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Abstract—Massive multiple-input multiple-output (MIMO)
promises improved spectral efficiency, coverage, and range,
compared to conventional (small-scale) MIMO wireless systems.
Unfortunately, these benefits come at the cost of significantly
increased computational complexity, especially for systems with
realistic antenna configurations. To reduce the complexity of data
detection (in the uplink) and precoding (in the downlink) in
massive MIMO systems, we propose to use conjugate gradient
(CG) methods. While precoding using CG is rather straightfor-
ward, soft-output minimum mean-square error (MMSE) detec-
tion requires the computation of the post-equalization signal-to-
interference-and-noise-ratio (SINR). To enable CG for soft-output
detection, we propose a novel way of computing the SINR directly
within the CG algorithm at low complexity. We investigate the
performance/complexity trade-offs associated with CG-based soft-
output detection and precoding, and we compare it to existing
exact and approximate methods. Our results reveal that the
proposed algorithm is able to outperform existing methods for
massive MIMO systems with realistic antenna configurations.

I. INTRODUCTION

A. Massive Multiple-Input Multiple-Output (MIMO)

Massive (or large-scale) MIMO is an emerging technology to
improve the spectral efficiency of existing (small-scale) MIMO
wireless communication systems [1], [2]. The main idea is to
equip the base station (BS) with hundreds of antennas that
serve a (relatively) small number of users (in the orders of tens)
simultaneously and in the same frequency band. Theoretical
results for massive MIMO not only promise higher peak data
rates, improved coverage, and longer range, but also that simple,
low-complexity, and energy-efficient detection and precoding
algorithms are able to achieve optimum performance in the
large-antenna limit, i.e., where the number of BS antennas
approaches infinity [1]–[4].

Unfortunately, systems with realistic antenna configurations
(e.g., with a few hundred BS antennas or less) are far from
the large-antenna limit. As a consequence, one still has to
resort to computationally expensive detection and precoding
algorithms to achieve near-optimal error-rate performance [5].
As demonstrated in [6], data detection (in the uplink) and
precoding (in the downlink) are among the most challenging
tasks in terms of computational complexity in realistic systems.
Hence, to reduce the computational complexity, linear and
approximate data detection and precoding schemes, which
rely on a truncated Neumann series expansion, have been
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proposed recently in [6]–[9]. This approach requires (often
significantly) lower computational complexity than that of
an exact inversion while delivering near-optimal results for
massive MIMO systems having a large ratio between BS and
user antennas. However, this approximate detection approach
suffers from a considerable error-rate performance loss if the
ratio between BS antennas and user antennas is close to one [8].

B. Contributions

In this paper, we propose to use conjugate gradient (CG)
methods for data detection and precoding in order to improve
upon the Neumann series approach in [6]–[9] for realistic mas-
sive MIMO systems. While CG for precoding is rather straight-
forward, CG-based soft-output data detection necessitates the
computation of the post-equalization signal-to-interference-and-
noise-ratio (SINR), which typically requires the explicit inverse
of the channel matrix [8]. To avoid a matrix inversion altogether,
we propose an exact and an approximate method to compute
the SINR directly within the CG algorithm. We investigate the
associated performance/complexity trade-offs and demonstrate
that our CG-based detection and precoding method requires
low computational complexity while outperforming exact and
approximate linear methods in massive MIMO systems with
realistic antenna configurations.

II. UPLINK AND DOWNLINK SYSTEM MODELS

We consider the uplink and downlink of an orthogo-
nal frequency-division multiplexing (OFDM)-based massive
MIMO system where the BS is equipped with B antennas and
communicates with U ≤ B single-antenna users.

A. Uplink System Model and Soft-Output MMSE Detection

In the uplink, the information bits for each user are encoded
and mapped onto constellation points in the set O. The
modulated symbols are transformed into the time domain using
an inverse discrete Fourier transform (DFT). Each user then
transmits the time-domain signals over the wireless channel.

At the BS, the received signals are converted into frequency
domain using DFTs. By omitting the subcarrier index, the
equivalent input-output relation of the frequency-domain uplink
channel for each subcarrier can be modeled as

yu = Hux+ nu, (1)

where x ∈ OU is the transmit vector with modulated symbols
from all users, and yu ∈ CB is the receive-vector. The uplink



channel matrix is given by Hu ∈ CB×U , where we assume that
each entry is generated from the WINNER-Phase-2 channel
model [10]. In what follows, we assume the channel matrix Hu

to be perfectly known at the BS. Each element of noise vector
nu ∈ CB in (1) is assumed to be i.i.d. circularly-symmetric
complex Gaussian with variance N0 per complex entry. The per-
user uplink transmit power for user i is defined as E{|xi|2} =
Es and the (average) uplink SNR is given by UEs/N0.

