
round function followed by a threshold function on γk.
With the best node found, Line 13 updates the kth dis-

tance by adding the partial distance of the best node.
At the end of the loop, the path pk is a candidate in
our candidate list.

3.2.2 0-Hypothesis and 1-Hypothesis Generation

With the candidate list, the 0-hypothesis and 1-
hypothesis for each transmitted bit can be computed.
The computations for the kth thread are summarized

in Algorithm 3. As shown in Line 1, the kth path, pk,
is first demodulated into a binary vector bk which
is then stored in shared memory. The corresponding

distance for the kth path, dk, is also stored in shared
memory. We use Nt log(M) threads, one thread per
bit, to compute the 0-hypothesis and the 1-hypothesis

for each bit. In lines 5-11, the kth thread scans the
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Algorithm 3 LLR computation CUDA kernel: The
kth thread updates the kth 0-hypothesis and the kth

1-hypothesis

1. bk = demod(pk), dk = d
2. syncthreads()
3. if (k < Nt log2(M))
4. Initialization: h1

k = ∞ and h0
k = ∞.

5. for step j = 0 to M − 1 do
6. if (kth bit of bj= 1) and (dj ≤ h1

k)
7. h1

k = dj
8. else if (kth bit of bj= 0) and (dj ≤ h0

k)
9. h0

k = dj
10. end if
11. end for
12. end if
13. Lk

D = h0
k − h1

k

binary vectors one by one to find the 0-hypothesis, h0
k,

and the 1-hypothesis, h1
k, for the kth bit. Finally, the

LLR for the kth bit is the difference between h0
k and h1

k.

3.2.3 Optimizations

Beyond the above procedures, we also improve through-

put in several ways.

1. We unroll the loops in both algorithms to reduce

the total number of instructions.
2. As there are no data dependencies between the

threads in the search process, it is possible to

store the path history P in registers instead of us-
ing shared memory to eliminate shared memory
read/load instructions and memory address compu-

tation. Storing path history in registers also reduces
the number of device memory accesses as computa-
tion is carried out with on-chip resources.

3. On Nvidia GPUs, the SIMD instructions (or WARP
instructions) are 1024 bit wide, where each instruc-
tion operates on 32 elements. At runtime, 32 threads

share the same instruction. As a result, multiple
MIMO detections are packed into one thread block
to ensure that each thread block consists of an in-

teger multiple of 32 threads to improve efficiency.
For example, for a 4×4 MIMO 16-QAM system, QR
decomposition uses 8 threads and MIMO detection

uses 16 threads. We pack at least 4 QR decomposi-
tions into one thread block and at least two 16-QAM
detectors into one thread block to ensure there are

32 threads within a thread block.

3.3 N-Way Parallel MIMO Detection

As described in the previous section, the soft-output

SSFE detector consists of a single QR decomposition,

RVD-

QRD

MIMO 

Detection L
0

Pass 0

h00 h01

h10 h11 ,
y0

y1

RVD-

QRD

MIMO 

Detection L
1

Pass 1

h01 h00

h11 h10 ,
y0

y1

Figure 2: Proposed detector for a 2×2 MIMO System.

a single candidate search and a single LLR generator.
However, the error-rate performance of the soft-output
SSFE detection is significantly worse than that of the

soft-output max-log-MAP detection, as shown in Sec-
tion 4.1.

We now describe a simple algorithm which improves

upon the error-rate performance of the SSFE detector.
We perform several tree searches with different antenna
detection orders in parallel to improve error-rate per-

formance of the detector. This improves performance as
multiple tree searches generate a larger candidate list
which results in more reliable LLRs. In our design, we

run N parallel candidate searches, where 1 ≤ N ≤ Nt,
to generate N parallel candidate lists, each withM can-
didates. We then generate LLR values from the com-

bined candidate list, which consists of MN candidates.

For example, the proposed algorithm for a 2×2
MIMO 16-QAM system is shown in Fig. 2. The exam-

ple consists of two parallel detectors. The inputs consist
of the received vector y and the channel matrix H. A
different antenna detection order can be obtained by a
simple circular rotation of columns of H. Each detec-

tor performs QR decomposition followed by candidate
search to generate a candidate list. The results from
the two detectors, two candidate lists, are then used to

generate LLR values.

