
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS 1
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Abstract—We investigate an orthogonal frequency-division
multiplexing (OFDM)-based downlink transmission scheme
for large-scale multi-user (MU) multiple-input multiple-output
(MIMO) wireless systems. The use of OFDM causes a high peak-
to-average (power) ratio (PAR), which necessitates expensive and
power-inefficient radio-frequency (RF) components at the base
station. In this paper, we present a novel downlink transmission
scheme, which exploits the massive degrees-of-freedom available
in large-scale MU-MIMO-OFDM systems to achieve low PAR.
Specifically, we propose to jointly perform MU precoding, OFDM
modulation, and PAR reduction by solving a convex optimization
problem. We develop a corresponding fast iterative truncation
algorithm (FITRA) and show numerical results to demonstrate
tremendous PAR-reduction capabilities. The significantly reduced
linearity requirements eventually enable the use of low-cost RF
components for the large-scale MU-MIMO-OFDM downlink.

Index Terms—Convex optimization, multi-user wireless com-
munication, multiple-input multiple-output (MIMO), orthogo-
nal frequency-division multiplexing (OFDM), peak-to-average
(power) ratio (PAR) reduction, precoding.

I. INTRODUCTION

LARGE-SCALE multiple-input multiple-output (MIMO)
wireless communication is a promising means to meet

the growing demands for higher throughput and improved
quality-of-service of next-generation multi-user (MU) wireless
communication systems [2]. The vision is that a large number
of antennas at the base-station (BS) would serve a large
number of users concurrently and in the same frequency band,
but with the number of BS antennas being much larger than
the number of users [3], say a hundred antennas serving ten
users. Large-scale MIMO systems also have the potential to
reduce the operational power consumption at the transmitter
and enable the use of low-complexity schemes for suppressing
MU interference (MUI). All these properties render large-scale
MIMO a promising technology for next-generation wireless
communication systems.

While the theoretical aspects of large-scale MU-MIMO
systems have gained significant attention in the research com-

Manuscript received February 1, 2012; accepted April 12, 2012.
Part of this paper has been presented at the 9th International Symposium

on Wireless Communication Systems (ISWCS), Paris, France, Aug. 2012 [1].
C. Studer is with the Dept. of Electrical and Computer Engineering, Rice

University, Houston, TX, USA (e-mail: studer@rice.edu). E. G. Larsson is
with the Dept. of Electrical Engineering, Linköping University, Linköping,
Sweden (e-mail: erik.larsson@isy.liu.se).

The work of C. Studer was supported by the Swiss National Science
Foundation (SNSF) under Grant PA00P2-134155. The work of E. G. Larsson
was supported by the Swedish Foundation for Strategic Research (SSF), the
Swedish Research Council (VR), and ELLIIT. E. G. Larsson is a Royal
Swedish Academy of Sciences (KVA) Research Fellow supported by a grant
from the Knut and Alice Wallenberg Foundation.

munity, e.g., [2]–[6], much less is known about practical trans-
mission schemes. As pointed out in [7], practical realizations
of large-scale MIMO systems will require the use of low-
cost and low-power radio-frequency (RF) components. To this
end, reference [7] proposed a novel MU precoding scheme for
frequency-flat channels, which relies on per-antenna constant-
envelope (CE) transmission to enable efficient implementation
using non-linear RF components. Moreover, the CE precoder
of [7] forces the peak-to-average (power) ratio (PAR) to unity,
which is not necessarily optimal as in practice there is always
a trade-off between PAR, error-rate performance, and power-
amplifier efficiency.

Practical wireless channels typically exhibit frequency-
selective fading and a low-PAR precoding solution suitable
for such channels would be desirable. Preferably, the solution
should be such that the complexity required in each (mobile)
terminal is small (due to stringent area and power constraints),
whereas heavier processing could be afforded at the BS.
Orthogonal frequency-division multiplexing (OFDM) [8] is an
efficient and well-established way of dealing with frequency-
selective channels. In addition to simplifying the equalization
at the receiver, OFDM also facilitates per-tone power and bit
allocation, scheduling in the frequency domain, and spectrum
shaping. However, OFDM is known to suffer from a high
PAR [9], which necessitates the use of linear RF components
(e.g., power amplifiers) to avoid out-of-band radiation and
signal distortions. Unfortunately, linear RF components are,
in general, more costly and less power efficient than their
non-linear counterparts, which would eventually result in
exorbitant costs for large-scale BS implementations having
hundreds of antennas. Therefore, it is of paramount importance
to reduce the PAR of OFDM-based large-scale MU-MIMO
systems to facilitate corresponding low-cost and low-power
BS implementations.

