
Quantized Matrix Completion for Personalized Learning

Andrew S. Lan
Rice University

mr.lan@sparfa.com

Christoph Studer
Cornell University

studer@sparfa.com

Richard G. Baraniuk
Rice University

richb@sparfa.com

ABSTRACT
The recently proposed SPARse Factor Analysis (SPARFA) frame-
work for personalized learning performs factor analysis on ordinal
or binary-valued (e.g., correct/incorrect) graded learner responses
to questions. The underlying factors are termed “concepts” (or
knowledge components) and are used for learning analytics (LA),
the estimation of learner concept-knowledge profiles, and for con-
tent analytics (CA), the estimation of question–concept associa-
tions and question difficulties. While SPARFA is a powerful tool
for LA and CA, it requires a number of algorithm parameters (in-
cluding the number of concepts), which are difficult to determine
in practice. In this paper, we propose SPARFA-Lite, a convex
optimization-based method for LA that builds on matrix comple-
tion, which only requires a single algorithm parameter and enables
us to automatically identify the required number of concepts. Us-
ing a variety of educational datasets, we demonstrate that SPARFA-
Lite (i) achieves comparable performance in predicting unobserved
learner responses to existing methods, including item response the-
ory (IRT) and SPARFA, and (ii) is computationally more efficient.
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1. INTRODUCTION
Recent advances in machine learning propel the design of person-
alized learning systems (PLSs) that mine learner data (e.g., graded
responses to tests or homework assignments) to automatically pro-
vide timely feedback to individual learners. Such automated sys-
tems have the potential to revolutionize education by delivering a
high-quality, personalized learning experience at large scale.

1.1 SPARse Factor Analysis (SPARFA)
The recently proposed SPARse Factor Analysis (SPARFA) frame-
work introduces models and machine learning algorithms for learn-
ing and content analytics [15, 16] Learning analytics (LA) stand
for the analysis of the knowledge of each learner, while content
analytics (CA) stand for the analysis of all learning resources, i.e.,
textbooks, lecture videos, questions, etc. SPARFA analyzes binary-
valued (1 for a correct answer and 0 for an incorrect one) or quan-
tized (ordinal-valued, e.g., partial credits) graded responses of N
learners to Q questions, in the domain of a course/exam. The key
assumption of SPARFA is that the learners’ responses to questions
are governed by a small number of K (K � N,Q) latent fac-
tors, called “concepts,” which are also known as knowledge compo-
nents [10]. SPARFA performs the joint estimation of (i) question–
concept associations, (ii) learner concept knowledge profiles, and
(iii) question difficulties, solely from binary-valued graded learner

responses. Provided this analysis, SPARFA enables a PLS to pro-
vide automated feedback to learners on their individual concept
knowledge and to course instructors on the content organization
of the analyzed course.

SPARFA, as well as other factor analysis methods, inevitably suffer
from the lack of a principled and computationally efficient way to
select the appropriate values of the algorithms’ parameters, espe-
cially the number of latent concepts K. The choice of the number
of concepts K is important for two reasons: First, it affects the
performance in predicting unobserved learner responses. Second,
it determines the interpretability of the estimated concepts, which
is key for a PLS to provide human-interpretable feedback to learn-
ers. Rule-based intelligent tutoring systems [23] rely on domain
experts to manually pre-define the value of K. Such an approach
turns out to be labor-intensive and is error prone, which prevents its
use for applications in massive open online courses (MOOCs) [19].
SPARFA utilizes cross-validation to select K, as well as all other
algorithm parameters [16]. Such an approach is computationally
extensive as it requires multiple SPARFA runs to identify appropri-
ate values for all algorithm parameters.