In our implementation, we spawn 2NNt threads for
an input pair H and y. Each set of 2Nt threads con-

structs a permuted version of H in shared memory by
reading the input data in a different order. Each set of
2Nt threads then performs QR decompositions on its

permuted channel matrix. We then spawn MN threads
to perform N parallel MIMO detections and LLR gen-
eration. To reduce communication among cores on the

GPU, all threads corresponding to an instance of a
MIMO detection problem reside within the same thread
block.

3.3.1 LLR Computation

The threads generate LLRs using the larger combined
candidate list, which consists of MN candidates. We

can use one thread to scan through all MN candidates
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to find the 0-hypothesis, h0
k , and 1-hypothesis, h1

k, for

the kth bit. In this case, we use Ntlog2(M) threads,
one thread per transmitted bit, to compute LLRs for
all transmitted bits.

Since our thread block consists of MN threads,
we can improve the efficiency of the LLR generator
by parallelizing the workload further. Instead of one

thread per transmitted bit, we split the workload of
finding the h0

k and h1
k among N threads. Since there

are N lists where each list consists of M candidates,

we assign one list to each thread. Using the assigned
list, each thread attempts to find the 0-hypothesis and
the 1-hypothesis. As a result, there is one set of N

0-hypotheses and one set of N 1-hypotheses per bit.
To find the 0-hypothesis and the 1-hypothesis, we use
two threads to scan through the N 0-hypotheses and

N 1-hypotheses to find the minimum of each set. The
two minimums correspond to the 0-hypothesis and 1-
hypothesis respectively. The difference between these

values is Lk
D, the LLR for the kth bit. In total, we use

NNtlog2(M) threads to compute LLRs for all trans-
mitted bits.

The complexity of the LLR generator is directly pro-

portional to the number of candidates in the candidate
list, which is MN . The parallel searches do not nec-
essarily generate unique candidates. As a result, there

may be duplicates in the candidate list. Since (4) con-
sists of min(·) operators, duplications do not affect the
result. Although it is possible to reduce the complex-

ity of the LLR generator by eliminating duplications in
the candidate list, the number of unique candidates is
not fixed, which leads to indeterminate runtime. As a

result, we do not eliminate duplicate candidates in the
list.

4 Performance

In this section, we first show the bit error rate (BER)
performance simulation results of our proposed detec-
tor. We then investigate and analyze the detector’s

throughput performance on Fermi and Kepler graph-
ics cards for various different configurations. We then
compare and show the advantages of our detector to

other GPU-based soft-output MIMO detector imple-
mentations.

4.1 BER Performance

We compared the BER performance of the N -way par-
allel MIMO detector against several other soft-output
detectors, including soft-output trellis-based MIMO de-

tector [19], fully parallel fixed complexity-sphere detec-

tor (FPFSD) [14] and soft-output max-log-MAP detec-

tor. The soft-output max-log-MAP detector computes
LLR values using the set of all possible transmit vectors
(i.e. a direct implementation of (4)) and serves as the

performance bound.

In our BER simulation, we first generate a ran-
dom binary information vector which is then en-
coded by a rate 1/3 3GPP LTE turbo encoder where

K = 6144. We then modulate the coded binary vec-
tor onto MIMO symbols. The symbols are transmit-
ted through a Rayleigh fading channel with additive

white Gaussian noise. The detector performs QR de-
composition on the channel matrix and then performs
soft-output detection once to generate LLRs. The soft-

output of the detector is then fed to a 3GPP Turbo
decoder [21] which performs up to 8 turbo decoding it-
erations. The detectors use an LLR clipping value of

8 for all the detector configurations with the exception
of N = 4 where LLR clipping is not required. An itera-
tive detection and decoding scheme is not considered in

this paper as our implementation does not iteratively
exchange LLRs between the MIMO detector and the
channel decoder. We perform soft-output MIMO de-

tection once followed by turbo decoding.

Figure 3 compares the BER performance of detec-
tors for 16-QAM and 64-QAM. The trends are sim-
ilar in both plots. The N -way parallel MIMO detec-

tor is equivalent to SSFE when N = 1. For N = 1,
the BER performance of the N -way MIMO detector
is worse than that of the other soft-output detectors.

As we increase N , the performance of the detector im-
proves as a larger candidate list increases the probabil-
ity of finding the smallest 0-hypothesis and the small-

est 1-hypothesis for each transmitted bit. For N = 4,
the detector’s performance is within 0.25 dB of the
soft-output max-log-MAP detector. We note that the

computational complexity difference between these two
cases is significant—the number of leaf nodes visited is
NM for the proposed algorithm compared to MN for

the soft-output max-log-MAP detector.

