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Abstract
We develop a new model and algorithms for machine learning-based learning analytics,
which estimate a learner’s knowledge of the concepts underlying a domain, and content
analytics, which estimate the relationships among a collection of questions and those con-
cepts. Our model represents the probability that a learner provides the correct response to
a question in terms of three factors: their understanding of a set of underlying concepts,
the concepts involved in each question, and each question’s intrinsic difficulty. We estimate
these factors given the graded responses to a collection of questions. The underlying esti-
mation problem is ill-posed in general, especially when only a subset of the questions are
answered. The key observation that enables a well-posed solution is the fact that typical
educational domains of interest involve only a small number of key concepts. Leveraging
this observation, we develop both a bi-convex maximum-likelihood-based solution and a
Bayesian solution to the resulting SPARse Factor Analysis (SPARFA) problem. We also
incorporate user-defined tags on questions to facilitate the interpretability of the estimated
factors. Experiments with synthetic and real-world data demonstrate the efficacy of our
approach. Finally, we make a connection between SPARFA and noisy, binary-valued (1-bit)
dictionary learning that is of independent interest.

Keywords: factor analysis, sparse probit regression, sparse logistic regression, Bayesian
latent factor analysis, personalized learning.

1. Introduction

Textbooks, lectures, and homework assignments were the answer to the main educational
challenges of the 19th century, but they are the main bottleneck of the 21st century. To-
day’s textbooks are static, linearly organized, time-consuming to develop, soon out-of-date,
and expensive. Lectures remain a primarily passive experience of copying down what an
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instructor says and writes on a board (or projects on a screen). Homework assignments that
are not graded for weeks provide poor feedback to learners (e.g., students) on their learning
progress. Even more importantly, today’s courses provide only a “one-size-fits-all” learning
experience that does not cater to the background, interests, and goals of individual learners.

1.1 The Promise of Personalized Learning

We envision a world where access to high-quality, personally tailored educational experi-
ences is affordable to all of the world’s learners. The key to reaching this goal is to integrate
textbooks, lectures, and homework assignments into a personalized learning system (PLS)
that closes the learning feedback loop by (i) continuously monitoring and analyzing learner
interactions with learning resources in order to assess their learning progress and (ii) pro-
viding timely remediation, enrichment, or practice based on that analysis. See Linden and
Glas (2000), Murray et al. (2004), Stamper et al. (2007), Rafferty et al. (2011), Li et al.
(2011), and Knewton (2012) for various visions and examples.

Some progress has been made over the past few decades on personalized learning; see,
for example, the sizable literature on intelligent tutoring systems discussed in Psotka et al.
(1988). To date, the lionshare of fielded, intelligent tutors have been rule-based systems that
are hard-coded by domain experts to give learners feedback for pre-defined scenarios (e.g.,
Koedinger et al. (1997), Brusilovsky and Peylo (2003), VanLehn et al. (2005), and Butz
et al. (2006)). The specificity of such systems is counterbalanced by their high development
cost in terms of both time and money, which has limited their scalability and impact in
practice.

In a fresh direction, recent progress has been made on applying machine learning algo-
rithms to mine learner interaction data and educational content (see the overview articles
by Romero and Ventura (2007) and Baker and Yacef (2009)). In contrast to rule-based
approaches, machine learning-based PLSs promise to be rapid and inexpensive to deploy,
which will enhance their scalability and impact. Indeed, the dawning age of “big data”
provides new opportunities to build PLSs based on data rather than rules. We conceptu-
alize the architecture of a generic machine learning-based PLS to have three interlocking
components:

• Learning analytics: Algorithms that estimate what each learner does and does not
understand based on data obtained from tracking their interactions with learning con-
tent.

• Content analytics: Algorithms that organize learning content such as text, video,
simulations, questions, and feedback hints.

• Scheduling : Algorithms that use the results of learning and content analytics to suggest
to each learner at each moment what they should be doing in order to maximize their
learning outcomes, in effect closing the learning feedback loop.

1.2 Sparse Factor Analysis (SPARFA)

In this paper, we develop a new model and a suite of algorithms for joint machine learning-
based learning analytics and content analytics. Our model (developed in Section 2) rep-
resents the probability that a learner provides the correct response to a given question in
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(a) Graded learner–question responses. (b) Inferred question–concept association graph.

Figure 1: (a) The SPARFA framework processes a (potentially incomplete) binary-valued
dataset of graded learner–question responses to (b) estimate the underlying
questions-concept association graph and the abstract conceptual knowledge of
each learner (illustrated here by smiley faces for learner j = 3, the column in (a)
selected by the red dashed box).

terms of three factors: their knowledge of the underlying concepts, the concepts involved in
each question, and each question’s intrinsic difficulty.

Figure 1 provides a graphical depiction of our approach. As shown in Figure 1(a), we
are provided with data related to the correctness of the learners’ responses to a collection
of questions. We encode these graded responses in a “gradebook,” a source of information
commonly used in the context of classical test theory (Norvick (1966)). Specifically, the
“gradebook” is a matrix with entry Yi,j = 1 or 0 depending on whether learner j answers
question i correctly or incorrectly, respectively. Question marks correspond to incomplete
data due to unanswered or unassigned questions. Working left-to-right in Figure 1(b), we
assume that the collection of questions (rectangles) is related to a small number of abstract
concepts (circles) by a bipartite graph, where the edge weight Wi,k indicates the degree to
which question i involves concept k. We also assume that question i has intrinsic difficulty µi.
Denoting learner j’s knowledge of concept k by Ck,j , we calculate the probabilities that the
learners answer the questions correctly in terms of WC + M, where W and C are matrix
versions of Wi,k and Ck,j , respectively, and M is a matrix containing the intrinsic question
difficulty µi on row i. We transform the probability of a correct answer to an actual 1/0
correctness via a standard probit or logit link function (see Rasmussen and Williams (2006)).

Armed with this model and given incomplete observations of the graded learner–question
responses Yi,j , our goal is to estimate the factors W, C, and M. Such a factor-analysis
problem is ill-posed in general, especially when each learner answers only a small subset of
the collection of questions (see Harman (1976) for a factor analysis overview). Our first key
observation that enables a well-posed solution is the fact that typical educational domains of
interest involve only a small number of key concepts (i.e., we have K � N,Q in Figure 1).
Consequently, W becomes a tall, narrow Q × K matrix that relates the questions to a
small set of abstract concepts, while C becomes a short, wide K × N matrix that relates
learner knowledge to that same small set of abstract concepts. Note that the concepts are
“abstract” in that they will be estimated from the data rather than dictated by a subject
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matter expert. Our second key observation is that each question involves only a small subset
of the abstract concepts. Consequently, the matrix W is sparsely populated. Our third
observation is that the entries of W should be non-negative, since we postulate that having
strong concept knowledge should never hurt a learner’s chances to answer questions correctly.
This constraint on W ensures that large positive values in C represent strong knowledge of
the associated abstract concepts, which is crucial for a PLS to generate human-interpretable
feedback to learners on their strengths and weaknesses.

Leveraging these observations, we propose a suite of new algorithms for solving the
SPARse Factor Analysis (SPARFA) problem. Section 3 develops SPARFA-M, a matrix
factorization method which uses an efficient bi-convex optimization approach to produce
point estimates of the factors. Section 4 develops SPARFA-B, a Bayesian factor analysis
method to produce posterior distributions of the factors. SPARFA-M is computationally
efficient and scales to large-scale applications, while SPARFA-B is more computationally
intensive but also provide richer statistical information on the latent factors. Since the
concepts are abstract mathematical quantities estimated by the SPARFA algorithms, we
develop a post-processing step in Section 5 to facilitate interpretation of the estimated latent
concepts by associating user-defined tags for each question with each abstract concept.

In Section 6, we report on a range of experiments with a variety of synthetic and real-
world data that demonstrate the wealth of information provided by the estimates of W, C
and M. As an example, Figure 2 provides the results for a dataset collected from learn-
ers using STEMscopes (2012), a science curriculum platform. The dataset consists of 145
Grade 8 learners from a single school district answering a manually tagged set of 80 ques-
tions on Earth science; only 13.5% of all graded learner–question responses were observed.
We applied the SPARFA-B algorithm to retrieve the factors W, C, and M using 5 latent
concepts. The resulting sparse matrix W is displayed as a bipartite graph in Figure 2(a); cir-
cles denote the abstract concepts and boxes denote questions. Each question box is labeled
with its estimated intrinsic difficulty µi, with large positive values denoting easy questions.
Links between the concept and question nodes represent the active (non-zero) entries of W,
with thicker links denoting larger values Wi,k. Unconnected questions are those for which
no concept explained the learners’ answer pattern; such questions typically have either very
low or very high intrinsic difficulty, resulting in nearly all learners answering them correctly
or incorrectly. The tags provided in Figure 2(b) enable human-readable interpretability of
the estimated abstract concepts.

We envision a range of potential learning and content analytics applications for the
SPARFA framework that go far beyond the standard practice of merely forming column
sums of the “gradebook” matrix (with entries Yi,j) to arrive at a final scalar numerical
score for each learner (which is then often further quantized to a letter grade on a 5-point
scale). Each column of the estimated C matrix can be interpreted as a measure of the
corresponding learner’s knowledge about the abstract concepts. Low values indicate concepts
ripe for remediation, while high values indicate concepts ripe for enrichment. The sparse
graph stemming from the estimated W matrix automatically groups questions into similar
types based on their concept association; this graph makes it straightforward to find a set
of questions similar to a given target question. Finally, the estimated M matrix (with
entries µi on each row) provides an estimate of each question’s intrinsic difficulty. This
property enables an instructor to assign questions in an orderly fashion as well as to prune
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(a) Inferred question–concept association graph.

Concept 1 Concept 2 Concept 3

Changes to land (45%) Evidence of the past (74%) Alternative energy (76%)
Properties of soil (28%) Mixtures and solutions (14%) Environmental changes (19%)
Uses of energy (27%) Environmental changes (12%) Changes from heat (5%)

Concept 4 Concept 5

Properties of soil (77%) Formulation of fossil fuels (54%)
Environmental changes (17%) Mixtures and solutions (28%)
Classifying matter (6%) Uses of energy (18%)

(b) Most important tags and relative weights for the estimated concepts.

Figure 2: (a) Sparse question–concept association graph and (b) most important tags as-
sociated with each concept for Grade 8 Earth science with N = 135 learners
answering Q = 80 questions. Only 13.5% of all graded learner–question responses
were observed.
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out potentially problematic questions that are either too hard, too easy, too confusing, or
unrelated to the concepts underlying the collection of questions.

In Section 7, we provide an overview of related work on machine learning-based person-
alized learning, and we conclude in Section 8. All proofs are relegated to three Appendices.

2. Statistical Model for Learning and Content Analytics

Our approach to learning and content analytics is based on a new statistical model that
encodes the probability that a learner will answer a given question correctly in terms of
three factors: (i) the learner’s knowledge of a set of latent, abstract concepts, (ii) how the
question is related to each concept, and (iii) the intrinsic difficulty of the question.

2.1 Model for Graded Learner Response Data

Let N denote the total number of learners, Q the total number of questions, and K the
number of latent abstract concepts. We define Ck,j as the concept knowledge of learner j
on concept k, with large positive values of Ck,j corresponding to a better chance of success
on questions related to concept k. Stack these values into the column vector cj ∈ RK ,
j ∈ {1, . . . , N} and the K × N matrix C = [ c1, . . . , cN ]. We further define Wi,k as the
question–concept association of question i with respect to concept k, with larger values
denoting stronger involvement of the concept. Stack these values into the column vector
w̄i ∈ RK , i ∈ {1, . . . , Q} and the Q × K matrix W = [ w̄1, . . . , w̄Q ]T . Finally, we define
the scalar µi ∈ R as the intrinsic difficulty of question i, with larger values representing
easier questions. Stack these values into the column vector µ and form the Q × N matrix
M = µ11×N as the product of µ = [µ1, . . . , µQ ]T with the N -dimensional all-ones row
vector 11×N .

Given these definitions, we propose the following model for the binary-valued graded
response variable Yi,j ∈ {0, 1} for learner j on question i, with 1 representing a correct
response and 0 an incorrect response:

Zi,j = w̄T
i cj + µi, ∀i, j,

Yi,j ∼ Ber(Φ(Zi,j)), (i, j) ∈ Ωobs. (1)

Here, Ber(z) designates a Bernoulli distribution with success probability z, and Φ(z) denotes
an inverse link function1 that maps a real value z to the success probability of a binary
random variable. Thus, the slack variable Φ(Zi,j) ∈ [0, 1] governs the probability of learner j
answering question i correctly.

The set Ωobs ⊆ {1, . . . , Q} × {1, . . . , N} in (1) contains the indices associated with the
observed graded learner response data. Hence, our framework is able to handle the case of
incomplete or missing data (e.g., when the learners do not answer all of the questions).2

1. Inverse link functions are often called response functions in the generalized linear models literature (see,
e.g., Guisan et al. (2002)).

2. Two common situations lead to missing learner response data. First, a learner might not attempt a
question because it was not assigned or available to them. In this case, we simply exclude their response
from Ωobs. Second, a learner might not attempt a question because it was assigned to them but was too
difficult. In this case, we treat their response as incorrect, as is typical in standard testing settings.
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Stack the values Yi,j and Zi,j into the Q × N matrices Y and Z, respectively. We can
conveniently rewrite (1) in matrix form as

Yi,j ∼ Ber(Φ(Zi,j)), (i, j) ∈ Ωobs with Z = WC + M. (2)

In this paper, we focus on the two most commonly used link functions in the machine
learning literature. The inverse probit function is defined as

Φpro(x) =

∫ x

−∞
N (t) dt =

1√
2π

∫ x

−∞
e−t

2/2 dt, (3)

where N (t) = 1√
2π
e−t

2/2 is the probability density function (PDF) of the standard normal
distribution (with mean zero and variance one). The inverse logit link function is defined as

Φlog(x) =
1

1 + e−x
. (4)

As noted in the Introduction, C, W, and µ (or equivalently, M) have natural inter-
pretations in real education settings. Column j of C can be interpreted as a measure of
learner j’s knowledge about the abstract concepts, with larger Ck,j values implying more
knowledge. The non-zero entries in W can be used to visualize the connectivity between
concepts and questions (see Figure 1(b) for an example), with larger Wi,k values implying
stronger ties between question i and concept k. The values of µ contains estimates of each
question’s intrinsic difficulty.

