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Abstract—State-of-the-art methods for learning unions of subspaces
from a collection of data leverage sparsity to form representations of each
vector in the dataset with respect to the remaining vectors in the dataset.
The resulting sparse representations can be used to form a subspace
affinity matrix to cluster the data into their respective subspaces. While
sparsity-driven methods for subspace clustering provide advantages over
traditional nearest neighbor-based approaches, sparse representations
often produce affinity matrices with weakly connected components that
are difficult to cluster, even with state-of-the-art clustering methods. In
this work, we propose a new algorithm that employs dense (least-squares)
representations to extract the subspace affinity between vectors in the
dataset. We demonstrate the advantages of the proposed dense subspace
clustering algorithm over state-of-the-art sparsity-driven methods on real
and synthetic data.

I. SPARSE SUBSPACE CLUSTERING

Unions of linear subspaces are a widely used signal model for
representing collections of high-dimensional data, such as images
of faces acquired under varying illumination conditions, motion
trajectories from different objects, or local field potentials in brain-
machine-interface applications [1], [2]. In order to use this signal
model, the subspaces that the collection of data live upon must be
learned from the data by performing subspace clustering—learning
subspaces present in the data and clustering the data based upon
the subspace membership of each vector. Subspace clustering is
challenging due to the fact that subspace estimation and segmentation
must be performed simultaneously.

Sparse subspace clustering (SSC) has been shown to yield state-
of-the-art performance on both synthetic and numerous real-world
image datasets [1]. In SSC, a sparse representation of a signal
in a collection of data is formed with respect to the remaining
signals in the same dataset. The idea underlying this approach is
that signals from the same subspace cluster will use one another in
their sparse representations, thus revealing which points belong to
the same subspace. SSC provides a powerful alternative to nearest
neighbor (NN)-based approaches to subspace clustering and enables
the derivation of guarantees that describe when convex methods [1],
[3] or greedy algorithms [2] yield representations that only contain
points from the same subspace.

Formally, SSC computes sparse representations ci ∈ Rd for each
point yi ∈ Rn, i = 1, . . . , d, via the following optimization problem:

ci = argminc̃∈Rd ‖c̃‖1 subject to yi =
∑

j : j 6=i yj c̃j , (1)

which are used to construct an affinity matrix CT = [ c1· · · cd ].
Spectral clustering is then performed on the graph Laplacian of
W = |C|+ |CT | to segment the data into subspace clusters [2].

II. DENSE SUBSPACE CLUSTERING

While sparse representations result in affinity matrices that contain
a small number of edges in the graph linking signals from different
subspaces, recovering subspace clusters from the affinity matrices
obtained via SSC is challenging due to the fact that sparse represen-
tations often produce weakly connected components between signals
in the same subspace. To circumvent this issue, we propose a novel
method for subspace clustering that is based on forming dense least-
squares representations1 from the data. This method, which we refer

1We replace the `1 norm in (1) with the `2 norm resulting in (typically
dense) least-squares representations of the data.
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Fig. 1. Affinity matrices from illumination subspaces. Left: NN; middle:
SSC via OMP; right: DSC. Classification errors for NN: Pm = 34.4%,
Pa = 20.9%; SSC: Pm = 8.8%, Pa = 1%; DSC: Pm = 5.6%, Pa =
0.3%, where Pm is the miss rate (points that are not included in their correct
subspace clusters) and Pa is the false alarm rate (points that are incorrectly
included in a subspace cluster). DSC clearly outperforms NN and SSC.
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Fig. 2. Probability of correct classification from noisy subspaces. Left: 10-
dimensional subspace intersection in R50 for varying SNR; right: 15 dB SNR
with varying subspace intersection. DSC clearly outperforms NN and SSC.

to as dense subspace clustering (DSC), produces affinity matrices
that have more tightly connected components than those obtained via
SSC. For this reason, spectral clustering algorithms operating on the
affinity matrices obtained via DSC can recover the subspace clusters
more reliably than SSC.

Specifically, we compute minimum `2-norm representations of
each vector in the dataset via the pseudo-inverse c̄i = Y†

(i)yi. After
forming dense representations for all d vectors in the dataset, we form
an affinity matrix W according to Wk,` = |〈c̄k, c̄`〉|/(‖c̄k‖2‖c̄`‖2)
and perform spectral clustering on the graph Laplacian of W. In the
noisy case, we compute a thresholded version of the pseudoinverse,
where small singular values are set to zero.

III. COMPARISONS AND CONCLUSIONS
In Figure 1, we display the affinity matrices computed from a set of

images collected from four different faces under various illumination
conditions; here, we compare nearest neighbor (NN) selection, SSC
via orthogonal matching pursuit (OMP), and DSC as proposed here.
In Figure 2, we test the classification performance of NN, OMP-
based SSC, and DSC on noisy synthetic data. For these experiments,
we generate vectors living on a pair of noisy and intersecting 10-
dimensional subspaces in R50. Both results suggest that dense repre-
sentations provide significant advantages over existing sparsity-based
subspace clustering methods. In particular, the proposed DSC method
requires low computational complexity and outperforms state-of-the-
art subspace clustering methods.
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