For N ≥ 3, the N -way MIMO detector outper-
forms the soft-output trellis-based MIMO detector. The

FPFSD MIMO detector is similar to the N = 4 case
except that the FPFSD MIMO detector performs de-
tection in the complex domain. In addition, the PFSD

detector uses column-norm reordering preprocessing
to improve performance. Nevertheless, we found the
FPFSD detector performs similarly to the N = 4 N -

way detector despite their differences.3

3 The column-norm reordering processing, however, is an
effective way of improving the N = 1 case. Nevertheless, the
BER performance of the N = 1 case with column norm re-
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Figure 3: BER Performance of soft-output 4×4 MIMO detectors in Rayleigh fading channels.

4.2 Throughput Performance

To measure the throughput performance of our im-

plementation, we used two types of graphics cards.
We first used an NVIDIA GeForce GTX 470 graph-
ics card (Fermi) with 448 shaders running at 1215MHz

and with 1280 MB of GDDR5 with a peak band-
width of 133.9GB/s. In addition, we used one GPU
on NVIDIA GeForce GTX 690 graphics card (Kepler),

which has 1536 shaders running at 915Mhz and has
2GB of GDDR5 with a peak bandwidth of 192.3GB/s.
This setup is equivalent to a GTX 680 graphic card

downclocked by 10%. In our benchmark, the reported
execution time is averaged over 1000 runs.

We first analyze the runtime of N -way detection
without considering transport time, the time required

to copy data from host memory to GPU and vice versa.
We then look at the runtime of QR decomposition with-
out considering transport time. Finally we report the

runtime of the entire design considering transport time.

4.2.1 MIMO Detection Kernel

Effect of optimizations on kernel performance: We first
present the effect of different optimization techniques

on the performance of the detector. The nested loop
within Algorithm 2 depends on Nt (the number of an-
tennas), while the loop within Algorithm 3 depends

on Nt as well as M (the modulation order). Unrolling

ordering preprocessing is still worse than that of the N = 2
case without column-norm reordering.
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Figure 4: Effect of optimizations on 4×4, 64-QAM
MIMO detectors, N = 1, 8192 subcarriers.

these loops reduces the number of instructions which
increases the throughput of the MIMO detector. Sim-

ilarly, locality of the data also affects performance of
the detector. We tried different unrolling techniques in
conjunction with different data placement. As an illus-

trative example, we consider the peak throughput of a
4 × 4 64-QAM detector where N = 1. We present the
results on the Fermi GPU as the trend is similar for

Kepler. The BER performances of different cases are
presented in Figure 4. We now describe and explain
each case in detail:

1. For the initial case (labeled as “parameterized
(shared)” in Figure 4), we put the path history in

shared memory and attempt to use NVIDIA unroll
directives to unroll these loops. Since both Nt and
M are input parameters, the MIMO detector kernel

is designed as a template function where Nt and M
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are template parameters. This enables the compiler

to generate different instances of the function for
different combinations of Nt and M . For the nested
loop within Algorithm 2, we notice that the com-

piler only unrolls the inner loop and does not unroll
the outer loop even though unroll directives are used
on both loop levels.

2. For the second case (labeled as “hand unrolled
(shared)”), we unrolled loops manually by hand,
which results in significant improvement.

3. For the third case (labeled as “hand unrolled (lo-
cal)”), the array access pattern is now completely
deterministic as the loops are completely unrolled.

As a result, we put the path history into local mem-
ory instead of shared memory. Since memory access
patterns are deterministic at compile time, the com-

piler stores the path vectors into registers (instead
of device memory), which eliminates shared memory
load/store instructions and increases throughput.

4. For the fourth case (labeled as “modified template
unroll (local)”), we note that manually unrolling is
not practical as we need to manually generate NtM
instances of the MIMO detector functions, one in-

stance per MIMO configuration. We use C++ tem-
plates to perform compile-time transformations to
force the compiler to unroll these loops. Although

the number of instructions is more than manual un-
rolling, it is significantly faster than our initial cases
and does not require multiple copies of the kernel

code. Therefore, we use this configuration in the
subsequent performance results.