1.2 Contributions
In this work, we propose SPARFA-Lite, a convex optimization-
based LA algorithm that automatically selects the number of latent
conceptsK by analyzing graded learner responses in the domain of
a single course/assessment. SPARFA-Lite leverages recent results
in quantized matrix completion [14] to analyze quantized graded
learner responses, which accounts for the fact that responses are of-
ten graded on an ordinal scale (partial credit). Since SPARFA-Lite
only has a single algorithm parameter, it has low computational
complexity as compared to existing methods such as IRT or con-
ventional SPARFA. We demonstrate the effectiveness of SPARFA-
Lite in (i) predicting unobserved learner responses and (ii) perform-
ing LA on a variety of real-world educational datasets.

1.3 Related work
Factor analysis has been used extensively to analyze graded learner
response data [18, 22]. While some factor analysis methods treat
binary-valued graded learner responses as real numbers [2, 12],
others use probabilistic models to achieve superior performance in
predicting unobserved learner responses. These methods include
the additive factor model (AFM) [8], instructional factors analy-
sis (IFA) [9], and learning factor analysis (LFA) [21], which all
assume that the number of concepts K to be known a priori. Col-
laborative filtering IRT (CF-IRT) [5] and SPARFA [16] both use
cross-validation to select K, as well as all other tuning parame-
ters, by identifying the best prediction performance on unobserved



learner responses. This approach is computationally extensive and
does not scale to MOOC scale applications, where the dimension
of the problem is large and immediate feedback is required. The
authors of [4] proposed to select K by applying an SVD to the
binary-valued graded learner response matrix and examining the
decay of its singular values, which is not an automated approach.

Matrix completion (MC) aims to recover a low-rank matrix from
incomplete, real-valued observations [6, 7], and has been used ex-
tensively in collaborative filtering applications. More recently,
1-bit MC [11], and its generalization, quantized MC [14] have been
proposed for the recovery of low-rank matrices from incomplete
binary-valued and quantized (or ordinal) observations, respectively.
Since the graded learner responses in educational scenarios are typ-
ically binary-valued or ordinal, we next investigate the applicability
of quantized MC [14] to educational scenarios.

2. SPARFA-LITE STATISTICAL MODEL
SPARFA-Lite aims at recovering the unknown, low-rank matrix Z
that governs the learners’ responses to questions, solely from quan-
tized (ordinal) graded learner responses. Suppose that we have N
learners answering Q questions. Let the Q × N matrix Z be the
underlying low-rank matrix that we seek to recover. Let Yi,j ∈ O
denote the quantized observed graded response of the j th learner,
with j ∈ {1, . . . , N}, to the ith question, with i ∈ {1, . . . , Q}.
O = {1, . . . , P} is a set of P ordered labels. Inspired by [14], we
use the following model for the graded learner response Yi,j :

Yi,j = Q(Zi,j + εi,j), (i, j) ∈ Ωobs,

εi,j ∼ Logistic(0, 1) .
(1)

Here, Logistic(0, 1) represents the Logistic distribution with zero
mean and unit scale [13]. The set Ωobs ⊆ {1, . . . , Q} ×
{1, . . . , N} contains the indices associated to the observed learner
responses Yi,j . The function Q(·) : R → O represents a scalar
quantizer, defined as

Q(x) = p if ωp−1 < x ≤ ωp, p ∈ O,

where {ω0, . . . , ωP } is a set of quantization bin boundaries, with
ω0 ≤ ω1 ≤ · · · ≤ ωP−1 ≤ ωP . We will assume that the set
of quantization bin boundaries {ω0, . . . , ωP } is known a priori. In
situations where these bin boundaries are unknown, they can be
estimated directly from data (see, e.g., [14, 15] for the details).

In terms of the likelihood of the observed graded learner re-
sponses Yi,j , the model in (1) can be written equivalently as

p(Yi,j = p | Zi,j)= Φ(ωp−Zi,j)−Φ(ωp−1−Zi,j) , (2)

where Φ(x) = 1
1+e−x corresponds to the inverse logit link func-

tion. For this paper, we will be using only the inverse logit link
function as it leads to algorithms with lower computational com-
plexity comparing to the inverse probit link function [14].

The goal of the SPARFA-Lite algorithm detailed next is to recover
the unknown low-rank matrix Z given the observed binary-valued
graded learner responses Yi,j , (i, j) ∈ Ωobs.