To combat the challenging linearity requirements of OFDM,
a plethora of PAR-reduction schemes have been proposed
for point-to-point single-antenna and MIMO wireless systems,
e.g., [10]–[16]. For MU-MIMO systems, however, a straight-
forward adaptation of these schemes is non-trivial, mainly
because MU systems require the removal of MUI using a pre-
coder [17]. PAR-reduction schemes suitable for the MU-MISO
and MU-MIMO downlink were described in [18] and [19],
respectively, and rely on Tomlinson-Harashima precoding.
Both schemes, however, require specialized signal processing
in the (mobile) terminals (e.g., modulo reduction), which
prevents their use in conventional MIMO-OFDM systems,
such as IEEE 802.11n [20] or 3GPP LTE [21].



2 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS

A. Contributions
In this paper, we develop a novel downlink transmission

scheme for large-scale MU-MIMO-OFDM wireless systems,
which only affects the signal processing at the BS while
leaving the processing required at each terminal untouched.
The key idea of the proposed scheme is to exploit the excess
of degrees-of-freedom (DoF) offered by equipping the BS
with a large number of antennas and to jointly perform MU
precoding, OFDM modulation, and PAR reduction, referred to
as PMP in the remainder of the paper. Our contributions can
be summarized as follows:
• We formulate PMP as a convex optimization problem,

which jointly performs MU precoding, OFDM modula-
tion, and PAR reduction at the BS.

• We develop and analyze a novel optimization algorithm,
referred to as fast iterative truncation algorithm (FITRA),
which is able to find the solution to PMP efficiently
for the (typically large) dimensions arising in large-scale
MU-MIMO-OFDM systems.

• We present numerical simulation results to demon-
strate the capabilities of the proposed MU-MIMO-OFDM
downlink transmission scheme. Specifically, we analyze
the trade-offs between PAR, error-rate performance, and
out-of-band radiation, and we present a comparison with
conventional precoding schemes.

B. Notation
Lowercase boldface letters stand for column vectors and

uppercase boldface letters designate matrices. For a ma-
trix A, we denote its transpose, conjugate transpose, and
largest singular value by AT , AH , and σmax(A), respectively;
A† = AH

(
AAH

)−1
stands for the pseudo-inverse of A and

the entry in the kth row and `th column is [A]k,`. The M×M
identity matrix is denoted by IM , the M ×N all-zeros matrix
by 0M×N , and FM refers to the M × M discrete Fourier
transform (DFT) matrix. The kth entry of a vector a is desig-
nated by [a]k; the Euclidean (or `2) norm is denoted by ‖a‖2,
‖a‖∞ = maxk|[a]k| stands for the `∞-norm, and the `∞̃-
norm [22] is defined as ‖a‖∞̃ = max

{
‖<{a}‖∞, ‖={a}‖∞

}
with <{a} and ={a} representing the real and imaginary
part of a, respectively. Sets are designated by upper-case
calligraphic letters; the cardinality and complement of the
set T is |T | and T c, respectively. For x ∈ R we define
[x]

+
= max{x, 0}.

C. Outline of the Paper
The remainder of the paper is organized as follows. Sec-

tion II introduces the system model and summarizes important
PAR-reduction concepts. The proposed downlink transmis-
sion scheme is detailed in Section III and the fast iterative
truncation algorithm (FITRA) is developed in Section IV.
Simulation results are presented in Section V and we conclude
in Section VI.

II. PRELIMINARIES

We start by introducing the system model that is considered
in the remainder of the paper. We then provide a brief

overview of (linear) MU precoding schemes and, finally, we
summarize the fundamental PAR issues arising in OFDM-
based communication systems.