MIMO detection kernel performance: Table 1 shows
the throughput of the N -way detector for different
MIMO configurations in a system with 8192 subcarri-

ers. We packed up to 8 different detection problems per
thread block for 16-QAM MIMO configurations. Since
the number of threads required for the MIMO detector

scales linearly with N , runtime of the N -way detector
is directly proportional to N when M and Nt are fixed
values. In the case where N and M are fixed values, the

computation required to generate LLR values, as show
in Algorithm 3, is a constant overhead that depends on
M but does not depend on Nt. As a result, runtime is

not directly proportional to Nt. Consequently, runtime
of the 2× 2 64-QAM MIMO detector is not half of the
4× 4 64-QAM MIMO detector. The detector achieved

higher throughput on Kepler for the majority of the
cases. For the computationally intensive cases such as
the 4 × 4 64-QAM configuration where N = 4, Kepler

achieved a speedup of 1.7× over Fermi.
We used a large number of subcarriers to report

peak throughput. However, we do not need an ex-

tremely large number of subcarriers to achieve through-

put close to the peak performance. Figure 5 shows

throughput as a function of the number of subcarri-
ers. We see that in all of these cases, the throughput
starts to plateau after 2048 subcarriers.

4.2.2 QR Decomposition Kernel

An N -way Parallel MIMO Detection requires N QR de-
compositions on an input y and H to generate inputs

for the detector. Table 2 shows the results for 2 × 2
and 4 × 4 MIMO configurations with different values
of N . We packed up to 8 different QR decomposition
problems in one thread block. The results show that

the QR decomposition kernel is not the bottleneck as
the runtime is much smaller than that of MIMO detec-
tion. Nevertheless, we also used C++ templates to fully

unroll the loops in Algorithm 1 to reduce runtime.

4.2.3 Performance of the Complete Design

Table 3 shows the total runtime of the complete de-

sign measured with the CPU timer. The behavior of
the detector is similar to the runtime of the detector.
For example, in the case where Nt and M are fixed

values, runtime increases as N increases. However, due
to constant overhead such as transport time, runtime
is no longer linearly proportional to N . We note that

the total runtime results are pessimistic. Using CUDA
streams, data transfers can be overlapped with compu-
tation to further increase the throughput.

4.2.4 Comparison with Existing Work

We compare our kernel time of the MIMO detector with
the kernel time of other soft-output MIMO detection

implementations.

We compared the N = 4 case against the soft-
output trellis-based MIMO detector [19] and the fully
parallel fixed complexity-sphere detector (FPFSD) [14].

As shown in Section 4.1, the error-rate performance of
the N = 4 case is better than the BER performance of
soft-output trellis MIMO detector and is similar to the

BER performance of FPFSD. To compare these detec-
tors, we also provided throughput normalized by core
count and core frequency.

Compared to N -way MIMO detection, trellis based

MIMO detection [19] requires more instructions. For
trellis based MIMO detection, the number of instruc-
tions required to find the best path out of M possible

paths scales with modulation order M . By comparison,
N -way detection uses a round and threshold function
to find the best outgoing path. As a result, the number

of instructions required to find the best outgoing path
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Table 1: MIMO Detection kernel time for 8192 MIMO symbols

GPU Configuration N = 1 N = 2 N = 3 N = 4

Fermi

2× 2, 16-QAM 0.069 ms/946.8 Mb/s 0.127 ms/511.5 Mb/s - -
4× 4, 16-QAM 0.117 ms/1122.7 Mb/s 0.323 ms/406.0 Mb/s 0.433 ms/302.2 Mb/s 0.547 ms/239.7 Mb/s
2× 2, 64-QAM 0.480 ms/204.2 Mb/s 0.953 ms/102.8 Mb/s - -
4× 4, 64-QAM 0.602 ms/325.80 Mb/s 1.190 ms/164.7 Mb/s 1.75 ms/111.7 Mb/s 2.560 ms/76.5 Mb/s

Kepler

2× 2, 16-QAM 0.049 ms/1315.1 Mb/s 0.093 ms/701.1 Mb/s - -
4× 4, 16-QAM 0.126 ms/1036.8 Mb/s 0.245 ms/533.7 Mb/s 0.372 ms/351.7 Mb/s 0.515 ms/254.2 Mb/s
2× 2, 64-QAM 0.231 ms/423.7 Mb/s 0.477 ms/205.5 Mb/s - -
4× 4, 64-QAM 0.378 ms/519.2 Mb/s 0.713 ms/274.9 Mb/s 1.203 ms/162.92 Mb/s 1.467 ms/133.61 Mb/s
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Figure 5: Throughput of 4×4 MIMO detectors vs. workload size.

is constant and does not depend on M . Consequently,

particularly for higher modulation orders, the N -way
MIMO detector achieves higher normalized throughput
than that of the trellis-based MIMO detector.