2.2 Joint Estimation of Concept Knowledge and Question–Concept Association

Given a (possibly partially observed) matrix of graded learner response data Y, we aim
to estimate the learner concept knowledge matrix C, the question–concept association ma-
trix W, and the question intrinsic difficulty vector µ. In practice, the latent factors W
and C, and the vector µ will contain many more unknowns than we have observations in Y;
hence, estimating W, C, and µ is, in general, an ill-posed inverse problem. The situation
is further exacerbated if many entries in Y are unobserved.

To regularize this inverse problem, prevent over-fitting, improve identifiability,3 and
enhance interpretability of the entries in C and W, we appeal to the following three obser-
vations regarding education that are reasonable for typical exam, homework, and practice
questions at all levels. We will exploit these observations extensively in the sequel as fun-
damental assumptions:

(A1) Low-dimensionality : The number of latent, abstract concepts K is small relative to
both the number of learners N and the number of questions Q. This implies that
the questions are redundant and that the learners’ graded responses live in a low-
dimensional space. The parameter K dictates the concept granularity. Small K ex-
tracts just a few general, broad concepts, whereas large K extracts more specific and
detailed concepts.4

3. If Z = WC, then for any orthonormal matrix H with HTH = I, we have Z = WHTHC = W̃C̃. Hence,
the estimation of W and C is, in general, non-unique up to a unitary matrix rotation.

4. Standard techniques like cross-validation (Hastie et al. (2010)) can be used to select K. We provide the
corresponding details in Section 6.3.
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(A2) Sparsity : Each question should be associated with only a small subset of the concepts
in the domain of the course/assessment. In other words, we assume that the matrix W
is sparsely populated, i.e., contains mostly zero entries.

(A3) Non-negativity : A learner’s knowledge of a given concept does not negatively affect
their probability of correctly answering a given question, i.e., knowledge of a concept
is not “harmful.” In other words, the entries of W are non-negative, which provides a
natural interpretation for the entries in C: Large values Ck,j indicate strong knowledge
of the corresponding concept, whereas negative values indicate weak knowledge.

In practice, N can be larger than Q and vice versa, and hence, we do not impose any
additional assumptions on their values. Assumptions (A2) and (A3) impose sparsity and
non-negativity constraints on W. Since these assumptions are likely to be violated under
arbitrary unitary transforms of the factors, they help alleviate several well-known identifia-
bility problems that arise in factor analysis.

We will refer to the problem of estimating W, C, and µ, given the observations Y,
under the assumptions (A1)–(A3) as the SPARse Factor Analysis (SPARFA) problem. We
now develop two complementary algorithms to solve the SPARFA problem. Next, we detail
SPARFA-M and SPARFA-B, a matrix-factorization approach and a Bayesian approach to
estimate the quantities of interest.

3. SPARFA-M: Maximum Likelihood-based Sparse Factor Analysis

Our first algorithm, SPARFA-M, solves the SPARFA problem using maximum-likelihood-
based probit or logistic regression.

3.1 Problem Formulation

To estimate W, C, and µ, we maximize the likelihood of the observed data Yi,j , (i, j) ∈ Ωobs

p(Yi,j |w̄i, cj) = Φ
(
w̄T
i cj
)Yi,j (1− Φ(w̄T

i cj)
)1−Yi,j

given W, C, and µ and subject to the assumptions (A1), (A2), and (A3) from Section 2.2.
This likelihood yields the following optimization problem:

(P∗)

{
maximize

W,C

∑
(i,j)∈Ωobs

log p(Yi,j |w̄i, cj)

subject to ‖w̄i‖0 ≤ s ∀i, ‖w̄i‖2 ≤ κ ∀i, Wi,k ≥ 0 ∀i, k, ‖C‖F = ξ.

Let us take a quick tour of the problem (P∗) and its constraints. The intrinsic difficulty
vector µ is incorporated as an additional column of W, and C is augmented with an all-ones
row accordingly. We impose sparsity on each vector w̄i to comply with (A2) by limiting its
maximum number of nonzero coefficients using the constraint ‖w̄i‖0 ≤ s; here ‖a‖0 counts
the number of non-zero entries in the vector a. The `2-norm constraint on each vector w̄i

with κ > 0 is required for our convergence proof below. We enforce non-negativity on each
entry Wi,k to comply with (A3). Finally, we normalize the Frobenius norm of the concept
knowledge matrix C to a given ξ > 0 to suppress arbitrary scalings between the entries in
both matrices W and C.
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Unfortunately, optimizing over the sparsity constraints ‖w̄i‖0 ≤ s requires a combina-
torial search over all K-dimensional support sets having no more than s non-zero entries.
Hence, (P∗) cannot be solved efficiently in practice for the typically large problem sizes
of interest. In order to arrive at an optimization problem that can be solved with a rea-
sonable computational complexity, we relax the sparsity constraints ‖w̄i‖0 ≤ s in (P∗) to
`1-norm constraints as in Chen et al. (1998) and move them, the `2-norm constraints, and
the Frobenius norm constraint, into the objective function via Lagrange multipliers:

(P) minimize
W,C :Wi,k≥0 ∀i,k

∑
(i,j)∈Ωobs

− log p(Yi,j |w̄i, cj) + λ
∑

i ‖w̄i‖1 + µ
2

∑
i ‖w̄i‖22 + γ

2‖C‖
2
F .

The first regularization term λ
∑

i‖w̄i‖1 induces sparsity on each vector w̄i, with the sin-
gle parameter λ > 0 controlling the sparsity level. Since one can arbitrarily increase the
scale of the vectors w̄i while decreasing the scale of the vectors cj accordingly (and vice
versa) without changing the likelihood, we gauge these vectors using the second and third
regularization terms µ

2

∑
i‖w̄i‖22 and γ

2‖C‖
2
F with the regularization parameters µ > 0 and

γ > 0, respectively.5 We emphasize that since ‖C‖2F =
∑

j‖cj‖
2
2, we can impose a regularizer

on each column rather than the entire matrix C, which facilitates the development of the
efficient algorithm detailed below.

3.2 The SPARFA-M Algorithm

Since the first negative log-likelihood term in the objective function of (P) is convex in the
product WC for both the probit and the logit functions (see, e.g., Hastie et al. (2010)),
and since the rest of the regularization terms are convex in either W or C while the non-
negativity constraints onWi,k are with respect to a convex set, the problem (P) is biconvex in
the individual factorsW andC. More importantly, with respect to blocks of variables w̄i, cj ,
the problem (P) is block multi-convex in the sense of Xu and Yin (2012).

SPARFA-M is an alternating optimization approach to (approximately) solve (P) that
proceeds as follows. We initializeW andC with random entries and then iteratively optimize
the objective function of (P) for both factors in an alternating fashion. Each outer iteration
involves solving two kinds of inner subproblems. In the first subproblem, we holdW constant
and separately optimize each block of variables in cj ; in the second subproblem, we hold C
constant and separately optimize each block of variables w̄i. Each subproblem is solved
using an iterative method; see Section 3.3 for the respective algorithms. The outer loop
is terminated whenever a maximum number of outer iterations Imax is reached, or if the
decrease in the objective function of (P) is smaller than a certain threshold.

The two subproblems constituting the inner iterations of SPARFA-M correspond to the
following convex `1/`2-norm and `2-norm regularized regression (RR) problems:

(RR+
1 ) minimize

w̄i :Wi,k≥0 ∀k

∑
j : (i,j)∈Ωobs

− log p(Yi,j |w̄i, cj) + λ‖w̄i‖1 + µ
2‖w̄i‖22 ,

(RR2) minimize
cj

∑
i : (i,j)∈Ωobs

− log p(Yi,j |w̄i, cj) + γ
2‖cj‖

2
2 .

5. The first `1-norm regularization term in (RR+
1 ) already gauges the norm of the w̄i. The `2-norm

regularizer µ
2

∑
i‖w̄i‖22 is included only to aid in establishing the convergence results for SPARFA-M as

detailed in Section 3.4.
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We develop two novel first-order methods that efficiently solve (RR+
1 ) and (RR2) for both

probit and logistic regression. These methods scale well to high-dimensional problems, in
contrast to existing second-order methods. In addition, the probit link function makes
the explicit computation of the Hessian difficult, which is only required for second-order
methods. Therefore, we build our algorithm on the fast iterative soft-thresholding algorithm
(FISTA) framework developed in Beck and Teboulle (2009), which enables the development
of efficient first-order methods with accelerated convergence.

3.3 Accelerated First-Order Methods for Regularized Probit/Logistic
Regression

The FISTA framework (Beck and Teboulle (2009)) iteratively solves optimization problems
whose objective function is given by f(·) + g(·), where f(·) is a continuously differentiable
convex function and g(·) is convex but potentially non-smooth. This approach is particularly
well-suited to the inner subproblem (RR+

1 ) due to the presence of the non-smooth `1-norm
regularizer and the non-negativity constraint. Concretely, we associate the log-likelihood
function plus the `2-norm regularizer µ

2‖w̄i‖22 with f(·) and the `1-norm regularization term
with g(·). For the inner subproblem (RR2), we associate the log-likelihood function with f(·)
and the `2-norm regularization term with g(·).6

Each FISTA iteration consists of two steps: (i) a gradient-descent step in f(·) and (ii) a
shrinkage step determined by g(·). For simplicity of exposition, we consider the case where
all entries in Y are observed, i.e., Ωobs = {1, . . . , Q}× {1, . . . , N}; the extension to the case
with missing entries in Y is straightforward. We will derive the algorithm for the case of
probit regression first and then point out the departures for logistic regression.

For (RR+
1 ), the gradients of f(w̄i) with respect to the ith block of regression coeffi-

cients w̄i are given by

∇f ipro = ∇pro
w̄i (−

∑
j log ppro(Yi,j |w̄i, cj) + µ

2‖w̄i‖22) = −CDi(ȳi − pipro) + µw̄i, (5)

where ȳi is an N × 1 column vector corresponding to the transpose of the ith row of Y.
pipro is an N × 1 vector whose jth element equals the probability of Yi,j being 1; that is,
ppro(Yi,j = 1|w̄i, cj) = Φpro(w̄

T
i cj). The entries of the N ×N diagonal matrix D are given

by

Di
j,j =

N (w̄T
i cj)

Φpro(w̄T
i cj)(1− Φpro(w̄T

i cj))
.

The gradient step in each FISTA iteration ` = 1, 2, . . . corresponds to

ˆ̄w`+1
i ← w̄`

i − t`∇f ipro, (6)

where t` is a suitable step-size. To comply with (A3), the shrinkage step in (RR+
1 ) corre-

sponds to a non-negative soft-thresholding operation

w̄`+1
i ← max{ ˆ̄w`+1

i − λt`, 0}. (7)

6. Of course, both f(·) and g(·) are smooth for (RR2). Hence, we could also apply an accelerated gradient-
descent approach instead, e.g., as described in Nesterov (2007).

10
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For (RR2), the gradient step becomes

ĉ`+1
j ← c`j − t`∇f ipro,

which is the same as (5) and (6) after replacing C with WT and µ with γ. The shrinkage
step for (RR2) is the simple re-scaling

c`+1
j ← 1

1 + γt`
ĉ`+1
j . (8)

In the logistic regression case, the steps (6), (7), and (8) remain the same but the gradient
changes to

∇f ilog = ∇log
w̄i (−

∑
j log plog(Yi,j |w̄i, cj) + µ

2‖w̄i‖22) = −C(ȳi − pilog) + µw̄i, (9)

where the N × 1 vector pilog has elements plog(Yi,j = 1|w̄i, cj) = Φlog(w̄
T
i cj).

The above steps require a suitable step-size t` to ensure convergence to the optimal so-
lution. A common approach that guarantees convergence is to set t` = 1/L, where L is
the Lipschitz constant of f(·) (see Beck and Teboulle (2009) for the details). The Lipschitz
constants for both the probit and logit cases are analyzed in Theorem 1 below. Alterna-
tively, one can also perform backtracking, which—under certain circumstances—can be more
efficient; see (Beck and Teboulle, 2009, p. 194) for more details.

3.4 Convergence Analysis of SPARFA-M

While the SPARFA-M objective function is guaranteed to be non-increasing over the outer
iterations (Boyd and Vandenberghe (2004)), the factorsW andC do not necessarily converge
to a global or local optimum due to its biconvex (or more generally, block multi-convex)
nature. It is difficult, in general, to develop rigorous statements for the convergence behavior
of block multi-convex problems. Nevertheless, we can establish the global convergence of
SPARFA-M from any starting point to a critical point of the objective function using recent
results developed in Xu and Yin (2012). The convergence results below appear to be novel
for both sparse matrix factorization as well as dictionary learning.