A. System Model

We consider an OFDM-based MU-MIMO downlink sce-
nario as depicted in Fig. 1. The BS is assumed to have a
significantly larger number of transmit antennas N than the
number M � N of independent terminals (users); each ter-
minal is equipped with a single antenna only. The signal vector
sw ∈ OM contains information for each of the M users, where
w = 1, . . . ,W indexes the OFDM tones, W corresponds to
the total number of OFDM tones, O represents the set of scalar
complex-valued constellations, and [sw]m ∈ O corresponds to
the symbol at tone w to be transmitted to user m.1 We
normalize the symbols to satisfy E

{
|[sw]m|2

}
= 1/M . To

shape the spectrum of the transmitted signals, OFDM systems
typically specify certain unused tones (e.g., at both ends of the
spectrum [8]). Hence, we set sw = 0M×1 for w ∈ T c where T
designates the set of tones used for data transmission.

In order to remove MUI, the signal vectors sw, ∀w
are passed through a precoder, which generates W vec-
tors xw ∈ CN according to a given precoding scheme (see
Section II-B). Since precoding causes the transmit power
P =

∑W
w=1‖xw‖

2
2 to depend on the signals sw, ∀w and the

channel state, we normalize the precoded vectors xw, ∀w prior
to transmission as

x̂w = xw/
√∑

W
w=1‖xw‖

2
2, w = 1, . . . ,W, (1)

which ensures unit transmit power. We emphasize that this
normalization is an essential step in practice (i.e., to meet
regulatory power constraints). To simplify the presentation,
however, the normalization is omitted in the description of
the precoders to follow (but normalization is employed in all
simulation results shown in Section V). Hence, in what follows
xw and x̂w are treated interchangeably.

The (normalized) vectors xw, ∀w are then re-ordered (from
user orientation to transmit-antenna orientation) according to
the following one-to-one mapping:

[x1 · · · xW ] = [a1 · · · aN ]
T
. (2)

Here, the W -dimensional vector an corresponds to the
(frequency-domain) signal to be transmitted from the nth
antenna. The time-domain samples are obtained by applying
the inverse DFT (IDFT) according to ân = FHWan followed
by parallel-to-serial (P/S) conversion. Prior to modulation and
transmission over the wireless channel, a cyclic prefix (CP) is
added to the (time-domain) samples ân, ∀n to avoid ISI [8].

To simplify the exposition, we specify the input-output
relation of the wireless channel in the frequency domain only.
Concretely, we consider2

yw = Hwxw + nw, w = 1, . . . ,W, (3)

1For the sake of simplicity of exposition, we employ the same constellation
for all users. An extension to the general case where different constellations
are used by different users is straightforward.

2We assume perfect synchronization and a CP that is longer than the
maximum excess delay of the frequency-selective channel.
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Fig. 1. Large-scale MU-MIMO-OFDM downlink (left: BS with N transmit antennas; right: M independent single-antenna terminals). The proposed downlink
transmission scheme, referred to as PMP, combines MU precoding, OFDM modulation, and PAR reduction (highlighted by the dashed box in the BS).

where yw denotes the wth receive vector, Hw ∈ CM×N
represents the MIMO channel matrix associated with the
wth OFDM tone, and nw is an M -vector of i.i.d. complex
Gaussian noise with zero-mean and variance N0 per entry.
The average receive signal-to-noise-ratio (SNR) is defined by
SNR = 1/N0. Finally, each of the M user terminals per-
forms OFDM demodulation to obtain the received (frequency-
domain) signals [yw]m, w = 1, . . . ,W (see Fig. 1).

B. MU Precoding Schemes

In order to avoid MUI, precoding must be employed at the
BS. To this end, we assume the channel matrices Hw, ∀w to be
known perfectly at the transmit-side.3 Linear precoding now
amounts to transmitting xw = Gwsw, where Gw ∈ CN×M
is a suitable precoding matrix. One of the most prominent
precoding schemes is least-squares (LS) precoding (or linear
zero-forcing precoding), which corresponds to Gw = H†w.
Since HwH

†
w = IM , transmitting xw = H†wsw perfectly

removes all MUI, i.e., it transforms (3) into M independent
single-stream systems yw = sw + nw. Note that LS precoding
is equivalent to transmitting the solution ẋw to the following
convex optimization problem:

(LS) minimize
x̃

‖x̃‖2 subject to sw = Hwx̃.

This formulation inspired us to state the MU-MIMO-OFDM
downlink transmission scheme proposed in Section III as a
convex optimization problem.