3. THE SPARFA-LITE ALGORITHM
To recover the low-rank matrix Z from binary-valued graded
learner responses, we minimize the negative log-likelihood of the
observed graded learner responses Yi,j , (i, j) ∈ Ωobs, subject to a
low-rank promoting constraint on Z. In particular, we seek to solve

the following convex optimization problem:

(P)

®
minimize
Z∈RQ×N

f(Z) = −
∑

i,j:(i,j)∈Ωobs
log p(Yi,j |Zi,j)

subject to ‖Z‖ ≤ λ.

Here, the constraint ‖Z‖ ≤ λ is used to promote low-rank solu-
tions Z [7] and the parameter λ > 0 is used to control its rank.
In practice, one can use the nuclear norm constraint ‖Z‖∗ ≤ λ,
which is a convex relaxation of the (non-convex) low-rank con-
straint rank(Z) ≤ r [6,7]; alternatively, one can use the max-norm
constraint ‖Z‖max ≤ λ (see [17] for the details). We select the
only algorithm parameter λ > 0 via cross-validation. We empha-
size that this parameter-selection process of SPARFA-Lite is much
more efficient than that for regular SPARFA, which has three algo-
rithm parameters.

Since the gradient of the negative log-likelihood of the inverse logit
link function can be computed efficiently, (P) can be solved effi-
ciently via the FISTA framework [3]. Starting with an initialization
of the matrix Z, at each inner iteration ` = 1, 2, . . ., the algorithm
performs a gradient step that aims at reducing the objective function
f(Z), followed by a projection step that makes the solution satisfy
the constraint ‖Z‖ ≤ λ. Both steps are repeated until convergence.

The gradient step is given by Ẑ`+1 ← Z` − s`∇f , where s` is
the step-size at iteration ` (see [14] for the details on step-size se-
lection). The gradient of the objective function f(Z) with respect
to Z is given by

[∇f ]i,j =

®
Φ′(Li,j−Zi,j)−Φ′(Ui,j−Zi,j)

Φ(Ui,j−Zi,j)−Φ(Li,j−Zi,j)
if (i, j) ∈ Ωobs

0 otherwise,

where the derivative of the inverse logit link function corresponds
to Φ′(x) = 1

2+e−x+ex
. The Q×N matrices U and L contain the

upper and lower bin boundaries corresponding to the measurements
Yi,j , i.e., we have Ui,j = ωYi,j and Li,j = ωYi,j−1.

The projection step imposes low-rankness on Z. For the nuclear
norm constraint case ‖Z‖∗ ≤ λ, this step requires a projection
onto the nuclear norm ball with radius λ, which can be performed
by first computing the SVD of Z followed by projecting the vector
of singular values onto an `1-norm ball with radius λ (the details
can be found in [6]). The resulting projection step corresponds to

Z`+1 ← ‹Udiag(s)‹VT , with s = Pλ(diag(S)), (3)

where ‹US‹VT denotes the SVD of Ẑ`+1. The operator Pλ(·) de-
notes the projection of a vector onto the `1-norm ball with radius λ,
which can be computed at low complexity [14]. For the max-norm
constraint ‖Z‖max ≤ λ, the projection step can be calculated effi-
ciently by following the method put forward in [17]. We emphasize
that SPARFA-Lite is guaranteed to converge to a global optimum,
since the problem (P) is convex.

4. SPARFA-LITE LEARNING ANALYTICS
We now demonstrate how SPARFA-Lite can be used to perform
LA. To this end, we assume that there is tag information avail-
able for each question, i.e., there are a set of M user-defined la-
bels (tags) associated with the Q questions, with each question as-
sociated with at least one tag. We define the Q × M question-
tag matrix T with Ti,m = 1 if tag m is associated to question
i, and Ti,m = 0 otherwise. We also define the Q × N matrix
A with Ai,j = Φ(Zi,j) ∈ [0, 1], which is the de-noised and



completed version of the (partially observed) graded learner re-
sponse matrix Y. Using both matrices T and A, we can com-
pute the N × M learner tag knowledge matrix B with the en-
tries Bj,m = (

∑Q
i=1 Ti,m)−1B̃j,m ∈ [0, 1], where B̃ = ATT.

