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Abstract—In this paper, we introduce a statistical data-
correction framework that aims at improving the DSP system
performance in presence of unreliable memories. The proposed
signal processing framework implements best-effort error mitiga-
tion for signals that are corrupted by defects in unreliable storage
arrays using a statistical correction function extracted from the
signal statistics, a data-corruption model, and an application-
specific cost function. An application example to communication
systems demonstrates the efficacy of the proposed approach.

I. INTRODUCTION

A main driver for the enormous success of modern dig-
ital signal processing (DSP) systems during recent years
has been the ability of the underlying integrated circuits to
perform computations and to store data in a 100% reliable
and reproducible manner. Unfortunately, the growing effect
of semiconductor-process parameter variation and the related
reliability issues that come along with modern deep-submicron
CMOS technologies are more and more putting an end to this
ideal behavior. In particular, the small feature sizes combined
with inaccuracies in the complex fabrication processes of
technology nodes beyond 45 nm lead to a strong variability of
transistor characteristics within and across different fabricated
integrated circuits, which can lead to a variety of failures.

Embedded memories are specifically prone to process vari-
ations as they are typically implemented using the smallest
feature sizes provided by the target process with the goal of
maximizing storage density. Current approaches to maintain a
high fabrication yield under these conditions rely on conserva-
tive design techniques, such as the use of larger bit-cells, or the
use of circuit-level error-correction coding (ECC) schemes that
add redundancy to stored data [1]–[3]. Unfortunately, these
techniques entail a significant overhead in terms of silicon area
and power consumption, thus contradicting with the low power
and high memory density requirements of modern wireless
communications and video processing system-on-chips [4].
Furthermore, these techniques are mostly a waste of re-
sources as they merely serve as precaution to maintain correct
functionality even for outliers in the manufacturing process.
Consequently, realizing cost effective and energy-efficient DSP
systems in the near future necessitates a paradigm shift toward
fault-tolerant circuit and systems that are resilient to the

various non-idealities and impairments caused by unreliable
silicon [5].

To our advantage, a host of applications, such as wireless
communications and video processing, are inherently fault
tolerant as they deal with stochastic signals that are already
distorted by noise and/or interference and naturally contain
redundancy. It has been observed that the performance of such
systems degrades only gracefully under a certain amount of
hardware failures induced by unreliable silicon components,
provided that the corresponding DSP algorithms and architec-
tures are designed to take such failures into account [6], [7].
Recent works [8], [9] have also shown that the protection of
only a small subset of carefully selected bits by using known
circuit techniques such as larger memory bit-cells suffices
to guarantee acceptable performance even under large failure
rates.

In this paper, we propose an alternative system-level method
for improving the robustness of fault-tolerant DSP systems
against data-corruptions in embedded memories. Instead of
adding redundancy via circuit-level ECC or using larger bit-
cells, we propose a data correction approach that statistically
corrects the output of unreliable memories using a correction
function that is based on an application-specific, probabilistic
cost function and on side information (Sec. II). As a proof-of-
concept, we consider a hardware related memory failure model
and show an application example for communication systems.
Our results demonstrate that the deployment of statistical data
correction can limit the error-rate performance under memory
failures (Sec. III). We conclude by summarizing potential
applications of the proposed framework (Sec. IV).

II. ROBUSTNESS VIA STATISTICAL DATA CORRECTION

We consider a fault-tolerant DSP system as depicted in
Fig. 1. The system comprises two general signal processing
blocks A and B that communicate via an unreliable memory.
The K-valued discrete input data d ∈ D = {d1, . . . , dK} of
the unreliable memory is assumed to be distributed according
to the probability mass function Pd(dk) = Pr(d = dk). To
store the data in the unreliable memory, a mapping function
∆(d), which determines the data representation, maps each
symbol dk to a N -dimensional binary-valued label vector sk,
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Fig. 1. Statistical data correction in unreliable DSP systems: A data mapping
function ∆ maps digital information to binary-valued labels that are stored in
an unreliable memory. The statistical data correction then corrects the memory
output using a correction function g together with side information Z about
the state of the system.

which we will refer to as label. We assume the function ∆ to
be bijective and thus, we have K = 2N .

Commonly used data representations in DSP systems are
the 2’s complement and the sign-magnitude number formats,
which enable the efficient implementation of basic arithmetic
operations in digital integrated circuits [10]. In this paper,
we solely focus on 2’s complement—however, it is worth
mentioning that by choosing different data representations one
can further reduce the impact of reliability issues on the quality
of fault-tolerant DSP systems (see [11] for more details).