Several other linear precoding schemes have been pro-
posed in the literature, such as matched-filter (MF) precoding,
minimum-mean square-error (MMSE) precoding [17], or more
sophisticated non-linear schemes, such as dirty-paper cod-
ing [23]. In the remainder of the paper, we will occasionally
consider MF precoding, which corresponds to Gw = HH

w .
Since HwH

H
w is, in general, not a diagonal matrix, MF

is normally unable to remove the MUI. Nevertheless, MF
precoding was shown in [6] to be competitive for large-scale
MIMO in some operating regimes and in [3] to perfectly
remove MUI in the large-antenna limit, i.e., when N →∞.

3In large-scale MU-MIMO systems, channel-state information at the trans-
mitter would probably be acquired through pilot-based training in the uplink
and by exploiting reciprocity of the wireless channel [2], [3].

C. Peak-to-Average Ratio (PAR)

The IDFT required at the transmitter causes the OFDM
signals ân, ∀n to exhibit a large dynamic range [8]. Such
signals are susceptible to non-linear distortions (e.g., saturation
or clipping) typically induced by real-world RF components.
To avoid unwanted out-of-band radiation and signal distortions
altogether, linear RF components and PAR-reduction schemes
are key to successfully deploy OFDM in practical systems.

1) PAR Definition: The dynamic range of the transmitted
OFDM signals is typically characterized through the peak-to-
average (power) ratio (PAR). Since many real-world RF-chain
implementations process and modulate the real and imaginary
part independently, we define the PAR at the nth transmit
antenna as4

PARn =
2W‖ân‖2∞̃
‖ân‖22

. (4)

As a consequence of standard vector-norm relations, (4) sat-
isfies 1 ≤ PARn ≤ 2W . Here, the upper bound corresponds
to the worst-case PAR and is achieved for signals having only
a single (real or imaginary) non-zero entry. The lower bound
corresponds to the best case and is realized by transmit vectors
whose (real and imaginary) entries have constant modulus.
To minimize distortion due to hardware non-linearities, the
transmit signals should have a PAR that is close to one; this
can either be achieved by CE transmission [7] or by using
sophisticated PAR-reduction schemes.

2) PAR-Reduction Schemes for OFDM: Prominent PAR-
reduction schemes for single-antenna communication sys-
tems are selected mapping (SM) [10], partial transmit se-
quences [11], active constellation extension (ACE) [12], and
tone reservation (TR) [13], [15]. PAR-reduction schemes for
point-to-point MIMO systems mostly rely on SM or ACE and
have been described in, e.g., [14], [16]. For the MU-MIMO
downlink, a method relying on Tomlinson-Harashima precod-
ing and lattice reduction has been introduced recently in [19];
this method, however, requires dedicated signal-processing
algorithms at both ends of the wireless link (e.g., modulo

4Note that alternative PAR definitions exist in the literature, e.g., using the
`∞-norm in the nominator instead of the `∞̃-norm (and W instead of 2W ).
The relation 1

2
‖ân‖2∞ ≤ ‖ân‖2∞̃ ≤ ‖ân‖2∞ shown in [22, Eq. 12] ensures

that reducing the PAR as defined in (4) also reduces an `∞-norm-based PAR
definition (and vice versa). Moreover, the theory and algorithms presented in
this paper can easily be reformulated to directly reduce an `∞-norm-based
PAR definition.
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reduction in the receiver). In contrast, the transmission scheme
developed next aims at reducing the PAR by only exploiting
the excess of transmit antennas available at the BS. This
approach has the key advantage of being transparent to the
receivers, i.e., it does not require any special signal-processing
algorithms in the (mobile) terminals. Hence, the proposed
precoding scheme can be deployed in existing MIMO-OFDM
systems for which channel-state information is available at the
transmitter, such as IEEE 802.11n [20].

III. DOWNLINK TRANSMISSION SCHEME

The main idea of the downlink transmission scheme de-
veloped next is to jointly perform MU precoding, OFDM
modulation, and PAR reduction, by exploiting the DoF avail-
able in large-scale MU-MIMO systems. To convey the basic
idea and to characterize its fundamental properties, we start
by considering a simplified MIMO system. We then present
the MU-MIMO-OFDM downlink transmission scheme in full
detail and conclude by discussing possible extensions.