The entries Bj,m represent the de-noised concept knowledge of
learner j on tag m; large values represent good knowledge of tag
m, whereas small values represent poor tag knowledge. This tag
knowledge information is crucial for a PLS to perform LA.

5. EXPERIMENTS
We now compare SPARFA-Lite against existing factor analysis
methods for predicting unobserved learner responses, using real-
world educational datasets and demonstrate its efficacy in per-
forming LA. All algorithm parameters are selected through cross-
validation. All results are averaged over 25 independent Monte–
Carlo trials.

5.1 Predicting unobserved learner responses
We first compare the performance of SPARFA-Lite in predicting
unobserved graded learner responses with two state-of-the-art fac-
tor analysis algorithms.

Datasets. In this experiment, we use five different educational
datasets for: (1) an undergraduate course on fundamentals of elec-
trical engineering, consisting of N = 92 learners answering Q =
203 questions, with 99.5% of the answers observed; (2) an under-
graduate course on signals and systems, consisting of N = 41
learners answering Q = 143 questions, with 97.1% of the an-
swers observed; (3) an undergraduate course on introduction to
probability and statistics, consisting of N = 57 learners answer-
ing Q = 107 questions, with 68.9% of the answers observed; (4)
a university entrance exam, consisting of N = 1706 learners an-
swering Q = 60 questions, with 60.9% of the answers observed;
and (5) another university entrance exam, consisting of N = 1564
learners answering Q = 60 questions, with 70.8% of the an-
swers observed. The undergraduate course datasets are collected
via OpenStax Tutor [20]; see [24] for the details on the univer-
sity entrance exam dataset. Note that all of these datasets contain
binary-valued graded learner responses, which is a special case of
the general, quantized model proposed above (with P = 2 and
{ω0, ω1, ω2} = {−∞, 0,∞}). For simplicity, we will refer to the
individual datasets as Dataset 1-to-5, respectively.

Experimental setup. We now compare SPARFA-Lite against
CF-IRT [5] and SPARFA [16], two established factor analysis
methods that perform well in terms of predicting unobserved
graded learner responses. To assess prediction performance on un-
observed learner responses, we randomly puncture each dataset by
removing 20% of the observed learner responses in Y to form
a test set. We then train all three algorithms on the rest of the
observed learner responses and predict the unobserved responses
in the test set. Since CF-IRT and SPARFA both have the num-
ber of concepts K as a tuning parameter, we run both algorithms
using a range of possible values of K and select the value of K
that achieves the best prediction performance. For SPARFA-Lite,
we only need to select the value of the single algorithm parame-
ter λ that controls K. To assess the prediction performance of all
three algorithms, we use three well-established performance met-
rics: prediction accuracy (COR), prediction likelihood (LIK), and
area under the receiver operation characteristic curve (AUC) [10].
The prediction accuracy corresponds to the percentage of correctly
predicted responses. The prediction likelihood corresponds to the
average the predicted likelihood of the unobserved responses, i.e.,

Table 1: Performance comparison of SPARFA-Lite vs. CF-IRT
and SPARFA on predicting unobserved ratings for five educa-
tional datasets. Bold numbers represent the best performance
among the three algorithms. SPARFA-Lite achieves compara-
ble performance to CF-IRT and SPARFA in all experiments
and metrics at significantly lower computational complexity.