3.4.1 Convergence Analysis of Regularized Regression using FISTA

In order to establish the SPARFA-M convergence result, we first adapt the convergence
results for FISTA in Beck and Teboulle (2009) to prove convergence on the two subprob-
lems (RR+

1 ) and (RR2). The following theorem is a consequence of (Beck and Teboulle,
2009, Thm. 4.4) combined with Lemmata 4 and 5 in Appendix A. If back-tracking is used
to select step-size t` (Beck and Teboulle, 2009, p. 194), then let α correspond to the back-
tracking parameter. Otherwise set α = 1 and for (RR+

1 ) let t` = 1/L1 and for (RR2) let
t` = 1/L2. In Lemma 5, we compute that L1 = σ2

max(C) + µ and L2 = σ2
max(W) for the

probit case, and L1 = 1
4σ

2
max(C) + µ and L2 = 1

4σ
2
max(W) for the logit case.

Theorem 1 (Linear convergence of RR using FISTA) Given i and j, let

F1(w̄i) =
∑

j : (i,j)∈Ωobs
− log p(Yi,j |w̄i, cj) + λ‖w̄i‖1 +

µ

2
‖w̄i‖22 , Wi,k ≥ 0 ∀k,

F2(cj) =
∑

i : (i,j)∈Ωobs
− log p(Yi,j |w̄i, cj) +

γ

2
‖cj‖22

11



Lan, Waters, Studer, and Baraniuk

be the cost functions of (RR+
1 ) and (RR2), respectively. Then, we have

F1(w̄`
i)− F1(w̄∗i ) ≤

2αL1‖w̄0
i − w̄∗i ‖2

(`+ 1)2
,

F2(c`j)− F2(c∗j ) ≤
2αL2‖c0

j − c∗j‖2

(`+ 1)2
,

where w̄0
i and c0

j are the initialization points of (RR+
1 ) and (RR2), w̄`

i and c`j designate the
solution estimates at the `th inner iteration, and w̄∗i and c∗j denote the optimal solutions.

In addition to establishing convergence, Theorem 1 reveals that the difference between
the cost functions at the current estimates and the optimal solution points, F1(w̄`

i)−F1(w̄∗i )
and F2(c`j)− F2(c∗j ), decrease as O(`−2).

3.4.2 Convergence Analysis of SPARFA-M

We are now ready to establish global convergence of SPARFA-M to a critical point. To this
end, we first define x = [w̄T

1 , . . . , w̄
T
Q, c

T
1 , . . . , c

T
N ]T ∈ R(N+Q)K and rewrite the objective

function (P) of SPARFA-M as follows:

F (x) =
∑

(i,j)∈Ωobs

− log p(Yi,j |w̄i, cj) +
µ

2

∑
i

‖w̄i‖22 + λ
∑
i

‖w̄i‖1 +
∑
i,k

δ(Wi,k<0) +
γ

2

∑
j

‖cj‖22

with the indicator function δ(z < 0) = ∞ if z < 0 and 0 otherwise. Note that we have
re-formulated the non-negativity constraint as a set indicator function and added it to the
objective function of (P). Since minimizing F (x) is equivalent to solving (P), we can now
use the results developed in Xu and Yin (2012) to establish the following convergence result
for the SPARFA-M algorithm. The proof can be found in Appendix B.

Theorem 2 (Global convergence of SPARFA-M) From any starting point x0, let {xt}
be the sequence of estimates generated by the SPARFA-M algorithm with t = 1, 2, . . . as the
outer iteration number. Then, the sequence {xt} converges to the finite limit point x̂, which
is a critical point of (P). Moreover, if the starting point x0 is within a close neighborhood of
a global optimum of (P), then SPARFA-M converges to this global optimum.

Since the problem (P) is bi-convex in nature, we cannot guarantee that SPARFA-M al-
ways converges to a global optimum from an arbitrary starting point. Nevertheless, the
use of multiple randomized initialization points can be used to increase the chance of be-
ing in the close vicinity of a global optimum, which improves the (empirical) performance
of SPARFA-M (see Section 3.5 for details). Note that we do not provide the convergence
rate of SPARFA-M, since the associated parameters in (Xu and Yin, 2012, Thm. 2.9) are
difficult to determine for the model at hand; a detailed analysis of the convergence rate for
SPARFA-M is part of ongoing work.

3.5 Algorithmic Details and Improvements for SPARFA-M

In this section, we outline a toolbox of techniques that improve the empirical performance
of SPARFA-M and provide guidelines for choosing the key algorithm parameters.

12
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3.5.1 Reducing Computational Complexity in Practice

To reduce the computational complexity of SPARFA-M in practice, we can improve the
convergence rates of (RR+

1 ) and (RR2). In particular, the regularizer µ
2‖w̄i‖22 in (RR+

1 ) has
been added to (P) to facilitate the proof for Theorem 2. This term, however, typically slows
down the (empirical) convergence of FISTA, especially for large values of µ. We therefore
set µ to a small positive value (e.g., µ = 10−4), which leads to fast convergence of (RR+

1 )
while still guaranteeing convergence of SPARFA-M.

Selecting the appropriate (i.e., preferably large) step-sizes t` in (6), (7), and (8) is also
crucial for fast convergence. In Lemmata 4 and 5, we derive the Lipschitz constants L
for (RR+

1 ) and (RR2), which enables us to set the step-sizes t` to the constant value t = 1/L.
In all of our experiments below, we exclusively use constant step-sizes, since we observed
that backtracking ((Beck and Teboulle, 2009, p. 194)) provided no advantage in terms of
computational complexity for SPARFA-M.

To further reduce the computational complexity of SPARFA-M without degrading its
empirical performance noticeably, we have found that instead of running the large number of
inner iterations it typically takes to converge, we can run just a few (e.g., 10) inner iterations
per outer iteration.

3.5.2 Reducing the Chance of Getting Stuck in Local Minima

The performance of SPARFA-M strongly depends on the initialization of W and C, due to
the bi-convex nature of (P). We have found that running SPARFA-M multiple times with
different starting points and picking the solution with the smallest overall objective function
delivers excellent performance. In addition, we can deploy the standard heuristics used in
the dictionary-learning literature (Aharon et al., 2006, Section IV-E) to further improve
the convergence towards a global optimum. For example, every few outer iterations, we
can evaluate the current W and C. If two rows of C are similar (as measured by the
absolute value of the inner product between them), then we re-initialize one of them as an
i.i.d. Gaussian vector. Moreover, if some columns in W contain only zero entries, then we
re-initialize them with i.i.d. Gaussian vectors. Note that the convergence proof in Section 3.4
does not apply to implementations employing such trickery.

3.5.3 Parameter Selection

The input parameters to SPARFA-M include the number of concepts K and the regulariza-
tion parameters γ and λ. The number of concepts K is a user-specified value. In practice,
cross-validation can be used to select K if the task is to predict missing entries of Y, (see
Section 6.3). The sparsity parameter λ and the `2-norm penalty parameter γ strongly affect
the output of SPARFA-M; they can be selected using any of a number of criteria, including
the Bayesian information criterion (BIC) or cross-validation, as detailed in Hastie et al.
(2010). Both criteria resulted in similar performance in all of the experiments reported in
Section 6.
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3.6 Related Work on Maximum Likelihood-based Sparse Factor Analysis

Sparse logistic factor analysis has previously been studied in Lee et al. (2010) in the context
of principal components analysis. There are three major differences with the SPARFA
framework. First, Lee et al. (2010) do not impose the non-negativity constraint on W
that is critical for the interpretation of the estimated factors. Second, they impose an
orthonormality constraint on C that does not make sense in educational scenarios. Third,
they optimize an upper bound on the negative log-likelihood function in each outer iteration,
in contrast to SPARFA-M, which optimizes the exact cost functions in (RR+

1 ) and (RR2).
The problem (P) shares some similarities with the method for missing data imputation

outlined in (Mohamed et al., 2012, Eq. 7). However, the problem (P) studied here includes
an additional non-negativity constraint on W and the regularization term µ

2

∑
i‖w̄i‖22 that

are important for the interpretation of the estimated factors and the convergence analysis.
Moreover, SPARFA-M utilizes the accelerated FISTA framework as opposed to the more
straightforward but less efficient gradient descent method in Mohamed et al. (2012).

SPARFA-M is capable of handling both the inverse logit and inverse probit link functions.
For the inverse logit link function, one could solve (RR+

1 ) and (RR2) using an iteratively
reweighted second-order algorithm as in Hastie et al. (2010), Minka (2003), Lee et al. (2006),
Park and Hastie (2008), or an interior-point method as in Koh et al. (2007). However, none
of these techniques extend naturally to the inverse probit link function, which is essential for
some applications, e.g., in noisy compressive sensing recovery from 1-bit measurements (e.g.,
Jacques et al. (2013) or Plan and Vershynin (2012, submitted)). Moreover, second-order
techniques typically do not scale well to high-dimensional problems due to the necessary
computation of the Hessian. In contrast, SPARFA-M scales favorably due to the fact that it
utilizes the accelerated first-order FISTA method, avoiding the computation of the Hessian.

4. SPARFA-B: Bayesian Sparse Factor Analysis

Our second algorithm, SPARFA-B, solves the SPARFA problem using a Bayesian method
based on Markov chain Monte-Carlo (MCMC) sampling. In contrast to SPARFA-M, which
computes point estimates for each of the parameters of interest, SPARFA-B computes full
posterior distributions for W,C, and µ.

While SPARFA-B has a higher computational complexity than SPARFA-M, it has several
notable benefits in the context of learning and content analytics. First, the full posterior
distributions enable the computation of informative quantities such as credible intervals and
posterior modes for all parameters of interest. Second, since MCMC methods explore the full
posterior space, they are not subject to being trapped indefinitely in local minima, which is
possible with SPARFA-M. Third, the hyperparameters used in Bayesian methods generally
have intuitive meanings, in contrary to the regularization parameters of optimization-based
methods like SPARFA-M. These hyperparameters can also be specially chosen to incorporate
additional prior information about the problem.

4.1 Problem Formulation

As discussed in Section 2.2, we require the matrix W to be both sparse (A2) and non-
negative (A3). We enforce these assumptions through the following prior distributions that
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are a variant of the well-studied spike-slab model (West, 2003; Ishwaran and Rao, 2005)
adapted for non-negative factor loadings:

Wi,k ∼ rk Exp(λk) + (1− rk) δ0, λk ∼ Ga(α, β), and rk ∼ Beta(e, f). (10)

Here, Exp(x|λ) ∼ λe−λx, x ≥ 0, and Ga(x|α, β) ∼ βαxα−1e−βx

Γ(α) , x ≥ 0, δ0 is the Dirac
delta function, and α, β, e, f are hyperparameters. The model (10) uses the latent random
variable rk to control the sparsity via the hyperparameters e and f . This set of priors induces
a conjugate form on the posterior that enables efficient sampling. We note that both the
exponential rate parameters λk as well as the inclusion probabilities rk are grouped per
factor. The remaining priors used in the proposed Bayesian model are summarized as

cj ∼ N (0,V), V ∼ IW(V0, h), and µi ∼ N (µ0, vµ), (11)

where V0, h, µ0, and vµ are hyperparameters.

4.2 The SPARFA-B Algorithm

We obtain posterior distribution estimates for the parameters of interest through an MCMC
method based on the Gibbs’ sampler. To implement this, we must derive the conditional
posteriors for each of the parameters of interest. We note again that the graded learner-
response matrix Y will not be fully observed, in general. Thus, our sampling method must
be equipped to handle missing data.

The majority of the posterior distributions follow from standard results in Bayesian
analysis and will not be derived in detail here. The exception is the posterior distribu-
tion of Wi,k ∀i, k. The spike-slab model that enforces sparsity in W requires first sam-
pling Wi,k 6= 0|Z,C,µ and then sampling Wi,k|Z,C,µ, for all Wi,k 6= 0. These posterior
distributions differ from previous results in the literature due to our assumption of an ex-
ponential (rather than a normal) prior on Wi,k. We next derive these two results in detail.

4.2.1 Derivation of Posterior Distribution of Wi,k

We seek both the probability that an entry Wi,k is active (non-zero) and the distribution of
Wi,k when active given our observations. The following theorem states the final sampling
results; the proof is given in Appendix C.

Theorem 3 (Posterior distributions for W) For all i = 1, . . . , Q and all k = 1, . . . ,K,
the posterior sampling results for Wi,k = 0|Z,C,µ and Wi,k|Z,C,µ,Wi,k 6= 0 are given by

R̂i,k = p(Wi,k = 0|Z,C,µ) =

Nr(0|M̂i,k,Ŝi,k,λk)

Exp(0|λk)
(1−rk)

Nr(0|M̂i,k,Ŝi,k,λk)

Exp(0|λk)
(1−rk)+rk

,

Wi,k|Z,C,µ,Wi,k 6= 0 ∼ N r(M̂i,k, Ŝi,k, λk),

M̂i,k =

∑
{j:(i,j)∈Ωobs}

(
(Zi,j − µi)−

∑
k′ 6=kWi,k′Ck′,j

)
Ck,j∑

{j:(i,j)∈Ωobs}C
2
k,j

,

Ŝi,k =
(∑

{j:(i,j)∈Ωobs}C
2
k,j

)−1
,
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where N r(x|m, s, λ) = eλm−λ
2s/2

√
2πsΦ

(
m−λs√

s

)e−(x−m)2/2s−λm represents a rectified normal distribu-

tion (see Schmidt et al. (2009)).

4.2.2 Sampling Methodology

SPARFA-B carries out the following MCMC steps to compute posterior distributions for all
parameters of interest:

1. For all (i, j) ∈ Ωobs, draw Zi,j ∼ N
(
(WC)i,j + µi, 1

)
, truncating above 0 if Yi,j = 1,

and truncating below 0 if Yi,j = 0.

2. For all i = 1, . . . , Q, draw µi ∼ N (mi, v) with v = (v−1
µ + n′)−1, mi = µ0 +

v
∑
{j:(i,j)∈Ωobs}

(
Zi,j − w̄T

i cj
)
, and n′ the number of learners responding to question i.