In the remainder of the paper, we focus on soft-output
MMSE detection, which achieves near-optimal performance in
massive MIMO systems with large BS to user antenna ratios at
manageable complexity [8]. Soft-output data detection requires
the following well-known MMSE equalization matrix [11]:

W =
(
HH

u Hu + %−1u IU
)−1

HH
u , (2)

where %u = Es/N0 is the transmit SNR. To compute soft-
output information in the form of log-likelihood ratio (LLR)
values, we first compute estimates of the transmit symbol as

x̂ = Wy. (3)

By modeling the transmit symbol of user i as x̂i = µixi + zi,
where µi = wH

i hi is the equalized channel gain and
zi =

∑
j,j 6=i w

H
i hjxj +wH

i n models noise-plus-interference
with variance ν2i = E{|zi|2}, we can compute the max-log
approximated LLR of bit b for user i as follows [12]:

Li,b = ρi

(
min
a∈X 0

b

∣∣∣∣ x̂iµi
− a
∣∣∣∣2− min

a′∈X 1
b

∣∣∣∣ x̂iµi
− a′

∣∣∣∣2
)
. (4)

Here, ρi = µ2
i /ν

2
i is the post-equalization SINR, and the sets

X 0
b and X 1

b contain the constellation symbols where bit b of
the symbol in O equals 0 and 1, respectively.

We emphasize that the method proposed in Section III
directly computes x̂ in (3) as well as the equalized channel
gains µi, ∀i, and the post-equalization SINRs ρi, ∀i, which
avoids an explicit computation of (2) and (3); this, in turn,
significantly reduces the computational complexity of soft-
output data detection in massive MIMO systems.

B. Downlink System Model and Precoding

In the downlink, the BS encodes the bit streams for each user
in the frequency domain. The encoded bits are then mapped
to constellation points in O. The transmit vector t ∈ OU

containing the modulated symbols for all U users is then
processed using the following linear precoder:

q = Pt. (5)

Here, P is a B×U precoding matrix and q ∈ CB the precoded
vector. To maximize the SINR at the receiver (and to mitigate
inter-user interference), we deploy linear MMSE precoding,
which is defined as [13]

P = HH
d (HdH

H
d + %−1d IU )

−1. (6)

Here, the downlink channel Hd ∈ CU×B satisfies Hd = HH
u

due to reciprocity and %d is the downlink SNR (as for the
uplink). We assume the downlink channel to be known and

generated using the WINNER-Phase-2 channel model [10].
Note that prior to downlink transmission, we normalize the
transmit power of the precoded vector as s = q/‖q‖2, where
s ∈ CB is the transmit vector normalized to unit power. The
precoded and normalized vector s is then converted into the
time domain and transmitted to the users. The frequency-
domain equivalent input-output relation of the downlink channel
is yd = Hds+nd, where nd ∈ CU models noise and yd ∈ CU

contains the receive symbols for each user.
We emphasize that our precoding method proposed next

directly computes the precoded vector q in (5), without
explicitly forming the precoding matrix (6); this approach (often
significantly) reduces computational complexity of precoding.

III. CG-BASED DATA DETECTION AND PRECODING

Virtually all existing linear soft-output detection methods
as well as some precoders explicitly compute the MMSE
equalization matrix (2) or precoding matrix (6), which requires
the inverse of a U × U matrix. This matrix inversion incurs
significant computational complexity, especially for a large
number of user antennas U . We now propose a novel approach
to low-complexity soft-output data detection (Section III-B)
and precoding (Section III-D) for massive MIMO systems,
which avoids such an explicit matrix inversion altogether.

A. Conjugate Gradient (CG) Basics
CG is an efficient iterative method to solve systems of linear

equations [14]. Specifically, CG solves problems of the form

ĝ = argmin
g̃∈CU

‖b−Ag̃‖, (7)

where A ∈ CU×U is a positive definite matrix. In contrary
to direct methods that compute ĝ = A−1b, CG iteratively
computes the solution ĝ with each iteration requiring low
computational complexity. One of the key advantages of CG is
the fact that CG converges at U iterations and the iterative pro-
cedure can be terminated early while still obtaining a solution
close to the exact result ĝ; this leads to (often significantly)
lower computational complexity instead of directly inverting
the matrix A.