A. Model for Unreliable Memories

Data corruption in unreliable memories is modeled as a
probabilistic channel that maps input labels s to output labels s̄
according to a label cross-over probability mass function
PC(sk, s̄k′) = Pr(s̄ = s̄k′ | s = sk) (see Fig. 1). In what
follows, we model the physical memory bit-cell errors using
the stuck-at channel model [11], which matches the standard-
failure model for embedded memories in nanometer CMOS
technologies that are affected by process variations [12]. This
model assumes that each bit-cell fails independently with a bit-
cell error probability ε (which is known for a given technology
node and circuit topology). In addition, a faulty bit cell is either
stuck-at-0 or stuck-at-1 with equal probability. The resulting
label cross-over probabilities are given by [11]

PC(sk, s̄k′) =

N−dH(sk,s̄k′ )∑
`=0

(
N − dH(sk, s̄k′)

`

)
×

(ε
2

)dH(sk,s̄k′ )+`

(1− ε)N−dH(sk,s̄k′ )−` , (1)

where dH(sk, s̄k′) denotes the Hamming distance between the
label vectors sk and s̄k′ . We emphasize that the fault model
can easily be replaced and adapted to the underlying memory
type, e.g., to model the errors in multi-level Flash memories.

B. Statistical Data Correction

To mitigate the errors induced by unreliable memories, we
propose to statistically correct the memory output-data based
on side information Z obtained from the system.

1) Sets of side information: For a more clear distinction
between system and hardware properties, we consider two
disjoint sets of side information ZS and ZH, respectively,
with Z = {ZS, ZH}. The first set ZS includes a-priori-known
statistical properties of the DSP system at hand, such as the
instantaneous signal-to-noise ratio (SNR) in communication
systems or the distribution of a particular wavelet coefficient
in video compression. The second set ZH includes information
about the state of the unreliable memory, such as the state of
individual bit-cells, e.g., whether they are stuck-at or not. This
side information can be obtained from production tests of the
fabricated dies, built-in self tests, or dedicated error-detection
circuits within the memory readout logic.

2) Correction function: The correction function g(s̄,Z)
corrects the output of the unreliable memory based on side
information Z and the potentially faulty observation s̄. This
function is defined offline by an application-specific (proba-
bilistic) cost function C, which takes into account the impact
of the unreliable memory on the system performance and is
also conditioned on the observed memory output-label s̄ and
on the side information Z . Specifically, the correction function
d∗ = g(s̄,Z) is given by the following optimization problem:

d∗ = g(s̄,Z) , arg min
d̄

C(d̄ | s̄,Z). (2)

3) Example cost function: As an example, consider the
expected mean squared error (MSE) between the memory
input d and the corrected output value d̄ as a cost function

C(d̄ | s̄,Z) , E
{

(d− d̄)2 | s̄,Z
}

(3)

with the expectation taken over the memory input d. Note that
the cost function (3) accounts for the statistics of processing
block A in Fig. 1 as well as the data corruption effects
inside the unreliable memory modeled by PC(s, s̄). A resulting
correction function would depend on the distribution Pd of the
memory input-data resulting from processing block A, which
is typically known in dedicated VLSI circuits for DSP systems.

C. Implementation of the Correction Function

The total number of individual instances of ZS and ZH

is denoted by ZS and ZH, respectively. For each instance
of side information Zi (i = 1, . . . , ZS × ZH) and for each
observed memory output-label s̄k, the corresponding corrected
value g(s̄k,Zi) is obtained by minimizing the cost function C
conditioned on s̄k and Zi (as shown in Eq. 2). The mini-
mization can be performed either analytically, or by means
of Monte-Carlo simulations, if no closed-form evaluation and
minimization of the cost function is possible. Once the ZSZH

available correction functions g(s̄k,Zi) have been computed,
they can be stored in the system. In practical systems, an
application of the correction function simply amounts to table
look-ups (parametrized by i and k), which can be implemented
as conventional on-chip look-up tables with very low hardware
complexity if KZSZH (the total side information that need to
be stored) is reasonably small [10].
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Fig. 2. Digital communication system employing BPSK transmission over an AWGN channel. The receiver consists of a soft-output detector, an LLR
quantization block, a data mapping function ∆, and an unreliable LLR memory. At the memory output, corrected LLR values are computed from the observed
label with the aid of the correction function g. The corrected LLRs are then passed to a soft-input decoder.

III. APPLICATION EXAMPLE: COMMUNICATION SYSTEMS

We next show an application example of the proposed
statistical data correction framework to a coded digital com-
munication receiver containing an unreliable memory.