3. For all j = 1, . . . , N , draw cj ∼ N (mj ,Mj) with Mj = (V−1 + W̃TW̃)−1, and
mj = MjW̃

T (z̃j− µ̃). The notation (̃·) denotes the restriction of the vector or matrix
to the set of rows i : (i, j) ∈ Ωobs.

4. Draw V ∼ IW(V0 + CCT , N + h).

5. For all i = 1, . . . , Q and k = 1, . . . ,K, draw Wi,k ∼ R̂i,kN r(M̂i,k, Ŝi,k) + (1− R̂i,k)δ0,
where R̂i,k, M̂i,k, and Ŝi,k are as stated in Theorem 3.

6. For all k = 1, . . . ,K, let bk define the number of active (i.e., non-zero) entries of w̄k.
Draw λk ∼ Ga(α+ bk, β +

∑Q
i=1Wi,k).

7. For all k = 1, . . . ,K, draw rk ∼ Beta(e+ bk, f +Q− bk), with bk defined as in Step 6.

4.3 Algorithmic Details and Improvements for SPARFA-B

Here we discuss some several practical issues for efficiently implementing SPARFA-B, select-
ing the hyperparameters, and techniques for easy visualization of the SPARFA-B results.

4.3.1 Improving Computational Efficiency

The Gibbs sampling scheme of SPARFA-B enables efficient implementation in several ways.
First, draws from the truncated normal in Step 1 of Section 4.2.2 are decoupled from one
another, allowing them to be performed independently and, potentially, in parallel. Second,
sampling of the elements in each column of W can be carried out in parallel by computing
the relevant factors of Step 5 in matrix form. Since K � Q,N by assumption (A1), the
relevant parameters are recomputed only a relatively small number of times. One taxing
computation is the calculation of the covariance matrix Mj for each j = 1, . . . , N in Step 3.
This computation is necessary, since we do not constrain each learner to answer the same
set of questions which, in turn, changes the nature of the covariance calculation for each
individual learner. For data sets where all learners answer the same set of questions, this
covariance matrix is the same for all learners and, hence, can be carried out once per MCMC
iteration.
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4.3.2 Parameter Selection

The selection of the hyperparameters is performed at the discretion of the user. As is typical
for Bayesian methods, non-informative (broad) hyperparameters can be used to avoid biasing
results and to allow for adequate exploration of the posterior space. Tighter hyperparameters
can be used when additional side information is available. For example, prior information
from subject matter experts might indicate which concepts are related to which questions
or might indicate the intrinsic difficulty of the questions.

Since SPARFA-M has a substantial speed advantage over SPARFA-B, it may be ad-
vantageous to first run SPARFA-M and then use its output to help in determining the
hyperparameters or to initialize the SPARFA-B variables directly.

4.3.3 Post-Processing for Data Visualization

As discussed above, the generation of posterior statistics is one of the primary advantages of
SPARFA-B. However, for many tasks, such as visualization of the retrieved knowledge base,
it is often convenient to post-process the output of SPARFA-B to obtain point estimates
for each parameter. For many Bayesian methods, simply computing the posterior mean is
often sufficient. This is the case for most parameters computed by SPARFA-B, including C
and µ. The posterior mean of W, however, is generally non-sparse, since the MCMC will
generally explore the possibility of including each entry of W. Nevertheless, we can easily
generate a sparse W by examining the posterior mean of the inclusion statistics contained
in R̂i,k, ∀i, k. Concretely, if the posterior mean of R̂i,k is small, then we set the corresponding
entry of Wi,k to zero. Otherwise, we set Wi,k to its posterior mean. We will make use of
this method throughout the experiments presented in Section 6.

4.4 Related Work on Bayesian Sparse Factor Analysis

Sparsity models for Bayesian factor analysis have been well-explored in the statistical lit-
erature (West, 2003; Tipping, 2001; Ishwaran and Rao, 2005). One popular avenue for
promoting sparsity is to place a prior on the variance of each component in W (see, e.g.,
Tipping (2001), Fokoue (2004), and Pournara and Wernisch (2007)). In such a model, large
variance values indicate active components, while small variance values indicate inactive
components. Another approach is to model active and inactive components directly using
a form of a spike-slab model due to West (2003) and used in Goodfellow et al. (2012),
Mohamed et al. (2012), and Hahn et al. (2012):

Wi,k ∼ rkN (0, vk) + (1− rk) δ0, vk ∼ IG(α, β), and rk ∼ Beta(e, f).

The approach employed in (10) utilizes a spike-slab prior with an exponential distribution,
rather than a normal distribution, for the active components of W. We chose this prior for
several reasons. First, it enforces the non-negativity assumption (A3). Second, it induces
a posterior distribution that can be both computed in closed form and sampled efficiently.
Third, its tail is slightly heavier than that of a standard normal distribution, which improves
the exploration of quantities further away from zero.

A sparse factor analysis model with non-negativity constraints that is related to the one
proposed here was discussed in Meng et al. (2010), although their methodology is quite
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different from ours. Specifically, they impose non-negativity on the (dense) matrix C rather
than on the sparse factor loading matrix W. Furthermore, they enforce non-negativity using
a truncated normal7 rather than an exponential prior.

5. Tag Analysis: Post-Processing to Interpret the Estimated Concepts

So far we have developed SPARFA-M and SPARFA-B to estimate W, C, and µ (or equiv-
alently, M) in (2) given the partial binary observations in Y. Both W and C encode a
small number of latent concepts. As we initially noted, the concepts are “abstract” in that
they are estimated from the data rather than dictated by a subject matter expert. In this
section we develop a principled post-processing approach to interpret the meaning of the
abstract concepts after they have been estimated from learner responses, which is important
if our results are to be usable for learning analytics and content analytics in practice. Our
approach applies when the questions come with a set of user-generated “tags” or “labels”
that describe in a free-form manner what ideas underlie each question.

We develop a post-processing algorithm for the estimated matrices W and C that es-
timates the association between the latent concepts and the user-generated tags, enabling
concepts to be interpreted as a “bag of tags.” Additionally, we show how to extract a per-
sonalized tag knowledge profile for each learner. The efficacy of our tag-analysis framework
will be demonstrated in the real-world experiments in Section 6.2.

5.1 Incorporating Question–Tag Information

Suppose that a set of tags has been generated for each question that represent the topic(s)
or theme(s) of each question. The tags could be generated by the course instructors, subject
matter experts, learners, or, more broadly, by crowd-sourcing. In general, the tags provide
a redundant representation of the true knowledge components, i.e., concepts are associated
to a “bag of tags.”

Assume that there is a total number of M tags associated with the Q questions. We
form a Q×M matrix T, where each column of T is associated to one of the M pre-defined
tags. We set Ti,m = 1 if tag m ∈ {1, . . . ,M} is present in question i and 0 otherwise. Now,
we postulate that the question association matrix W extracted by SPARFA can be further
factorized as W = TA, where A is an M × K matrix representing the tags-to-concept
mapping. This leads to the following additional assumptions:

(A4) Non-negativity: The matrix A is non-negative. This increases the interpretability of
the result, since concepts should not be negatively correlated with any tags, in general.

(A5) Sparsity: Each column of A is sparse. This ensures that the estimated concepts relate
to only a few tags.

7. One could alternatively employ a truncated normal distribution on the support [0,∞) for the active
entries in W. In experiments with this model, we found a slight, though noticeable, improvement in
prediction performance on real-data experiments using the exponential prior.
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5.2 Estimating the Concept–Tag Associations and Learner–Tag Knowledge

The assumptions (A4) and (A5) enable us to extract A using `1-norm regularized non-
negative least-squares as described in Hastie et al. (2010) and Chen et al. (1998). Specifically,
to obtain each column ak of A, k = 1, . . . ,K, we solve the following convex optimization
problem, a non-negative variant of basis pursuit denoising:

(BPDN+) minimize
ak :Am,k≥0 ∀m

1
2‖wk −Tak‖22 + η‖ak‖1 .

Here, wk represents the kth column of W, and the parameter η controls the sparsity level
of the solution ak.

We propose a first-order method derived from the FISTA framework in Beck and Teboulle
(2009) to solve (BPDN+). The algorithm consists of two steps: A gradient step with respect
to the `2-norm penalty function, and a projection step with respect to the `1-norm regularizer
subject to the non-negative constraints on ak. By solving (BPDN+) for k = 1, . . . ,K, and
building A = [a1, . . . ,aK ], we can (i) assign tags to each concept based on the non-zero
entries in A and (ii) estimate a tag-knowledge profile for each learner.

5.2.1 Associating Tags to Each Concept

Using the concept–tag association matrix A we can directly associate tags to each concept
estimated by the SPARFA algorithms. We first normalize the entries in ak such that they
sum to one. With this normalization, we can then calculate percentages that show the
proportion of each tag that contributes to concept k corresponding to the non-zero entries
of ak. This concept tagging method typically will assign multiple tags to each concept, thus,
enabling one to identify the coarse meaning of each concept (see Section 6.2 for examples
using real-world data).

5.2.2 Learner Tag Knowledge Profiles

Using the concept–tag association matrix A, we can assess each learner’s knowledge of each
tag. To this end, we form an M × N matrix U = AC, where the Um,j characterizes the
knowledge of learner j of tag m. This information could be used, for example, by a PLS to
automatically inform each learner which tags they have strong knowledge of and which tags
they do not. Course instructors can use the information contained in U to extract measures
representing the knowledge of all learners on a given tag, e.g., to identify the tags for which
the entire class lacks strong knowledge. This information would enable the course instructor
to select future learning content that deals with those specific tags. A real-world example
demonstrating the efficacy of this framework is shown below in Section 6.2.1.

6. Experiments

In this section, we validate SPARFA-M and SPARFA-B on both synthetic and real-world
educational data sets. First, using synthetic data, we validate that both algorithms can
accurately estimate the underlying factors from binary-valued observations and characterize
their performance under different circumstances. Specifically, we benchmark the factor esti-
mation performance of SPARFA-M and SPARFA-B against a variant of the well-established
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K-SVD algorithm (Aharon et al. (2006)) used in dictionary-learning applications. Second,
using real-world graded learner-response data we demonstrate the efficacy SPARFA-M (both
probit and logit variants) and of SPARFA-B for learning and content analytics. Specifically,
we showcase how the estimated learner concept knowledge, question–concept association,
and intrinsic question difficulty can support machine learning-based personalized learning.
Finally, we compare SPARFA-M against the recently proposed binary-valued collabora-
tive filtering algorithm CF-IRT (Bergner et al. (2012)) that predicts unobserved learner
responses.

6.1 Synthetic Data Experiments

We first characterize the estimation performance of SPARFA-M and SPARFA-B using
synthetic test data generated from a known ground truth model. We generate instances
of W, C, and µ under pre-defined distributions and then generate the binary-valued obser-
vations Y according to (2).

Our report on the synthetic experiments is organized as follows. In Section 6.1.1, we
outline K-SVD+, a variant of the well-established K-SVD dictionary-learning (DL) algorithm
originally proposed in Aharon et al. (2006); we use it as a baseline method for comparison
to both SPARFA algorithms. In Section 6.1.2 we detail the performance metrics. We
compare SPARFA-M, SPARFA-B, and K-SVD+ as we vary the problem size and number of
concepts (Section 6.1.3), observation incompleteness (Section 6.1.4), and the sparsity of W
(Section 6.1.5). In the above-referenced experiments, we simulate the observation matrix Y
via the inverse probit link function and use only the probit variant of SPARFA-M in order
to make a fair comparison with SPARFA-B. In a real-world situation, however, the link
function is generally unknown. In Section 6.1.6 we conduct model-mismatch experiments,
where we generate data from one link function but analyze assuming the other.

In all synthetic experiments, we average the results of all performance measures over 25
Monte-Carlo trials, limited primarily by the computational complexity of SPARFA-B, for
each instance of the model parameters we control.

6.1.1 Baseline Algorithm: K-SVD+

Since we are not aware of any existing algorithms to solve (2) subject to the assumptions
(A1)–(A3), we deploy a novel baseline algorithm based on the well-known K-SVD algorithm
of Aharon et al. (2006), which is widely used in various dictionary learning settings but
ignores the inverse probit or logit link functions. Since the standard K-SVD algorithm also
ignores the non-negativity constraint used in the SPARFA model, we develop a variant
of the non-negative K-SVD algorithm proposed in Aharon et al. (2005) that we refer to
as K-SVD+. In the sparse coding stage of K-SVD+, we use the non-negative variant of
orthogonal matching pursuit (OMP) outlined in Bruckstein et al. (2008); that is, we enforce
the non-negativity constraint by iteratively picking the entry corresponding to the maximum
inner product without taking its absolute value. We also solve a non-negative least-squares
problem to determine the residual error for the next iteration. In the dictionary update
stage of K-SVD+, we use a variant of the rank-one approximation algorithm detailed in
(Aharon et al., 2005, Figure 4), where we impose non-negativity on the elements in W but
not on the elements of C.
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K-SVD+ has as input parameters the sparsity level of each row of W. In what follows,
we provide K-SVD+ with the known ground truth for the number of non-zero components in
order to obtain its best-possible performance. This will favor K-SVD+ over both SPARFA
algorithms, since, in practice, such oracle information is not available.