CF-IRT [5] SPARFA [16] SPARFA-Lite

Dataset 1
COR 0.8687 0.8711 0.8737
LIK 0.7286 0.7195 0.7235
AUC 0.8247 0.8056 0.8299

Dataset 2
COR 0.8061 0.8096 0.8181
LIK 0.6393 0.6759 0.6707
AUC 0.7985 0.7285 0.8047

Dataset 3
COR 0.7263 0.7000 0.7200
LIK 0.5876 0.5334 0.5699
AUC 0.7629 0.7116 0.7372

Dataset 4
COR 0.6967 0.7015 0.7019
LIK 0.5538 0.5587 0.5537
AUC 0.7180 0.7249 0.7175

Dataset 5
COR 0.6866 0.6880 0.6903
LIK 0.5506 0.5536 0.5505
AUC 0.7457 0.7478 0.7472∑

i,j:(i,j)∈Ω̄obs
p(Yi,j |Zi,j)

|Ω̄obs|
, where Ω̄obs represents the set of learner

responses in the test set. The area under curve is a commonly-used
performance metric for binary classifiers (see [10] for the details).

Results and discussion. Table 1 shows the mean of the perfor-
mance metrics over 25 trials. We see that SPARFA-Lite achieves
comparable performance as CF-IRT and SPARFA. Note that it out-
performs CF-IRT and SPARFA on the most important performance
metric–prediction accuracy (COR), with the exception of Dataset 3.

We emphasize that SPARFA-Lite is computationally more efficient
than CF-IRT and SPARFA, since it (i) has only a single algorithm
parameter and (ii) can be solved efficiently as it is a convex opti-
mization problem. CF-IRT and SPARFA, in contrast, have multiple
tuning parameters (including K) [5, 16], which means one have to
run them multiple times to conduct a grid search over all possible
values of these parameters. In particular, one Monte–Carlo trial
of SPARFA-Lite on Dataset 1 only takes 3 sec, while CF-IRT and
SPARFA require roughly 2 min. and 10 min. respectively, in MAT-
LAB on a standard desktop PC with a 3.07 GHz Intel Core i7 pro-
cessor (corresponding to 40× and 200× speed up). One can further
reduce the computational complexity of SPARFA-Lite by replacing
the nuclear norm constraint with the max-norm constraint [17].

5.2 SPARFA-Lite learning analytics
Dataset and experimental setup. In this experiment, we use
data collected from a high-school algebra test conducted on Ama-
zon’s Mechanical Turk [1]. The dataset consist of the quantized
(with P = 4 ordinal values) graded responses of N = 99 learners
answering Q = 34 questions, and the learner responses are fully
observed. A total of M = 13 tags have manually been assigned to
the questions. We use SPARFA-Lite to perform learning analytics
on this dataset as described in Sec. 4.

Results and discussion. Table 2 shows the tag knowledge pro-
file for a set of selected learners on the tags “Simplifying expres-
sions,” “Geometry,” and “Systems of equations.” The first row of



Table 2: Tag knowledge of selected learners. SPARFA-Lite per-
forms robust LA by estimating each learner’s tag knowledge
from ordinal graded response data.

Simplifying Geometry System of
expressions equations

Class average 69 % 64% 30%

Best learner 84% 79% 34%
Average learner 70% 63% 24%
Worst learner 32% 34% 43%

the table shows the mean tag knowledge of all learners (in pre-
cent), while rows 2–4 show the tag knowledge (in precent) for the
best learner, an average learner, and the worst learner, respectively.
Leveraging these tag knowledge profiles, a PLS can automatically
provide personalized feedback to learners on their strengths and
weaknesses, and automatically recommend learning resources for
remedial studies. For example, for the average learner in Table 2,
a PLS would alert them to focus on the tag “System of equations”
and recommend them learning resources associated with this tag,
because their tag knowledge is below the class average. Moreover,
a PLS can use this analysis to provide feedback to course instruc-
tors on the average tag knowledge of the entire class, helping them
to make timely adjustments to their future course plan.

6. CONCLUSIONS
SPARFA-Lite is an efficient method that analyzes an incomplete
set of quantized graded learner responses to questions to perform
learning analytics. SPARFA-Lite achieves comparable or supe-
rior performance in predicting unobserved graded learner responses
compared to existing factor-analysis methods, with significantly re-
duced computational complexity.
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