Since (7) can be used to compute the solutions to (3) and (5)
with appropriate b and A, CG is—at least in principle—
suitable for low-complexity linear data detection and precoding.
However, the key disadvantage of CG is that it does not provide
the post-equalization SINR information, which is necessary
to compute LLR values (4). To use CG for soft-output data
detection, we propose a novel method that computes the
necessary SINR information directly within CG.

B. CG-D: CG-Based Soft-Output Data Detection
As mentioned above, the solution to (3) can be computed

by solving the following optimization problem [15]:

x̂ = argmin
x̃∈CU

‖HH
u y −Ax̃‖, (8)

where A = HH
u Hu + %−1u IU is the regularized uplink

Gram matrix. The solution x̂ to (8) can be computed (or
approximated) efficiently using CG [15].



Algorithm 1 CG for soft-output MMSE detection & precoding
1: input:
2: Hu and y {detection}
3: Hd and t {precoding}
4: initialization:
5: b = HH

u y and A = HH
u Hu + %−1u IU {detection}

6: b = t and A = HdH
H
d + %−1d IU {precoding}

7: v0 = 0, r0 = b, and p0 = r0
8: for k = 1, . . . ,K do
9: ek−1 = Apk−1

10: αk = ‖rk−1‖2/(pH
k−1ek−1)

11: vk = vk−1 + αkpk−1
12: rk = rk−1 − αkek−1
13: βk = ‖rk‖2/‖rk−1‖2
14: pk = rk + βkpk−1
15: compute µi|k, ∀i, as in (14) {detection}
16: compute ρi|k, ∀i, as in (15) {detection}
17: end for
18: output:
19: x̂K = vK , µi|K , ∀i, and ρi|K , ∀i, {detection}
20: qK = HH

d vK {precoding}

Algorithm 1 summarizes our CG-based approach for soft-
output data detection. The base algorithm of our CG method
follows that in [15]. On line 5, we first compute the matched
filter vector HH

u y and compute the regularized Gram matrix A.
We then initialize the vectors v0, r0, and p0 used in the CG
procedure. On lines 9–14, we iteratively compute vk, which
will be our MMSE estimate x̂K after K iterations (see line 19).
Here, the intermediate results vk, rk, and pk are computed
recursively from vk−1, rk−1, and pk−1. The output of this
CG method in the K th iteration, x̂K = vK , is an estimate
for x̂ in (3) if the procedure is terminated before reaching U
iterations. Since CG is an exact method [14], [15], Algorithm 1
delivers the exact solution to (3) if K = U .

We emphasize that CG methods do not provide the necessary
post-equalization SINR information, such as ρi as well as µi,
which are required to compute the LLR values in (4). Hence,
regular CG is not suitable for soft-output detection.1 We next
propose two novel methods to compute µi|k and ρi|k directly
within each iteration k of CG. The first method is exact, i.e.,
computes µi and ρi after K = U iterations; the second method
approximates both quantities at low computational complexity.

C. SINR Computation Methods
1) Exact SINR Computation: Although the equalized vec-

tor x̂k is computed in an iterative fashion (see Algorithm 1),
it can be computed from the received vector y with a CG-
equivalent equalization matrix that depends on the iteration
index k. By defining the CG-equivalent equalization matrix as
LkH

H
u , the kth estimate x̂k can be computed as

x̂k = LkH
H
u y. (9)

If the matrix Lk is known, then the intermediate quantities µi|k
and νi|k can be computed as detailed in Section II-A. We now

1Hard-output data detection would be straightforward, but typically entails
a significant error-rate performance loss in coded communication systems.

propose a method to exactly compute Lk in each iteration k,
which enables us to extract µi|k and νi|k on-the-fly.

We start by inserting ek−1 = Apk−1 (from line 9) to ek−1
of line 12 of Algorithm 1, which yields

rk = rk−1 − αkApk−1. (10)

By rewriting line 14 of Algorithm 1 as rk = pk − βkpk−1,
we can substitute rk by pk − βkpk−1 in (10), which leads to

pk = pk−1 + βkpk−1 − αkApk−1 − βk−1pk−2. (11)

By rewriting line 11 of Algorithm 1 to pk−1 = (vk−vk−1)/αk,
we can replace pk−1 with (vk − vk−1)/αk in (11). Then, by
using vk = x̂k of line 19, we can formulate the desired
recursion (for k = 1, . . . ,K):

x̂k = x̂k−1 +

(
αk(1 + βk−1)

αk−1
IU − αkA

)
(x̂k−1 − x̂k−2)

− αkβk−2
αk−2

(x̂k−2 − x̂k−3).