6.1.2 Performance Measures

In each simulation, we evaluate the performance of SPARFA-M, SPARFA-B, and K-SVD+

by comparing the fidelity of the estimates Ŵ, Ĉ, and µ̂ to the ground truth W, C, and µ.
Performance evaluation is complicated by the facts that (i) SPARFA-B outputs posterior
distributions rather than simple point estimates of the parameters and (ii) factor-analysis
methods are generally susceptible to permutation of the latent factors. We address the first
concern by post-processing the output of SPARFA-B to obtain point estimates for W, C,
and µ as detailed in Section 4.3.3 using R̂i,k < 0.35 for the threshold value. We address the
second concern by normalizing the columns of W, Ŵ and the rows of C, Ĉ to unit `2-norm,
permuting the columns of Ŵ and Ĉ to best match the ground truth, and then compare
W and C with the estimates Ŵ and Ĉ. We also compute the Hamming distance between
the support set of W and that of the (column-permuted) estimate Ŵ. To summarize, the
performance measures used in the sequel are

EW = ‖W − Ŵ‖2F /‖W‖2F , EC = ‖C− Ĉ‖2F /‖C‖2F ,

Eµ = ‖µ− µ̂‖22/‖µ‖22, EH = ‖H− Ĥ‖2F /‖H‖2F ,

where H ∈ {0, 1}Q×K with Hi,k = 1 if Wi,k > 0 and Hi,k = 0 otherwise. The Q × K

matrix Ĥ is defined analogously using Ŵ.

6.1.3 Impact of Problem Size and Number of Concepts

In this experiment, we study the performance of SPARFA vs. KSVD+ as we vary the number
of learners N , the number of questions Q, and the number of concepts K.

Experimental setup We vary the number of learners N and the number of questions Q ∈
{50, 100, 200}, and the number of concepts K ∈ {5, 10}. For each combination of (N,Q,K),
we generate W, C, µ, and Y according to (10) and (11) with vµ = 1, λk = 2/3 ∀k, and
V0 = IK . For each instance, we choose the number of non-zero entries in each row of W as
DU(1, 3) where DU(a, b) denotes the discrete uniform distribution in the range a to b. For
each trial, we run the probit version of SPARFA-M, SPARFA-B, and K-SVD+ to obtain the
estimates Ŵ, Ĉ, µ̂, and calculate Ĥ. For all of the synthetic experiments with SPARFA-
M, we set the regularization parameters γ = 0.1 and select λ using the BIC (Hastie et al.
(2010)). For SPARFA-B, we set the hyperparameters to h = K + 1, vµ = 1, α = 1, β = 1.5,
e = 1, and f = 1.5; moreover, we burn-in the MCMC for 30,000 iterations and take output
samples over the next 30,000 iterations.

Results and discussion Figure 3 shows box-and-whisker plots for the three algorithms
and the four performance measures. We observe that the performance of all of the algorithms
generally improves as the problem size increases. Moreover, SPARFA-B has superior per-
formance for EW, EC, and Eµ. We furthermore see that both SPARFA-B and SPARFA-M
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outperform K-SVD+ on EW, EC, and especially Eµ. K-SVD+ performs very well in terms of
EH (slightly better than both SPARFA-M and SPARFA-B) due to the fact that we provide
it with the oracle sparsity level, which is, of course, not available in practice. SPARFA-B’s
improved estimation accuracy over SPARFA-M comes at the price of significantly higher
computational complexity. For example, for N = Q = 200 and K = 5, SPARFA-B requires
roughly 10 minutes on a 3.2GHz quad-core desktop PC, while SPARFA-M and K-SVD+

require only 6 s.
In summary, SPARFA-B is well-suited to small problems where solution accuracy or

the need for confidence statistics are the key factors; SPARFA-M, in contrast, is destined
for analyzing large-scale problems where low computational complexity (e.g., to generate
immediate learner feedback) is important.

6.1.4 Impact of the Number of Incomplete Observations

In this experiment, we study the impact of the number of observations in Y on the perfor-
mance of the probit version of SPARFA-M, SPARFA-B, and K-SVD+.

Experimental setup We set N = Q = 100, K = 5, and all other parameters as in
Section 6.1.3. We then vary the percentage Pobs of entries in Y that are observed as 100%,
80%, 60%, 40%, and 20%. The locations of missing entries are generated i.i.d. and uniformly
over the entire matrix.

Results and discussion Figure 4 shows that the estimation performance of all methods
degrades gracefully as the percentage of missing observations increases. Again, SPARFA-B
outperforms the other algorithms on EW, EC, and Eµ. K-SVD+ performs worse than both
SPARFA algorithms except on EH, where it achieves comparable performance. We conclude
that SPARFA-M and SPARFA-B can both reliably estimate the underlying factors, even in
cases of highly incomplete data.

6.1.5 Impact of Sparsity Level

In this experiment, we study the impact of the sparsity level in W on the performance of
the probit version of SPARFA-M, SPARFA-B, and K-SVD+.

Experimental setup We choose the active entries of W i.i.d. Ber(q) and vary q ∈
{0.2, 0.4, 0.6, 0.8} to control the number of non-zero entries in each row of W. All other
parameters are set as in Section 6.1.3. This data-generation method allows for scenarios in
which some rows of W contain no active entries, as well as scenarios with all active entries.
We set the hyperparameters for SPARFA-B to h = K + 1 = 6, vµ = 1, and e = 1, and
f = 1.5. For q = 0.2 we set α = 2 and β = 5. For q = 0.8 we set α = 5 and β = 2. For all
other cases, we set α = β = 2.

Results and discussion Figure 5 shows that sparser W lead to lower estimation errors.
This demonstrates that the SPARFA algorithms are well-suited to applications where the
underlying factors have a high level of sparsity. SPARFA-B outperforms SPARFA-M across
all metrics. The performance of K-SVD+ is worse than both SPARFA algorithms except
on the support estimation error EH, which is due to the fact that K-SVD+ is aware of the
oracle sparsity level.
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Figure 3: Performance comparison of SPARFA-M, SPARFA-B, and K-SVD+ for different
problem sizes Q × N and number of concepts K. The performance naturally
improves as the problem size increases, while both SPARFA algorithms outperform
K-SVD+. M denotes SPARFA-M, B denotes SPARFA-B, and K denotes KSVD+.
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Figure 4: Performance comparison of SPARFA-M, SPARFA-B, and K-SVD+ for different
percentages of observed entries in Y. The performance degrades gracefully as
the number of observations decreases, while the SPARFA algorithms outperform
K-SVD+.
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Figure 5: Performance comparison of SPARFA-M, SPARFA-B, and K-SVD+ for different
sparsity levels in the rows in W. The performance degrades gracefully as the
sparsity level increases, while the SPARFA algorithms outperform K-SVD+.

6.1.6 Impact of Model Mismatch

In this experiment, we examine the impact of model mismatch by using a link function for
estimation that does not match the true link function from which the data is generated.

Experimental setup We fix N = Q = 100 and K = 5, and set all other parameters as
in Section 6.1.3. Then, for each generated instance of W, C and µ, we generate Ypro and
Ylog according to both the inverse probit link and the inverse logit link, respectively. We
then run SPARFA-M (both the probit and logit variants), SPARFA-B (which uses only the
probit link function), and K-SVD+ on both Ypro and Ylog.

Results and discussion Figure 6 shows that model mismatch does not severely affect
EW, EC, and EH for both SPARFA-M and SPARFA-B. However, due to the difference in
the functional forms between the probit and logit link functions, model mismatch does lead
to an increase in Eµ for both SPARFA algorithms. We also see that K-SVD+ performs
worse than both SPARFA methods, because it ignores the link function.

6.2 Real Data Experiments

We next test the SPARFA algorithms on three real-world educational datasets. Since all
variants of SPARFA-M and SPARFA-B obtained similar results in the sythetic data ex-
periments in Section 6.1, for the sake of brevity, we will show the results for only one of
the algorithms for each dataset. In what follows, we select the sparsity penalty param-
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Figure 6: Performance comparison of SPARFA-M, SPARFA-B, and K-SVD+ with pro-
bit/logit model mismatch; MP and ML indicate probit and logit SPARFA-M,
respectively. In the left/right halves of each box plot, we generate Y accord-
ing to the inverse probit/logit link functions. The performance degrades only
slightly with mismatch, while both SPARFA algorithms outperform K-SVD+.

eter λ in SPARFA-M using the BIC as described in Hastie et al. (2010) and choose the
hyperparameters for SPARFA-B to be largely non-informative.

6.2.1 Undergraduate DSP course

Dataset We analyze a very small dataset consisting of N = 15 learners answering Q = 44
questions taken from the final exam of an introductory course on digital signal processing
(DSP) taught at Rice University in Fall 2011 (ELEC 301, Rice University (2011)). There is
no missing data in the matrix Y.

Analysis We estimate W, C, and µ from Y using the logit version of SPARFA-M as-
suming K = 5 concepts to achieve a concept granularity that matches the complexity of the
analyzed dataset. Since the questions had been manually tagged by the course instructor,
we deploy the tag-analysis approach proposed in Section 5. Specifically, we form a 44× 12
matrix T using the M = 12 available tags and estimate the 12× 5 concept–tag association
matrix A in order to interpret the meaning of each retrieved concept. For each concept,
we only show the top 3 tags and their relative contributions. We also compute the 12× 15
learner tag knowledge profile matrix U.

Results and discussion Figure 7(a) visualizes the estimated question–concept associa-
tion matrix Ŵ as a bipartite graph consisting of question and concept nodes.8 In the graph,
circles represent the estimated concepts and squares represent questions, with thicker edges
indicating stronger question–concept associations (i.e., larger entries Ŵi,k). Questions are
also labeled with their estimated intrinsic difficulty µi, with larger positive values of µi indi-
cating easier questions. Note that ten questions are not linked to any concept. All Q = 15
learners answered these questions correctly; as a result nothing can be estimated about their
underlying concept structure. Figure 7(b) provides the concept–tag association (top 3 tags)
for each of the 5 estimated concepts.

Table 1 provides Learner 1’s knowledge of the various tags relative to other learners.
Large positive values mean that Learner 1 has strong knowledge of the tag, while large

8. To avoid the scaling identifiability problem that is typical in factor analysis, we normalize each row of C
to unit `2-norm and scale each column of W accordingly prior to visualizing the bipartite graph. This
enables us to compare the strength of question–concept associations across different concepts.
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(a) Question–concept association graph. Circles correspond to concepts and rectangles to
questions; the values in each rectangle corresponds to that question’s intrinsic difficulty.

Concept 1 Concept 2 Concept 3

Frequency response (46%) Fourier transform (40%) z-transform (66%)
Sampling rate (23%) Laplace transform (36%) Pole/zero plot (22%)
Aliasing (21%) z-transform (24%) Laplace transform (12%)

Concept 4 Concept 5

Fourier transform (43%) Impulse response (74%)
Systems/circuits (31%) Transfer function (15%)
Transfer function (26%) Fourier transform (11%)

(b) Most important tags and relative weights for the estimated concepts.

Figure 7: (a) Question–concept association graph and (b) most important tags associated
with each concept for an undergraduate DSP course with N = 15 learners an-
swering Q = 44 questions.
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Table 1: Selected tag knowledge of Learner 1.

z-transform Impulse response Transfer function Fourier transform Laplace transform

1.09 −1.80 −0.50 0.99 −0.77

Table 2: Average tag knowledge of all learners.

z-transform Impulse response Transfer function Fourier transform Laplace transform

0.04 −0.03 −0.10 0.11 0.03

negative values indicate a deficiency in knowledge of the tag. Table 2 shows the average tag
knowledge of the entire class, computed by averaging the entries of each row in the learner
tag knowledge matrix U as described in Section 5.2.2. Table 1 indicates that Learner 1 has
particularly weak knowledges of the tag “Impulse response.” Armed with this information,
a PLS could automatically suggest remediation about this concept to Learner 1. Table 2
indicates that the entire class has (on average) weak knowledge of the tag “Transfer func-
tion.” With this information, a PLS could suggest to the class instructor that they provide
remediation about this concept to the entire class.

6.2.2 Grade 8 science course

Dataset The STEMscopes dataset was introduced in Section 1.2. There is substantial
missing data in the matrix Y, with only 13.5% of its entries observed.

Analysis We compare the results of SPARFA-M and SPARFA-B on this data set to high-
light the pros and cons of each approach. For both algorithms, we select K = 5 concepts.
For SPARFA-B, we fix reasonably broad (non-informative) values for all hyperparameters.
For µ0 we calculate the average rate of correct answers ps on observed graded responses
of all learners to all questions and use µ0 = Φ−1

pro(ps). The variance vµ is left sufficiently
broad to enable adequate exploration of the intrinsic difficulty for each questions. Point
estimates of W, C and µ are generated from the SPARFA-B posterior distributions using
the methods described in Section 4.3.3. Specifically, an entry Ŵi,k that has a corresponding
active probability R̂i,k < 0.55 is thresholded to 0. Otherwise, we set Ŵi,k to its posterior
mean. On a 3.2GHz quad-core desktop PC, SPARFA-M converged to its final estimates in
4 s, while SPARFA-B required 10 minutes.

Results and discussion Both SPARFA-M and SPARFA-B deliver comparable factor-
izations. The estimated question–concept association graph for SPARFA-B is shown in
Figure 2(a), with the accompanying concept–tag association in Figure 2(b). Again we see a
sparse relationship between questions and concepts. The few outlier questions that are not
associated with any concept are generally those questions with very low intrinsic difficulty
or those questions with very few responses.

One advantage of SPARFA-B over SPARFA-M is its ability to provide not only point
estimates of the parameters of interest but also reliability information for those estimates.
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Figure 8: Concept 5 knowledge estimates generated by SPARFA-B for the STEMscopes
data for a randomly selected subset of learners. The box-whisker plot shows the
posterior variance of the MCMC samples, with each box-whisker plot correspond-
ing to a different learner in the dataset. Anonymized learner IDs are shown on the
bottom, while the number of relevant questions answered by each learner answered
is indicated on the top of the plot.

This reliability information can be useful for decision making, since it enables one to tailor
actions according to the associated uncertainty. If there is considerable uncertainty regarding
learner mastery of a particular concept, for example, it may be a more appropriate use of
time of the learner to ask additional questions that reduce the uncertainty, rather than
assigning new material for which the learner may not be adequately prepared.