A. System Model

We consider a communication system as shown in Fig. 2 and
thoroughly introduced in [11], [13]. A sequence of information
bits b[i] ∈ {0, 1} is encoded into a sequence of coded bits
c[n] using ECC. The coded bits are then mapped to BPSK
symbols and transmitted over an AWGN channel, which is
characterized by its instantaneous signal-to-noise ratio SNR.

1) Detection and quantization: At the receiver, a soft-
output detector computes log-likelihood ratio (LLR) values for
each coded bit c[n] based on the received signal y[n] as

L[n] = log

(
Pr(c[n] = 0 | y[n])

Pr(c[n] = 1 | y[n])

)
.

The computed LLR values L[n] are then passed through a
uniform1 N -bit scalar quantizer Q.

2) Unreliable LLR memory: The quantized LLR val-
ues d[n] are mapped to labels using the mapping function ∆
and stored in the unreliable LLR memory. In what follows,
we assume the label cross-over probabilities PC(s, s̄) defined
in (1), following the stuck-at channel model. In practice, the
unreliable memory is typically used for data (de-)interleaving
or as a large buffer that stores the LLR values of several data
(re-)transmissions in modern wireless communication systems
employing hybrid-ARQ (short for automatic repeat-request).

B. Statistical Data Correction for Unreliable LLR Memories

Following the framework from Sec. II, we statistically cor-
rect the output of the unreliable LLR memory (see Fig. 2).

1) MMSE-based correction function: As a baseline, we
consider gMMSE as defined in (3), which, when applied to
the system in Fig. 2, minimizes the expected MSE between
memory input LLR value d[n] and the corrected output
value d̄[n] conditioned on the observed memory output-
label and the side information Z . Basic arithmetic manipu-
lations show that the resulting correction function is given

1Uniform quantization is the de-facto standard in digital integrated circuits
for communication systems, e.g., [14], [15], but is not necessarily optimal.

by gMMSE = E{d[n] | s̄,Z}. We note that minimizing the bit
error-rate (BER) rather than the MSE between LLR-memory
input and output it is more relevant in communication systems.
Hence, we next show a superior choice of the correction
function that is tailored to the specifics of communication
systems.

2) Application-specific correction function: Rather than
correcting the LLR values directly, we propose to use a cor-
rection function that approximates the (coded) input bits c[n]
of the compound channel instead, i.e., we define

C(c̄ | s̄,Z) , E
{

(c[n]− c̄)2 | s̄,Z
}
.

This application-specific cost function leads to

ρ1 = Pr(c[n] = 1 | s̄,Z) = arg min
c̄

C(c̄ | s̄,Z), (4)

which corresponds to the probability that c[n] = 1 given
the output of the compound channel and side information. In
uncoded systems, one can directly use the probability ρ1 to
extract binary (or hard) estimates of the uncoded bits. In coded
systems, however, directly feeding such binary estimates to the
(soft-input) decoder would result in sub-optimal performance.
Hence, to compute LLR-values for the decoder, it is important
to realize that the probability ρ1 from (4) can be used to
directly extract corrected LLR values as follows:

d∗[n] = gProb(s̄[n],Z) , log

(
1− ρ1

ρ1

)
. (5)

Interestingly, we find that this alternative LLR correction func-
tion coincides with the correction method proposed in [16],
[17] to compensate mismatches in LLRs resulting from ap-
proximate data detection algorithms. We finally note that (4)
and, hence, the alternative correction function (5), can be
computed via Monte-Carlo simulations (averaged over noise
realizations and unreliable memory effects).

3) Impact of side information: Fig. 3(a) and Fig. 3(b)
show the two proposed correction functions gMMSE and gProb;
we assume an N = 5 bit quantizer and 2’s complement data
representation.2 We consider the following two sets of side

2N = 5 bit is a commonly used word width in channel decoders imple-
mented in application-specific integrated circuits (see, e.g., [15]).



-7.5 -5 -2.5 0 2.5 5 7.5
-10

-7.5

-5

-2.5

0

2.5

5

7.5

10

Unreliable memory output

C
o

rr
e

c
te

d
 L

L
R

 v
a

lu
e

 d
*

No data correction

gMMSE, Z1

gMMSE, Z2

S = 1

E = 1

∆−1(̄s)

(a)

-7.5 -5 -2.5 0 2.5 5 7.5
-10

-7.5

-5

-2.5

0

2.5

5

7.5

10

No data correction

gProb, Z1

gProb, Z2

S = 1

E = 1

Unreliable memory output

C
o

rr
e

c
te

d
 L

L
R

 v
a

lu
e

 d
*

∆−1(̄s)

(b)

Fig. 3. Statistical data correction in a coded communication system assuming a bit-cell error probability ε= 0.05, N = 5 bit quantization, and 2’s complement
data representation. (a) Correction function gMMSE for different sets of side information at SNR = 1 dB. (b) Correction function gProb for different sets of side
information at SNR = 1 dB.

information Z1|2 = {Z1|2
S ,Z1|2

H } with

Z1 = {SNR, E} and Z2 = {SNR, S}.