Here, x̂1 = α1H
H
u y, and αk and βk for k = 1, . . . ,K are

computed in Algorithm 1; in addition, we initialize αk = 1,
βk = 0, and x̂k = 0U×1 for k < 1.

Since x̂k can be computed from LkH
H
u y as in (9), the

matrix Lk can be obtained recursively as follows:

Lk =Lk−1 +

(
αk(1 + βk−1)

αk−1
IU − αkA

)
(Lk−1 − Lk−2)

− αkβk−2
αk−2

(Lk−2 − Lk−3), (12)

where we set L1 = α1IU and Lk = 0U×U for k < 1. This
recursion allows us to compute µi|k and ν2i|k in each iteration k
of the CG procedure in Algorithm 1.

Specifically, let B = LkG with the Gram matrix G =
HH

u Hu, then µi|k can be computed as µi|k = Bi,i, where Bii

is the ith diagonal entry of B. To compute ν2i|k, let C = BLH
k

and compute the variance of interference plus noise as

ν2i|k =
∑

j,j 6=i |Bi,j |2Es + Ci,iN0,

where Ci,i is the ith diagonal entry of C. We can now compute
LLR values in (4) using the quantities µi|k and ρi|k = µ2

i|k/ν
2
i|k

obtained in each CG iteration k. Note that if k = U , then this
SINR tracking scheme provides exact results, i.e., we have
µi = µi|U and ρi = ρi|U , and Algorithm 1 can be used
to compute (4) exactly. When terminating the CG procedure
early, we can still approximate the LLR values in (4) but at
(often significantly) lower computational complexity (see our
simulation results in Section IV).

2) Approximate SINR Computation: The above exact SINR
computation method (12) requires a U×U matrix multiplication
per iteration, which adds high computational complexity to the
(otherwise low-complexity) CG method. To reduce the overall
computational complexity, we next propose an approximate
method that is very accurate for massive MIMO systems.

We start by noting that the regularized Gram matrix
A = HH

u Hu + %−1u IU is diagonally dominant for massive



MIMO systems [6]–[8]. Hence, its main diagonal D well ap-
proximates A. We now exploit this property to approximate Lk

in (12) by replacing A with D to obtain the the following
approximate recursion (for k = 1, . . . ,K):

L̃k = L̃k−1 +

(
αk(1 + βk−1)

αk−1
IU − αkD

)
(L̃k−1 − L̃k−2)

− αkβk−2
αk−2

(L̃k−2 − L̃k−3), (13)

which we initialize with L̃1 = α1IU and L̃k = 0U×U for
k < 1. Since all matrices in the recursion (13) are (and remain
to be) diagonal, this approximate method only requires U
multiplications per CG iteration.

From the approximate matrix L̃k in (13), we can compute
an approximate of the quantity µi|k in iteration k as

µi|k ≈ L̃i,i|kGi,i, (14)

where Gi,i is the ith diagonal entry of G, and L̃i,i|k is the
ith diagonal entry of the matrix L̃k. An approximate for ν2i|k
is obtained analogously by computing ν2i|k ≈ N0L̃

2
i,i|kGi,i,

which we use to approximate the post-equalization SINR as

ρi|k = µ2
i|k/ν

2
i|k ≈ Gi,i/N0, (15)

which complexity does not depend on the iteration index k.

D. CG-P: CG-Based Linear Precoding

Similar to the uplink, CG can be used for downlink precoding,
i.e., to compute (5). Unlike soft-output detection, precoding
via CG is rather straightforward. In particular, we solve

v = argmin
ṽ∈CU

‖t−Aṽ‖2, (16)

with A = HdH
H
d + %−1d IU and then, compute the precoded

vector as q = HH
d v. The precoding problem (16) can be solved

efficiently using Algorithm 1. Since precoding does not require
the post-equalization SINR, it requires lower complexity than
CG for soft-output detection.