We demonstrate the utility of SPARFA-B’s posterior distribution information on the
learner concept knowledge matrix C. Figure 8 shows box-whisker plots of the MCMC
output samples over 30,000 iterations (after a burn-in period of 30,000 iterations) for a set
of learners for Concept 5. Each box-whisker plot corresponds to the posterior distribution for
a different learner. These plots enable us to visualize both the posterior mean and variance
associated with the concept knowledge estimates ĉj . As one would expect, the estimation
variance tends to decrease as the number of answered questions increases (shown in the top
portion of Figure 8).

The exact set of questions answered by a learner also affects the posterior variance of our
estimate, as different questions convey different levels of information regarding a learner’s
concept mastery. An example of this phenomenon is observed by comparing Learners 7
and 28. Each of these two learners answered 20 questions and had a nearly equal number
of correct answers (16 and 17, respectively). A conventional analysis that looked only at
the percentage of correct answers would conclude that both learners have similar concept
mastery. However, the actual set of questions answered by each learner is not the same, due
to their respective instructors assigning different questions. While SPARFA-B finds a similar
posterior mean for Learner 7 and Learner 28, it finds very different posterior variances,
with considerably more variance for Learner 28. The SPARFA-B posterior samples shed
additional light on the situation at hand. Most of the questions answered by Learner 28
are deemed easy (defined as having intrinsic difficulties µ̂i larger than one). Moreover, the
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Table 3: Comparison of SPARFA-M and SPARFA-B for three selected questions and the
K = 5 estimated concepts in the STEMscopes dataset. For SPARFA-M, the labels
“Yes” and “No” indicate whether a particular concept was detected in the question.
For SPARFA-B, we show the posterior inclusion probability (in percent), which
indicates the percentage of iterations in which a particular concept was sampled.

C1 C2 C3 C4 C5

Q3 (27 responses) M Yes No No No Yes
B 94% 36% 48% 18% 80%

Q56 (5 responses) M No No No No No
B 30% 30% 26% 31% 31%

Q72 (6 responses) M No No No No Yes
B 61% 34% 29% 36% 58%

remaining, more difficult questions answered by Learner 28 show stronger affinity to concepts
other than Concept 5. In contrast, roughly half of the questions answered by Learner 7
are deemed hard and all of these questions have stronger affinity to Concept 5. Thus,
the questions answered by Learner 28 convey only weak information about the knowledge
of Concept 5, while those answered by Learner 7 convey strong information. Thus, we
cannot determine from Learner 28’s responses whether they have mastered Concept 5 well
or not. Such SPARFA-B posterior data would enable a PLS to quickly assess this scenario
and tailor the presentation of future questions to Learner 28—in this case, presenting more
difficult questions related to Concept 5 would reduce the estimation variance on their concept
knowledge and allow a PLS to better plan future educational tasks for this particular learner.

Second, we demonstrate the utility of SPARFA-B’s posterior distribution information
on the question–concept association matrix W. Accurate estimation of W enables course
instructors and content authors to validate the extent to which problems measure knowledge
across various concepts. In general, there is a strong degree of commonality between the
results of SPARFA-M and SPARFA-B, especially as the number of learners answering a
question grow. We present some illustrative examples of support estimation on W for both
SPARFA algorithms in Table 3. We use the labels “Yes”/“No” to indicate inclusion of a
concept by SPARFA-M and show the posterior inclusion probabilities for each concept by
SPARFA-B. Here, both SPARFA-M and SPARFA-B agree strongly on both Question 3 and
Question 56. Question 72 is answered by only 6 learners, and SPARFA-M discovers a link
between this question and Concept 5. SPARFA-B proposes Concept 5 in 58% of all MCMC
iterations, but also Concept 1 in 60% of all MCMC iterations. Furthermore, the proposals
of Concept 1 and Concept 5 are nearly mutually exclusive; in most iterations only one of
the two concepts is proposed, but both are rarely proposed jointly. This behavior implies
that SPARFA-B has found two competing models that explain the data associated with
Question 72. To resolve this ambiguity, a PLS would need to gather more learner responses.
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6.2.3 Algebra Test Administered on Amazon Mechanical Turk

For a final demonstration of the capabilities the SPARFA algorithms, we analyze a dataset
from a high school algebra test carried out by Daniel Calderón of Rice University on Amazon
Mechanical Turk, a crowd-sourcing marketplace (Amazon Mechanical Turk (2012)).

Dataset The dataset consists of N = 99 learners answering Q = 34 questions covering
topics such as geometry, equation solving, and visualizing function graphs. Calderón man-
ually labeled the questions from a set of M = 10 tags. The dataset is fully populated, with
no missing entries.

Analysis We estimate W, C, and µ from the fully populated 34 × 99 binary-valued
matrix Y using the logit version of SPARFA-M assuming K = 5 concepts. We deploy the
tag-analysis approach proposed in Section 5 to interpret each concept. Additionally, we
calculate the likelihoods of the responses using (1) and the estimates Ŵ, Ĉ and µ̂. The
results from SPARFA-M are summarized in Figure 9. We detail the results of our analysis
for Questions 19–26 in Table 4 and for Learner 1 in Table 5.

Results and discussion With the aid of SPARFA, we can analyze the strengths and
weaknesses of each learner’s concept knowledge both individually and relative to other users.
We can also detect outlier responses that are due to guessing, cheating, or carelessness.
The values in the estimated concept knowledge matrix Ĉ measure each learner’s concept
knowledge relative to all other learners. The estimated intrinsic difficulties of the questions
µ̂ provide a relative measure that summarizes how all users perform on each question.

Let us now consider an example in detail; see Table 4 and Table 5. Learner 1 incor-
rectly answered Questions 21 and 26 (see Table 4), which involve Concepts 1 and 2. Their
knowledge of these concepts is not heavily penalized, however (see Table 5), due to the high
intrinsic difficulty of these two questions, which means that most other users also incor-
rectly answered them. User 1 also incorrectly answered Questions 24 and 25, which involve
Concepts 2 and 4. Their knowledge of these concepts is penalized, due to the low intrin-
sic difficulty of these two questions, which means that most other users correctly answered
them. Finally, Learner 1 correctly answered Questions 19 and 20, which involve Concepts 1
and 5. Their knowledge of these concepts is boosted, due to the high intrinsic difficulty of
these two questions.

SPARFA can also be used to identify each user’s individual strengths and weaknesses.
Continuing the example, Learner 1 needs to improve their knowledge of Concept 4 (as-
sociated with the tags “Simplifying expressions”, “Trigonometry,” and “Plotting functions”)
significantly, while their deficiencies on Concepts 2 and 3 are relatively minor.

Finally, by investigating the likelihoods of the graded responses, we can detect outlier
responses, which would enables a PLS to detect guessing and cheating. By inspecting
the concept knowledge of Learner 1 in Table 5, we can identify insufficient knowledge of
Concept 4. Hence, Learner 1’s correct answer to Question 22 is likely due to a random guess,
since the predicted likelihood of providing the correct answer is estimated at only 0.21.
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(a) Question–concept association graph.

Concept 1 Concept 2 Concept 3

Fractions (57%) Plotting functions (64%) Geometry (63%)
Solving equations (42%) System of equations (27%) Simplifying expressions (27%)
Arithmetic (1%) Simplifying expressions (9%) Trigonometry (10%)

Concept 4 Concept 5

Simplifying expressions (64%) Trigonometry (53%)
Trigonometry (21%) Slope (40%)
Plotting Functions (15%) Solving equations (7%)

(b) Most important tags and relative weights for the estimated concepts.

Figure 9: (a) Question–concept association graph and (b) most important tags associated
with each concept for a high-school algebra test carried out on Amazon Mechanical
Turk with N = 99 users answering Q = 34 questions.
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Table 4: Graded responses and their underlying concepts for Learner 1 (1 designates a cor-
rect response and 0 an incorrect response).

Question number 19 20 21 22 23 24 25 26

Learner’s graded response Yi,j 1 1 0 1 1 0 0 0
Correct answer likelihood 0.79 0.71 0.11 0.21 0.93 0.23 0.43 0.00
p(Yi,j = 1|w̄i, cj , µi)

Underlying concepts 1 1, 5 1 2, 3, 4 3, 5 2, 4 1, 4 2, 4
Intrinsic difficulty µi −1.42 −0.46 −0.67 0.27 0.79 0.56 1.40 −0.81

Table 5: Estimated concept knowledge for Learner 1.

Concept number 1 2 3 4 5

Concept knowledge 0.46 −0.35 0.72 −1.67 0.61

6.3 Predicting Unobserved Learner Responses

We now compare SPARFA-M against the recently proposed binary-valued collaborative
filtering algorithm CF-IRT (Bergner et al. (2012)) in an experiment to predict unobserved
learner responses.

Dataset and experimental setup In this section, we study both the Mechanical Turk al-
gebra test dataset and a portion of the ASSISTment dataset (Pardos and Heffernan (2010)).
The ASSISTment dataset consists of N = 403 learners answering Q = 219 questions, with
25% of the responses observed (see Vats et al. (2013) for additional details on the dataset).
In each of the 25 trials we run for both datasets, we hold out 20% of the observed learner
responses as a test set, and train both the logistic variant of SPARFA-M9 and CF-IRT
on the rest. The regularization parameters of both algorithms are selected using 4-fold
cross-validation on the training set. We use two performance metrics to evaluate the per-
formance of these algorithms, namely (i) the prediction accuracy, which corresponds to
the percentage of correctly predicted unobserved responses, and (ii) the average predic-
tion likelihood 1

|Ω̄obs|
∑

i,j:(i,j)∈Ω̄obs
p(Yi,j |w̄i, cj) of the unobserved responses, as proposed in

González-Brenes and Mostow (2012), for example.

Results and discussion Figure 10 shows the prediction accuracy and prediction likeli-
hood for both the Mechanical Turk algebra test dataset and the ASSISTment dataset. We
see that SPARFA-M delivers comparable (sometimes slightly superior) prediction perfor-
mance to CF-IRT in predicting unobserved learner responses.

Furthermore, we see from Figure 10 that the prediction performance varies little over
different values of K, meaning that the specific choice of K has little influence on the predic-

9. In order to arrive at a fair comparison, we choose to use the logistic variant of SPARFA-M, since CF-IRT
also relies on a logistic model.
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(c) Prediction accuracy for the ASSISTment
dataset.
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Figure 10: Performance comparison of SPARFA-M and CF-IRT on (a) prediction accu-
racy and (b) average prediction likelihood for the Mechanical Turk algebra test
dataset, (c) prediction accuracy and (d) average prediction likelihood for the
ASSISTment dataset. SPARFA-M achieves comparable or better performance
than CF-IRT while enabling interpretability of the estimated latent concepts

tion performance within a certain range. This phenomenon agrees with other collaborative
filtering results (see, e.g., Koren et al. (2009); Koren and Sill (2011)). Consequently, the
choice of K essentially dictates the granularity of the abstract concepts we wish to esti-
mate. We choose K = 5 in the real data experiments of Section 6.2 when we visualize the
question–concept associations as bi-partite graphs, as it provides a desirable granularity of
the estimated concepts in the datasets. We emphasize that SPARFA-M is able to provide
interpretable estimated factors while achieving comparable (or slightly superior) prediction
performance than that achieved by CF-IRT, which does not provide interpretability. This
feature of SPARFA is key for the development of PLSs, as it enables an automated way of
generating interpretable feedback to learners in a purely data-driven fashion.
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7. Related Work on Machine Learning-based Personalized Learning

A range of different machine learning algorithms have been applied in educational contexts.
Bayesian belief networks have been successfully used to probabilistically model and analyze
learner response data (e.g., Krudysz et al. (2006); Woolf (2008); Krudysz and McClellan
(2011)). Such models, however, rely on predefined question–concept dependencies (that
are not necessarily the true dependencies governing learner responses) and primarily only
work for a single concept. In contrast, SPARFA discovers question–concept dependencies
from solely the graded learner responses to questions and naturally estimates multi-concept
question dependencies.

Modeling question–concept associations has been studied in Barnes (2005), Thai-Nghe
et al. (2011a), Thai-Nghe et al. (2011b), and Desmarais (2011). The approach in Barnes
(2005) characterizes the underlying question–concept associations using binary values, which
ignore the relative strengths of the question–concept associations. In contrast, SPARFA dif-
ferentiates between strong and weak relationships through the real-valued weights Wi,k.
The matrix and tensor factorization methods proposed in Barnes (2005), Thai-Nghe et al.
(2011a), and Thai-Nghe et al. (2011b) treat graded learner responses as real but deter-
ministic values. In contrast, the probabilistic framework underlying SPARFA provides a
statistically principled model for graded responses; the likelihood of the observed graded
responses provides even more explanatory power.

Existing intelligent tutoring systems capable of modeling question–concept relations
probabilistically include Khan Academy (Dijksman and Khan (2011); Hu (2011)) and the
system of Bachrach et al. (2012). Both approaches, however, are limited to dealing with
a single concept. In contrast, SPARFA is built from the ground up to deal with multiple
latent concepts.

A probit model for graded learner responses is used in Desmarais (2011) without exploit-
ing the idea of low-dimensional latent concepts. In contrast, SPARFA leverages multiple
latent concepts and therefore can create learner concept knowledge profiles for personalized
feedback. Moreover, SPARFA-M is compatible with the popular logit model.

The recent results developed in Beheshti et al. (2012) and Bergner et al. (2012) address
the problem of predicting the missing entries in a binary-valued graded learner response
matrix. Both papers use low-dimensional latent factor techniques specifically developed for
collaborative filtering, as, e.g., discussed in Linden et al. (2003) and Herlocker et al. (2004).
While predicting missing correctness values is an important task, these methods do not take
into account the sparsity and non-negativity of the matrixW; this inhibits the interpretation
of the relationships among questions and concepts. In contrast, SPARFA accounts for both
the sparsity and non-negativity of W, which enables the interpretation of the value Ck,j as
learner j’s knowledge of concept k.