Here, E ∈ {0, 1} indicates for each LLR value stored in
the unreliable memory whether it is corrupted by stuck-at
faults (E = 1) or not (E = 0). The quantity S ∈ {0, 1}
indicates for each LLR value whether its sign-bit is corrupted
by a stuck-at fault (S = 1) or not (S = 0), ignoring
information about the remaining bits. The specific choice of
side information Z2 is motivated by the fact that the sign-
bit of an LLR value is the most critical bit as it determines
whether the corresponding code bit is more likely a 0 or a 1.

a) Observations for Z1: From Fig. 3(a) and Fig. 3(b),
we see that for Z1 with E = 0, the corresponding LLR
value stored in the unreliable memory is not corrupted by any
stuck-at faults and, thus, no correction has to be performed. In
contrast, for E = 1 we see that our statistical data correction
function reduces the magnitude (i.e., the reliability) of the LLR
values to account for the data corruption in the memory. We
emphasize, that gProb leads to a stronger reliability reduction
than gMMSE. Interestingly, the two non-zero LLR values with
smallest magnitude are corrected to values with opposite sign.

b) Observations for Z2: For Z2 with S = 0, almost
no correction is performed for both gMMSE and gProb, which
indicates that the memory output-label is considered reliable
as long as its sign-bit is not corrupted. For S = 1 on
the other hand, the LLR values are strongly corrected in
their magnitude and their sign. Comparing the two correction
functions, we observe that gProb strongly reduces the reliability
of all LLR values, while gMMSE leads to a larger spread of
LLR reliabilities. Intuitively, we expect a suitable statistical
correction function to reduce the LLR reliabilities, which is
clearly achieved for gProb.

C. Error-rate Performance Results

We next show that the proposed statistical data correction
framework significantly improves the robustness of communi-
cation systems against unreliable memories. As an example,
we assume that the encoder in Fig. 2 implements a con-
volutional code, which is decoded on receiver side using a
soft-input Viterbi algorithm.3 In such systems, the unreliable
LLR memory typically corresponds to the (usually large)
memory required for the de-interleaving of LLRs. It is worth
mentioning that convolutional codes are still prominently used
in many modern communication standards and hence, the
robustness of the Viterbi decoder in presence of unreliable
memories is of significant practical interest.

Fig. 4 shows the BER performance of the considered
system, assuming a bit-cell error probability ε = 0.05 and
N = 5 bit quantizer with 2’s complement data representation.

Generally, it can be observed that both the choice of the
correction function as well as the set of side information have
a strong impact on the efficacy of statistical data correction.
Specifically, we find that the application-specific correction
function gProb yields better BER performance than the MSE-
based function gMMSE. This behavior highlights the importance
of tailoring the cost function to the application at hand.
Furthermore, we observe that the gains of data correction
are more pronounced for Z2 than for Z1, demonstrating that
information about corrupted sign-bits of the memory output-
labels is extremely valuable to increase the robustness of the
system against memory reliability issues. In this example, sta-
tistical data correction based on gProb and side information Z2

improves the SNR by more than 1 dB compared to a reference

3We consider the rate-1/2, 256-state convolutional code as specified for the
3G cellular communication standards of 3GPP (see [18]).



-5 -4 -3 -2 -1 0 1 2 3
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

SNR [dB]

B
E

R

Reliable memory

No data correction

Z1, gProb

Z1, gMMSE

Z2, gMMSE

Z2, gProb

Fig. 4. BER performance of convolutional coding for different correction
functions.

system having no statistical data correction.

IV. CONCLUSION

Digital signal processing techniques can improve the out-
put quality of fault-tolerant DSP systems implemented with
unreliable silicon. The statistical data correction approach
proposed in this paper reduces the quality-degradation due to
reliability issues of memories by exploiting side information
on the unreliable system to minimize the expected cost. The
proposed DSP technique is suitable for applications requiring
large memories, where the complexity of data correction is
low compared to the overhead of adding redundancy to the
memory array for conventional error correction.

In addition to the provided application example in a coded
communication system, the generality of the proposed statisti-
cal correction framework finds potential use in many other
DSP systems for image-, video-, or audio-processing, for
example. The design, analysis, and VLSI implementation of
corresponding statistical correction methods is part of on-
going research.
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