Since CG is an exact method, our algorithm performs exact
MMSE precoding (5) at iteration K = U . For K = 1, CG-
based precoding corresponds to matched filter precoding q =
α1H

Ht with α1 computed in line 10 of Algorithm 1. In the
large-antenna limit, matched-filter precoding is known to be
optimal [2]. Hence, in massive MIMO systems, only few CG
iterations are sufficient to achieve near-optimal performance;
corresponding results are shown in Section IV.

E. What About CG Least Squares?

Another well-known variant of CG is the so-called conjugate
gradient least squares (CGLS) method [16]. In contrast to
regular CG, this variant is capable of operating with non-
square matrices, which avoids computation of the regularized
Gram matrix. Consequently, CGLS can be used for uplink
detection by solving

x̂ = argmin
x̃∈CU

‖y −Hux̃‖, (17)

where y =
[
yT ,01×U

]T
and Hu =

[
HT

u ,
√
%−1u IU

]T
are

the augmented receive vector and uplink channel matrix,
respectively. Note that the recursive SINR computation methods
of Section III-C can be built into CGLS as well. CGLS can
also be used for precoding by solving

q = argmin
q̃∈CB+U

‖t−Hdq̃‖, (18)

where Hd =
[
Hd,

√
%−1d IU

]
is the augmented downlink

channel matrix. The precoded vector can then be extracted
from q as follows q = [q1, . . . , qB ]

T . We note that since CGLS
avoids computation of the Gram matrix, it has the potential
to require even lower complexity than CG. Unfortunately, as
we will show in Section IV, CGLS is only advantageous over
CG for a very small number of iterations, where both methods
typically deliver sub-optimal error-rate performance.

F. Other Low-Complexity Detection and Precoding Methods

We next summarize other exact and approximate inversion
methods, which we use in Section IV to compare to our CG-
based soft-output detection and precoding method.

1) Exact Matrix Inversion: The Cholesky decomposi-
tion [17] is among the computationally efficient ways of
exactly computing the matrix inverse required for uplink
detection (2) and downlink precoding (6) (see, e.g., [8] for a
reference design). A Cholesky-based matrix inversion proceeds
as follows. First, one computes the regularized Gram matrix
Au = HH

u Hu + %−1u IU or Ad = HdH
H
d + %−1d IU for the

uplink or downlink case, respectively. Then, the regularized
Gram matrix is decomposed as A = MMH , where M is
lower-triangular (we omit the subscripts d and u). Then, one
can perform a forward- and backward substitution procedure
to obtain A−1 = (MMH)−1 in a computationally efficient
manner (see [12] for the algorithm details).

2) Approximate Matrix Inversion: To reduce the computa-
tional complexity of an exact matrix inversion (for detection
or precoding), approximate inversion schemes have been
investigated in [6]–[9]. The main idea is to use a truncated
Neumann series expansion, which proceeds as follows. First,
one computes the regularized Gram matrix Au or Ad, which
is then decomposed into a diagonal and off-diagonal part
according to A = D+E. A truncated K-term Neumann series
expansion is then used to obtain an approximate inverse [8]:

A−1 ≈
∑K−1

k=0 (−D−1E)kD−1.

For a small number of Neumann series terms, i.e., for K ≤ 3,
this approximation requires very low complexity.

IV. SIMULATION RESULTS

We now showcase the efficacy and limits of the proposed
CG-based soft-output detection and precoding approach. In the
ensuing discussion, we solely consider the approximate SINR
computation strategy proposed in Section III-C.
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Fig. 1. Uplink detection complexity comparison between the reference Cholesky-based soft-output MMSE detector, the Neumann series approach in [8], and
the proposed CG and CGLS-based soft-output detectors (CG-D). We measure the complexity in terms of the number of real-valued multiplications.
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Fig. 2. Block error-rate (BLER) performance comparison in the massive MIMO uplink for the reference Cholesky-based soft-output MMSE detector, the
Neumann series approach in [8], and the proposed CG-based soft-output detector (CG-D). We note that CGLS achieves the same BLER as CG.

A. Computational Complexity Analysis
The computational complexity of the exact Cholesky-based

matrix inversion, the approximate Neumann series approach [8],
and our CG and CGLS-based methods is dominated by
multiplications. Hence, we compare the complexity of these
methods by counting the number of real-valued2 multiplications.
For all algorithms, we exploit properties of Hermitian matrices
and avoid multiplications with zeros.