There is a large body of work on item response theory (IRT), which uses statistical
models to analyze and score graded question response data (see, e.g., Lord (1980), Baker
and Kim (2004), and Reckase (2009) for overview articles). The main body of the IRT
literature builds on the model developed by Rasch (1993) and has been applied mainly in
the context of adaptive testing (e.g., in the graduate record examination (GRE) and graduate
management (GMAT) tests Chang and Ying (2009), Thompson (2009), and Linacre (1999)).
While the SPARFA model shares some similarity to the model in Rasch (1993) by modeling

34



Sparse Factor Analysis for Learning and Content Analytics

question–concept association strengths and intrinsic difficulties of questions, it also models
each learner in terms of a multi-dimensional concept knowledge vector. This capability of
SPARFA is in stark contrast to the Rasch model, where each learner is characterized by a
single, scalar ability parameter. Consequently, the SPARFA framework is able to provide
stronger explanatory power in the estimated factors compared to that of the conventional
Rasch model. We finally note that multi-dimensional variants of IRT have been proposed in
McDonald (2000), Yao (2003), and Reckase (2009). We emphasize, however, that the design
of these algorithms leads to poor interpretability of the resulting parameter estimates.

8. Conclusions

In this paper, we have formulated a new approach to learning and content analytics, which
is based on a new statistical model that encodes the probability that a learner will answer
a given question correctly in terms of three factors: (i) the learner’s knowledge of a set of
latent concepts, (ii) how the question relates to each concept, and (iii) the intrinsic difficulty
of the question. We have proposed two algorithms, SPARFA-M and SPARFA-B, to estimate
the above three factors given incomplete observations of graded learner question responses.
SPARFA-M uses an efficient Maximum Likelihood-based bi-convex optimization approach
to produce point estimates of the factors, while SPARFA-B uses Bayesian factor analysis
to produce posterior distributions of the factors. In practice, SPARFA-M is beneficial in
applications where timely results are required; SPARFA-B is favored in situations where
posterior statistics are required. We have also introduced a novel method for incorporating
user-defined tags on questions to facilitate the interpretability of the estimated factors.
Experiments with both synthetic and real world education datasets have demonstrated both
the efficacy and robustness of the SPARFA algorithms.

The quantities estimated by SPARFA can be used directly in a range of PLS functions.
For instance, we can identify the knowledge level of learners on particular concepts and
diagnose why a given learner has incorrectly answered a particular question or type of
question. Moreover, we can discover the hidden relationships among questions and latent
concepts, which is useful for identifying questions that do and do not aid in measuring
a learner’s conceptual knowledge. Outlier responses that are either due to guessing or
cheating can also be detected. In concert, these functions can enable a PLS to generate
personalized feedback and recommendation of study materials, thereby enhancing overall
learning efficiency.

Various extensions and refinements to the SPARFA framework developed here have been
proposed recently. Most of these results aim at improving interpretability of the SPARFA
model parameters. In particular, a variant of SPARFA-M that analyzes ordinal rather than
binary-valued responses and directly utilizes tag information in the probabilistic model has
been detailed in Lan et al. (2013a). Another variant of SPARFA-M that further improves the
interpretability of the underlying concepts via the joint analysis of graded learner responses
and question/response text has been proposed in Lan et al. (2013b). A nonparametric
Bayesian variant of SPARFA-B that estimates both the number of concepts K as well as the
reliability of each learner from data has been developed in Fronczyk et al. (2013, submitted).
The results of this nonparametric method confirm our choice of K = 5 concepts for the real-
world educational datasets considered in Section 6.2.
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Before closing, we would like to point out a connection between SPARFA and dictionary
learning that is of independent interest. This connection can be seen by noting that (2) for
both the probit and inverse logit functions is statistically equivalent to (see Rasmussen and
Williams (2006)):

Yi,j = [sign(WC + M + N)]i,j , (i, j) ∈ Ωobs,

where sign(·) denotes the entry-wise sign function and the entries of N are i.i.d. and drawn
from either a standard Gaussian or standard logistic distribution. Hence, estimating W, C,
and M (or equivalently, µ) is equivalent to learning a (possibly overcomplete) dictionary
from the data Y. The key departures from the dictionary-learning literature (Aharon et al.
(2006); Mairal et al. (2010)) and algorithm variants capable of handling missing observations
(Studer and Baraniuk (2012)) are the binary-valued observations and the non-negativity
constraint on W. Note that the algorithms developed in Section 3 to solve the sub-problems
by holding one of the factors W or C fixed and solving for the other variable can be used to
solve noisy binary-valued (or 1-bit) compressive sensing or sparse signal recovery problems,
e.g., as studied in Boufounos and Baraniuk (2008), Jacques et al. (2013), and Plan and
Vershynin (2012, submitted). Thus, the proposed SPARFA algorithms can be applied to a
wide range of applications beyond education, including the analysis of survey data, voting
patterns, gene expression, and signal recovery from noisy 1-bit compressive measurements.

Appendix A. Proof of Theorem 1

We now establish the convergence of the FISTA algorithms that solve the SPARFA-M sub-
problems (RR)+

1 and (RR)2. We start by deriving the relevant Lipschitz constants.

Lemma 4 (Scalar Lipschitz constants) Let gpro(x) =
Φ′pro(x)

Φpro(x) and glog(x) =
Φ′log(x)

Φlog(x) ,
x ∈ R, where Φpro(x) and Φlog(x) are the inverse probit and logit link functions defined
in (3) and (4), respectively. Then, for y, z ∈ R we have

|gpro(y)− gpro(z)| ≤ Lpro|y − z| , (12)
|glog(y)− glog(z)| ≤ Llog|y − z| , (13)

with the constants Lpro = 1 for the probit case and Llog = 1/4 for the logit case.

Proof For simplicity of exposition, we omit the subscripts designating the probit and logit
cases in what follows. We first derive Lpro for the probit case by computing the derivative
of g(x) and bounding its derivative from below and above. The derivative of g(x) is given
by

g′(x) = −N (x)

Φ(x)

(
x+
N (x)

Φ(x)

)
. (14)

where N (t) = 1√
2π
e−t

2/2 is the PDF of the standard normal distribution.
We first bound this derivative for x ≤ 0. To this end, we individually bound the first

and second factor in (14) using the following bounds listed in Olver (2010):

−x
2

+

√
x2

4
+

2

π
≤ N (x)

Φ(x)
≤ −x

2
+

√
x2

4
+ 1, x ≤ 0
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and

x

2
+

√
x2

4
+

2

π
≤ x+

N (x)

Φ(x)
≤ x

2
+

√
x2

4
+ 1, x ≤ 0.

Multiplying the above inequalities leads to the bounds

−1 ≤ g′(x) ≤ − 2

π
, x ≤ 0. (15)

We next bound the derivative of (14) for x > 0. For x > 0, N (x) is a positive decreasing
function and Φ(x) is a positive increasing function; hence N (x)

Φ(x) is a decreasing function and
N (x)
Φ(x) ≤

N (0)
Φ(0) =

√
2/π. Thus, we arrive at

g′(x) = −N (x)

Φ(x)

(
x+
N (x)

Φ(x)

)
≥ −N (x)

Φ(x)

(
x+

√
2/π

)
,

where we have used the facts that Φ(x) ≥ 1/2 and N (x) ≤ 1√
2π

for x > 0. According to (3)
and the bound of Chu (1955), we have

Φ(x) =
1

2
+

∫ x

0
N (t | 0, 1)dt ≥ 1

2
+

1

2

√
1− e−x2/2 ≥ 1− 1

2
e−x

2/2, (16)

where the second inequality follows from the fact that (1 − e−x2/2) ∈ [0, 1]. Using (16) we
can further bound g′(x) from below as

g′(x) ≥ − N (x)

1− 1
2e
−x2/2

(
x+

√
2/π

)
.

Let us now assume that

− N (x)

1− 1
2e
−x2/2

(
x+

√
2/π

)
≥ −1.

In order to prove that this assumption is true, we rearrange terms to obtain(
x√
2π

+ (1/π + 1/2)

)
e−x

2/2 ≤ 1. (17)

Now we find the maximum of the LHS of (17) for x > 0. To this end, we observe that
x√
2π

+ (1/π + 1/2) is monotonically increasing and that e−x2/2 monotonically decreasing for
x > 0; hence, this function has a unique maximum in this region. By taking its derivative
and setting it to zero, we obtain

x2 +
√

2/π +
√
π/2− 1 = 0

Substituting the result of this equation, i.e., x̂ ≈ 0.4068, into (17) leads to(
x̂√
2π

+ (1/π + 1/2)

)
e−x̂

2/2 ≈ 0.9027 ≤ 1,

37



Lan, Waters, Studer, and Baraniuk

which certifies our assumption. Hence, we have

−1 ≤ g′(x) ≤ 0, x > 0.

Combining this result with the one for x ≤ 0 in (15) yields

−1 ≤ g′(x) ≤ 0, x ∈ R.

We finally obtain the following bound on the scalar Lipschitz constant (12):

|gpro(y)− gpro(z)| ≤
∣∣∣∣∫ z

y

∣∣g′pro(x)
∣∣ dx∣∣∣∣ ≤ ∣∣∣∣∫ z

y
1 dx

∣∣∣∣ = |y − z| ,

which concludes the proof for the probit case.
We now develop the bound Llog for the logit case. To this end, we bound the derivative

of glog(x) = 1
1+ex as follows:

0 ≥ g′log(x) = − ex

(1 + ex)2
= − 1

ex + e−x + 2
≥ −1

4
.

where we used the inequality of arithmetic and geometric means. Consequently, we have
the following bound on the scalar Lipschitz constant (13):

|glog(y)− glog(z)| ≤
∣∣∣∣∫ z

y

∣∣g′log(x)
∣∣ dx∣∣∣∣ ≤ |∫ z

y

1

4
dx| = 1

4
|y − z|,

which concludes the proof for the logit case.

The following lemma establishes a bound on the (vector) Lipschitz constants for the
individual regularized regression problems (RR+

1 ) and (RR2) for both the probit and the
logit case, using the results in Lemma 4. We work out in detail the analysis of (RR+

1 ) for
w̄i, i.e., the transpose of the ith row of W. The proofs for the remaining subproblems for
other rows of W and all columns of C follow analogously.

Lemma 5 (Lipschitz constants) For a given i and j, let

fw(w̄i)=−
∑
j

log p(Yi,j |w̄i, cj)+
µ

2
‖w̄i‖22 = −

∑
j

log Φ((2Yi,j − 1)w̄T
i cj) +

µ

2
‖w̄i‖22 ,

fc(cj)=−
∑
i

log p(Yi,j |w̄i, cj)= −
∑
i

log Φ((2Yi,j − 1)w̄T
i cj),

where Yi,j, w̄i, and cj are defined as in Section 2.1. Here, Φ(x) designates the inverse link
function, which can either be (3) or (4). Then, for any x,y ∈ RK , we have

‖∇fw(x)−∇fw(y)‖2 ≤ (Lσ2
max(C) + µ)‖x− y‖2,

‖∇fc(x)−∇fc(y)‖2 ≤ Lσ2
max(W)‖x− y‖2,

where L = Lpro = 1 and L = Llog = 1/4 are the scalar Lipschitz constants for the probit and
logit cases from Lemma 4, respectively.
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Proof For the sake of brevity, we only show the proof for fw(x) in the probit case. The
logit cases and the cases for fc(x) follow analogously. In what follows, the PDF N (x) and
CDF Φ(x) of the standard normal density (the inverse probit link function) defined in (3)
are assumed to operate element-wise on the vector x ∈ RK .

In order to simplify the derivation of the proof, we define the following effective matrix
associated to w̄i as

Ceff,i = [ (2Yi,1 − 1)c1, . . . , (2Yi,N − 1)cN ],

which is equivalent to a right-multiplicationC = [c1, . . . , cN ] with a diagonal matrix contain-
ing the binary-valued response variables (2Yi,j−1) ∈ {−1,+1} ∀j. We can now establish an
upper bound of the `2-norm of the difference between the gradients at two arbitrary points x
and y as follows:

‖∇fw(x)−∇fw(y)‖2 =

∥∥∥∥∥Ceff,i
N (CT

eff,ix)

Φ(CT
eff,ix)

−Ceff,i
N (CT

eff,iy)

Φ(CT
eff,iy)

+ µx− µy

∥∥∥∥∥
2

≤ σmax(Ceff,i)

∥∥∥∥∥N (CT
eff,ix)

Φ(CT
eff,ix)

−
N (CT

eff,iy)

Φ(CT
eff,iy)

∥∥∥∥∥
2

+ µ‖x− y‖2 (18)

≤ Lσmax(Ceff,i)‖CT
eff,ix−CT

eff,iy‖2 + µ‖x− y‖2 (19)

≤ Lσ2
max(Ceff,i)‖x− y‖2 + µ‖x− y‖2 (20)

= (Lσ2
max(C) + µ)‖x− y‖2. (21)

Here, (18) uses the triangle inequality and the Rayleigh-Ritz theorem of Horn and Johnson
(1991), where σmax(Ceff,i) denotes the principal singular value of Ceff,i. The bound (19)
follows from Lemma 4, and (20) is, once more, a consequence of the Rayleigh-Ritz theorem.
The final equality (21) follows from the fact that flipping the signs of the columns of a matrix
(as we did to arrive at Ceff,i) does not affect its singular values, which concludes the proof.
Note that the proof for fc(·) follows by omitting µ and substitute C by W in (21).