The work that is the most similar to ours is the
FPFSD in [14], which uses a similar detector on the
same GPU. We emphasize, however, that the through-

put of FPFSD is lower than that of our work. In our

design, we perform detection in the real domain through

RVD, while FPFSD performs MIMO detection in the
complex domain. We do not expect this to cause a large
throughput difference, as RVD does not reduce the com-

putation complexity. We believe there are two key dif-
ferences between our detector and the FPFSD. First,
in our design, we store the candidate list in registers

to reduce the number of device memory accesses. For
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Table 2: QR decomposition kernel time for 8192 MIMO symbols.

GPU Configuration N = 1 N = 2 N = 3 N = 4

Fermi
2× 2 0.037ms 0.057ms – –
4× 4 0.168ms 0.323ms 0.433ms 0.547ms

Kepler
2× 2 0.035ms 0.053ms – –
4× 4 0.178ms 0.326ms 0.483ms 0.596ms

Table 3: Total runtime for 8192 MIMO symbols including data transport time.

GPU Configuration N = 1 N = 2 N = 3 N = 4

Fermi

2× 2, 16-QAM 0.340ms/191.1Mb/s 0.440ms/147.7Mb/s – –
4× 4, 16-QAM 0.890ms/147.2Mb/s 1.130ms/115.9Mb/s 1.360ms/ 96.3Mb/s 1.640ms/79.9Mb/s
2× 2, 64-QAM 0.820 ms/119.5Mb/s 1.350ms/72.6Mb/s – –
4× 4, 64-QAM 1.560ms/125.6Mb/s 2.180ms/89.9Mb/s 2.950ms/66.4Mb/s 3.870ms/0.6Mb/s

Kepler

2× 2, 16-QAM 0.290ms/224.3Mb/s 0.220ms/145.3Mb/s – –
4× 4, 16-QAM 0.698ms/188.0Mb/s 0.925ms/141.6Mb/s 1.209ms/108.3Mb/s 1.460ms/89.7Mb/s
2× 2, 64-QAM 0.489ms/200.5Mb/s 0.779ms/125.8Mb/s – –
4× 4, 64-QAM 0.986ms/198.9Mb/s 1.432ms/136.9Mb/s 2.068ms/ 94.8Mb/s 2.460ms/79.6Mb/s

Table 4: Throughput comparison of the MIMO detection kernel with other GPU MIMO detectors.

Detector Type GPU Configuration
Throughput Normalized Throughput

[Mb/s] [(Mb/s)/(Core×GHz)]

Trellis-based [19] Telsa C1060
4 × 4, 16-QAM 122.03 0.422
4 × 4, 64-QAM 12.05 0.042

FPFSD [14] Tesla C2070
4 × 4, 16-QAM 92.39 0.179
4 × 4, 64-QAM 17.20 0.033

N-way, N = 4 GTX 470
4 × 4, 16-QAM 239.7 0.440
4 × 4, 64-QAM 76.50 0.141

FPFSD, the candidate list is stored in device memory

which increases the number of slow device memory ac-
cesses. Second, we reduce the number of instructions
by aggressively unrolling loops in our kernels. This is
not straightforward; we used C++ templates to au-

tomatically unroll loops for different MIMO detector
configurations (see Section 4.2.1). These optimizations
were not done for the FPFSD detector. As a result, we

achieved higher normalized throughput than that of the
FPFSD detector.

5 Conclusion

In this paper, we have presented a novel parallel
high throughput MIMO detector algorithm that maps

well onto Nvidia GPU architectures. We have imple-
mented the proposed N-way MIMO detector on both
the NVIDIA Fermi and Kepler GPUs, and have shown

that our proposed detector outperforms existing GPU-
based MIMO detectors in terms of detection through-
put. Furthermore, we have shown that by changing

the number of parallel candidate searches, our MIMO

detector provides a wide range of detection options:

from a design that provides excellent error-rate per-
formance (within 0.25 dB of the soft-output max-log-
MAP detector) to an extreme high-throughput design
that achieves several hundred Mb/s to Gb/s detection

throughput.
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