Figures 1(a)–(d) compare the computational complexity
for massive MIMO systems with the following BS × user
antenna configurations: 32×8, 128×8, 32×16, and 128×16.
For the U = 8 user configurations, CG-based soft-output
detection requires lower complexity than the exact Cholesky-
based inversion when k ≤ 5 (Figs. 1(a) and 1(b)). Similarly, for
the U = 16 user configurations, CG-based detection requires
lower complexity than the exact Cholesky-based approach
when k ≤ 12 (Figs. 1(c) and 1(d)). Although CGLS and the
Neumann series approximation exhibit lower complexity than
our CG-based algorithm for a small number of iterations K,
we next show that the error-rate performance for these two
methods is inferior to that of CG-based detection.

We note that CG-based methods as in Algorithm 1 and the
Neumann approach exhibit higher regularity than the Cholesky-
based approach, which will enable more efficient hardware
designs (see also [8]); this distinct advantage is not reflected
in the simplistic complexity measure considered here.

B. Block Error-Rate (BLER) Performance
To compare the block-error rate (BLER) performance of

the proposed algorithms with existing methods, we simulate

2We count 4 real-valued multiplications per complex-valued multiplication.

an OFDM system with 128 subcarriers and a 5/6-rate con-
volutional code. At the BS, we deploy a 10m linear antenna
array with equally-spaced antennas. The corresponding channel
matrices are generated using WINNER-Phase-2 model [10].3

For the uplink, the BS performs soft-output MMSE detection;
for the downlink we perform linear MMSE precoding. In both
cases, we deploy a soft-input max-log Viterbi decoder either
at the BS (for the uplink) or at each user (for the downlink).

The resulting uplink BLER performance is shown in
Figs. 2(a)–(d). We see that our CG-based soft-output detector
achieves a BLER that is close to the (exact) reference Cholesky
method K = 5, K = 3, K = 8, and K = 4 for the 32× 8,
128× 8, 32× 16, and 128× 16 antenna configuration. In all
these cases, the associated computational complexity is lower
to that of the exact inversion method. Note that we omit the
BLER performance of the CGLS method, as CGLS and CG
deliver the same outputs, which leads to the same performance.
In addition, we see that the Neumann series approach exhibits a
rather high error floor for the considered antenna configurations.
The Neumann series works well in the 128 × 8 case, which
confirms the observation in [8] that this approach requires
systems having a large BS to user antenna ratio.

C. Performance/Complexity Trade-offs

The overall advantage of CG-based soft-output detection
is summarized in Figs. 3(a)–(d), where we plot the trade-off
between complexity and performance, measured in terms of the
minimum SNR required to achieve 10% BLER. The Neumann
series approach is omitted due to the rather high error floor. We
see that CG-based detection is able to achieve lower complexity

3At the time, we are unaware of any channel model for massive MIMO.
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(b) 16-QAM and U = 16
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(c) 64-QAM and U = 8
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(d) 64-QAM and U = 16

Fig. 3. Performance/complexity trade-off of the proposed CG-based soft-output detector (CG-D) and an exact Cholesky-based soft-output detector.
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Fig. 4. Performance/complexity trade-off of the proposed CG-based precoding
method (CG-P) and the exact Cholesky-based precoder.

and similar error-rate performance as the exact Cholesky-based
detection for all considered cases. Note that the complexity
savings (for an equal SNR performance) are more pronounced
for the U = 16 user antenna cases.

So far, we have only considered the uplink. In Figs. 4(a)–
(b) we briefly show the trade-offs achieved by CG-based and
Cholesky-based precoding. We see that CG-based precoding
is also able to achieve lower complexity at similar error-rate
performance as the exact Cholesky-based precoder.

V. CONCLUSIONS

We have proposed a novel low-complexity soft-output
detection and precoding algorithm for the massive MIMO
uplink and downlink, respectively. The proposed approach
builds upon conjugate gradient (CG) methods and includes a
novel post-equalization SINR tracking scheme, which is crucial
to enable soft-output detection at low computational complexity.
Our numerical results reveal that for reasonably large ratios
between base station and user antennas, our CG-based detection
and precoding approach quickly converges to that of an
exact method. As a consequence, the proposed CG approach
achieves an error-rate performance that is close to that of an
exact inversion method, while requiring (often significantly)
lower computational complexity. In addition, our CG-based
scheme outperforms the approximate Neumann series inversion
proposed in [8] in terms of performance and complexity. In
summary, the proposed approach is well suited for soft-output
detection and precoding in realistic massive MIMO systems,

and the algorithm’s regularity and low complexity paves the
way for efficient, high-throughput hardware designs.
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