Note that in all of the above proofs we only considered the case where the observation
matrix Y is fully populated. Our proofs easily adapt to the case of missing entries in Y, by
replacing the matrix C to CI , where CI corresponds to the matrix containing the columns
of C corresponding to the observed entries indexed by the set I = {j : (i, j) ∈ Ωobs}. We
omit the details for the sake of brevity.

Appendix B. Proof of Theorem 2

Minimizing F (x) as defined in Theorem 2 using SPARFA-M corresponds to a multi-block
coordinate descent problem, where the subproblems (RR)+

1 and (RR)2 correspond to (Xu
and Yin, 2012, Problem. 1.2b and 1.2a), respectively. Hence, we can use the results of (Xu
and Yin, 2012, Lemma 2.6, Corrollary 2.7, and Theorem 2.8) to establish global conver-
gence of SPARFA-M. To this end, we must verify that the problem (P) satisfies all of the
assumptions in (Xu and Yin, 2012, Assumption 1, Assumption 2, and Lemma 2.6).
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B.1 Prerequisites

We first show that the smooth part of the cost function in (P), i.e., the negative log-
likelihood plus both `2-norm regularization terms, is Lipschitz continuous on any bounded
set in R(N+Q)K . Then, we show that the probit log-likelihood function is real analytic.
Note that the logit log-likelihood function is real analytic as shown in (Xu and Yin, 2012,
Section 2.3). Finally, we combine both results to prove Theorem 2, which establishes the
global convergence of SPARFA-M.

Lemma 6 (Lipschitz continuity) Define x = [w̄T
1 , . . . , w̄

T
Q, c

T
1 , . . . , c

T
N ]T , and let

f(x) = −
∑

(i,j)∈Ωobs

log p(Yi,j |w̄i, cj) +
µ

2

∑
i

‖w̄i‖22 +
γ

2

∑
j

‖cj‖22.

Then, f(x) is Lipschitz continuous on any bounded set D = {x : ‖x‖2 ≤ D}.

Proof Let y, z ∈ D, recall the notation of Lemma 5, and let w̄y
i , w̄

z
i , c

y
j , and czj denote the

blocks of variables w̄i and cj in y and z, respectively. We now have

‖∇f(y)−∇f(z)‖2 =
(∑
i,j

(
(∇fw(w̄y

i )−∇fw(w̄z
i ))

2
+(∇fc(cyj )−∇fc(c

z
j ))

2 + γ2‖cyj−c
z
j‖22
)) 1

2

≤
(∑

i,j

((
Lσ2

max(C)+µ
)2 ‖w̄y

i −w̄
z
i ‖

2
2 +

(
L2σ4

max(W)+γ2
)
‖cyj−c

z
j‖22
)) 1

2

(22)

≤
(
L
(
‖W‖2F + ‖C‖2F

)
+ max{µ, γ}

)
‖y − z‖2 (23)

≤
(
LD2 + max{µ, γ}

)
‖y − z‖2,

where (22) follows from Lemma 5, and (23) follows from the fact that the maximum singular
value of a matrix is no greater than its Frobenius norm (Horn and Johnson (1991)), which is
bounded by D for y, z ∈ D. We furthermore have L = 1 for the probit case and L = 1/4 for
the logit case, shown in Lemma 4. Thus, f(x) is Lipschitz continuous on any bounded set.

Lemma 7 (Real analyticity) Define x = [w̄T
1 , . . . , w̄

T
Q, c

T
1 , . . . , c

T
N ]T , and let

g(x) = −
∑

(i,j)∈Ωobs

log p(Yi,j |w̄i, cj) = −
∑

(i,j)∈Ωobs

log Φpro((2Yi,j − 1)w̄T
i cj),

where Φpro(·) is the inverse probit link function defined in (3). Then, g(x) is real analytic.

Proof Recall the important property established by Krantz and Parks (2002) that compo-
sitions of real analytic functions are real analytic. Therefore, the standard normal density
N (x) is real analytic, since the exponential function and x2 are both real analytical func-

tions. Consequently, let N (k)(x) denote the kth derivative of N (x), then
(
N (k)(x)

k!

) 1
k is

bounded for all k, according to the definition of real analytic functions.
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Now we show that Φpro(x) =
∫ x
−∞N (t)dt is also real analytic. Its kth derivative is given

by Φ
(k)
pro(x) = N (k−1)(x), and therefore

(
Φ

(k)
pro(x)
k!

) 1
k

is obviously bounded for all k, since(
N (k)(x)

k!

) 1
k is bounded for all k as we have just shown. Thus, Φpro(x) is real analytic.

Given that Φpro(x) is real-analytic, it follows that the negative log-probit-likelihood
−logΦpro(x) is real analytic, since both the logarithm function and the inverse probit link
function are real analytic. Finally, extending the proof from scalar functions to vector func-
tions preserves analyticity according to (Xu and Yin, 2012, Section 2.2).

B.2 Proof of Theorem 2

We are finally armed to prove Theorem 2. We begin by showing that our problem (P) meets
(Xu and Yin, 2012, Assumptions 1 and 2). Then, we show that (P) meets all the additional
assumptions needed for the convergence results in (Xu and Yin, 2012, Lemma 2.6), through
which we can establish convergence of the sequence {xt} from certain starting points to
some finite limit point. Finally, we use (Xu and Yin, 2012, Theorem 2.8) to show global
convergence of SPARFA-M from any starting point.

B.2.1 Assumption 1

We start by showing that (P) meets (Xu and Yin, 2012, Assumption 1). Since every term
in our objective function in (P) is non-negative, we have F (x) > −∞. It is easy to verify
that (P) is also block multi-convex in the variable x, with the rows of W and columns of C
forming the blocks. Consequently, the problem (P) has at least one critical point, since F (x)
is lower bounded by 0. Therefore, Assumption 1 is met.

B.2.2 Assumption 2

Problem (P) also meets (Xu and Yin, 2012, Assumption 2) regarding the strong convexity of
the individual subproblems. Due to the presence of the quadratic terms µ

2‖w̄i‖22 and γ
2‖cj‖

2
2,

the smooth part of the objective functions of the individual subproblems (RR+
1 ) and (RR2)

are strongly convex with parameters µ and γ, respectively. Consequently, Assumption 2 is
satisfied.

B.2.3 Assumptions in (Xu and Yin, 2012, Lem. 2.6)

Problem (P) also meets the assumptions in (Xu and Yin, 2012, Lem. 2.6) regarding the
Lipschitz continuity of the subproblems and the Kurdyka-Łojasiewicz inequality. Lemma 6
shows that f(x) = −

∑
(i,j)∈Ωobs

log p(Yi,j |w̄i, cj) + µ
2

∑
i ‖w̄i‖22 + γ

2

∑
j ‖cj‖22, satisfies the

Lipschitz continuous requirement in (Xu and Yin, 2012, Lemma 2.6). As shown in Lemma 7
for the probit case and as shown in (Xu and Yin, 2012, Section 2.2) for the logit case,
the negative log-likelihood term in (P) is real analytic, therefore also sub-analytic. All
the regularizer functions in F (x) defined in Theorem 2 are semi-algebraic and therefore
sub-analytic, a consequence of (Bolte et al., 2006, Section 2.1) and (Xu and Yin, 2012,
Section 2.2). Using (Fischer, 2008, Theorems 1.1 and 1.2), the objective function F (x) is
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also sub-analytic, since all of its parts are sub-analytic and bounded below (non-negative),
therefore satisfying the Kurdyka-Łojasiewicz inequality at any point x, as shown in (Bolte
et al., 2006, Theorem 3.1). Finally, the SPARFA-M algorithm uses ωk−1

i ≡ 0 and ` =
min{µ, γ} where ωk−1

i and ` as defined in (Xu and Yin, 2012, Lemma 2.6).
Up to this point, we have shown that (P) satisfies all assumptions and requirements in

(Xu and Yin, 2012, Lemma 2.6). Now, SPARFA-M follows (Xu and Yin, 2012, Lemma 2.6)
in the sense that, if x0 is sufficiently close to some critical point x̂ of (P), (more specifically,
x0 ∈ B for some B ⊂ U where U is a neighborhood of x̂ in which Kurdyka-Łojasiewicz
inequality holds), then {xt} converges to a point in B. This establishes the convergence of
SPARFA-M to a local minimum point from certain starting points.

B.2.4 Global Convergence

Finally, we can use (Xu and Yin, 2012, Lemma 2.6) to establish global convergence of
SPARFA-M. It is obvious that the objective function (P) is bounded on any bounded set.
Hence, the sequence {xk} will always have a finite limit point and meet the assumptions in
(Xu and Yin, 2012, Theorem 2.8). The final statement of Theorem 2 now directly follows
from (Xu and Yin, 2012, Theorem 2.8). Moreover, if the starting point is in close proximity
to a global minimum, then SPARFA-M is guaranteed to converge to a global minimum.
This is a consequence of (Xu and Yin, 2012, Corollary 2.7).

Appendix C. Proof of Theorem 3

Proof To prove Theorem 3, we first define some notation. LetN (x|m, s) = 1√
2πs

e−(x−m)2/2s

define the normal PDF with mean m and variance s. Furthermore, let Exp(m|λ) = λe−λm,
m ≥ 0 define the PDF of the exponential distribution with rate parameter λ.

We are ultimately concerned with identifying whether the factor Wi,k is active given
our current beliefs about all other parameters in the model. Given the probit model, this
is equivalent to determining whether or not an exponential random variable is present in
Gaussian noise. Let x|m, s ∼ N (0|m, s) with m ∼ rExp(m|λ) + (1− r) δ0 and δ0 the Dirac
delta function located at 0. The posterior distribution p(m = 0|x) can be derived via Bayes’
rule as follows:

p(m = 0|x) =
N (x|m = 0, s)(1− r)

N (x|m = 0, s)(1− r) + r
∫
N (x|m, s)Exp(m|λ)dm

,

=

N (x|0,s)∫
N (x|m,s) Exp(m|λ)dm

(1− r)
N (x|0,s)∫

N (x|m,s) Exp(m|λ)dm(1− r) + r
,

=

Exp(0|λ)N (x|0,s)∫
N (x|m,s) Exp(m|λ)dm(1− r)

Exp(0|λ)N (x|0,s)∫
N (x|m,s) Exp(m|λ)dm(1− r) + rExp(0|λ)

. (24)

Here, it is important to recognize that Exp(m|λ)N (x|m,s)∫
N (x|m,s) Exp(m|λ)dm

denotes the posterior under the
continuous portion of the prior (i.e. m 6= 0). Since the exponential prior we have chosen is
not conjugate to the normal likelihood, we must compute this distribution in closed form.
To this end, let N r(x|m, s, λ) ∝ N (x|m, s)Exp(m|λ) = C0e

−(x−m)2/2s−λm denote a rectified
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normal distribution with normalization constant C0. Completing the square and carrying
out the integration, we find C0 = eλm−λ

2s/2

√
2πsΦ

(
m−λs√

s

) , which leads to

N r(x|m, s, λ) =
eλm−λ

2s/2

√
2πsΦ

(
m−λs√

s

)e−(x−m)2/2s−λm.

We can now rewrite (24) as

p(m = 0|x) =

N r(0|m̂,ŝ,λ)
Exp(0|λ) (1− r)

N r(0|m̂,ŝ,λ)
Exp(0|λ) (1− r) + r

or, alternatively, as

r̂ = p(m 6= 0|x) = 1− p(m = 0|x) =

Exp(0|λ)
N r(0|m̂,ŝ,λ)

Exp(0|λ)
N r(0|m̂,ŝ,λ) + 1−r

r

. (25)

All that remains now is to determine m̂ and ŝ in (25) for our full factor analysis sce-
nario. Recall that our probabilistic model corresponds to Z = WC + M. Further recall our
definition of the observation set Ωobs = {(i, j) : Yi,j is observed}. We can now calculate the
posterior on each coefficient Wi,k 6= 0 as follows:

p(Wi,k|Z,C,µ)∝ p(Wi,k) p(Z|W−(i,k),C,µ)

∝ e−λWi,k e
− 1

2σ2

∑
{j:(i,j)∈Ωobs}((Zi,j−µi)−

∑K
k=1 Wi,kCk,j)

2

= e−λWi,k e
− 1

2σ2

∑
{j:(i,j)∈Ωobs}((Zi,j−µi)−

∑
k′ 6=kWi,k′Ck′,j−Wi,kCk,j)

2

∝ e−λWi,k e
− 1

2σ2

∑
{j:(i,j)∈Ωobs}(W

2
i,kC

2
k,j−2((Zi,j−µi)−

∑
k′ 6=kWi,k′Ck′,j)Wi,kCk,j)

∝ e−λWi,ke
−

∑
{j:(i,j)∈Ωobs}

C2
k,j

2σ2

(
Wi,k−

∑
{j:(i,j)∈Ωobs}

(
(Zi,j−µi)−

∑
k′ 6=kWi,k′Ck′,j

)
Ck,j∑

{j:(i,j)∈Ωobs}
C2
k,j

)2

,

(26)

where the last step is obtained by completing the square in Wi,k.
The final result in (26) implies that Wi,k ∼ N r(m̂, ŝ, λ), where

m̂ =

∑
{j:(i,j)∈Ωobs}

(
(Zi,j − µi)−

∑
k′ 6=kWi,k′Ck′,j

)
Ck,j∑

{j:(i,j)∈Ωobs}C
2
k,j

and ŝ = σ2∑
{j:(i,j)∈Ωobs}

C2
k,j

. Combining the results of (25) and (26), recognizing that σ2 = 1

in the standard probit model, and adopting the notation R̂i,k, M̂i,k and Ŝi,k for the values
of r̂, m̂ and ŝ corresponding to each Ŵi,k, furnishes the final sampling result.
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