A. Basic Idea and Fundamental Properties

To convey the main idea of the proposed precoding method,
let us consider an OFDM-free (narrow-band, flat-channel)
MU-MIMO system with the real-valued input-output relation
y = Hx + n and an M × N channel matrix satisfying
M < N . To eliminate MUI, the transmit-vector x must satisfy
the precoding constraint s = Hx, which ensures that y = s+n
when transmitting the vector x. Since M < N , the equation
s = Hx is underdetermined; this implies that there are, in
general, infinitely many solutions x satisfying the precoding
constraint. Our hope is now to find a suitable vector ẋ having
a small dynamic range (or low PAR).

A straightforward approach that reduces the dynamic range
is to transmit the solution ẋ of the following optimization
problem:

(P-DYN)

{
minimize
α,β,x̃

α− β

subject to s = Hx̃, β ≤ |[x̃]i| ≤ α,∀i.

Unfortunately, the second constraint β ≤ |[x̃]i| ≤ α,∀i causes
this problem to be non-convex and hence, finding the solution
of (P-DYN) with efficient algorithms seems to be difficult.

1) Convex Relaxation: To arrive at an optimization problem
that reduces the dynamic range and can be solved efficiently,
we relax (P-DYN). Specifically, β ≤ |[x̃]i| ≤ α is replaced by
|[x̃]i| ≤ α, which leads to the following convex optimization
problem:

(P-INF) minimize
x̃

‖x̃‖∞ subject to s = Hx̃.

Intuitively, as (P-INF) minimizes the magnitude of the largest
entry of x̃, we can expect that its solution ẋ exhibits low PAR.
In fact, (P-INF) has potentially smaller PAR than a transmit
vector resulting from LS precoding. To see this, we note that
‖ẋ‖∞ ≤

∥∥H†s∥∥∞, where ẋ is the minimizer of (P-INF)
and H†s corresponds to the LS-precoded vector. Since H†s
is the `2-norm minimizer, we have

∥∥H†s∥∥
2
≤ ‖ẋ‖2 and,

consequently, the PAR-levels of (P-INF) and of LS precoding
satisfy

PARP-INF =
N‖ẋ‖2∞
‖ẋ‖22

≤
N
∥∥H†s∥∥2∞
‖H†s‖22

= PARLS,

which implies that the PAR associated with (P-INF) cannot be
larger than that of LS precoding. We confirm this observation
in Section V, where the proposed downlink transmission
scheme is shown to achieve substantially lower PAR than for
LS precoding.

2) Benefits of Large-Scale MIMO: To characterize the
benefit of having a large number of transmit antennas at the
BS on the PAR when using (P-INF), we first restate a central
result from [24].

Proposition 1 ([24, Prop. 1]): Let H have full (column)
rank and 1 ≤M < N . Generally5, the solution ẋ to (P-INF)
has N −M + 1 entries with magnitude equal to ‖ẋ‖∞. The
M − 1 remaining entries might have smaller magnitude.

With this result, we are able to derive the following upper
bound on the PAR on the solution ẋ to (P-INF):

PARP-INF =
N‖ẋ‖2∞
‖ẋ‖22

≤ N

N −M + 1
. (5)

Here, the following inequality is an immediate consequence
of Proposition 1, i.e., we have

‖ẋ‖22 =
∑
X
‖ẋ‖2∞ +

∑
i∈X c

|[ẋ]i|2

≥
∑
X
‖ẋ‖2∞ = (N −M + 1)‖ẋ‖2∞ ,

where X is the set of indices associated with the N −M +1
entries of ẋ for which |[ẋ]i| = ‖ẋ‖∞. It is now key to realize
that for a constant number of users M and in the large-antenna
limit N → ∞, the bound (5) implies that PARP-INF → 1.
Hence, for systems having a significantly larger number of
transmit antennas than users—as is the case for typical large-
scale MU-MIMO systems [2], [3], [5], [6]—a precoder that
implements (P-INF) is able to achieve a PAR that is arbitrarily
close to unity. This means that in the large-antenna limit of
N → ∞, (P-INF) yields constant-envelope signals, while
being able to perfectly eliminate the MUI.

B. Joint Precoding, Modulation, and PAR Reduction (PMP)

The application of (P-INF) to each time-domain sample
after OFDM modulation would reduce the PAR but, unfor-
tunately, would no longer allow the equalization of ISI using
conventional OFDM demodulation. In fact, such a straightfor-
ward PAR-reduction approach would necessitate the deploy-
ment of sophisticated equalization schemes in each terminal.
To enable the use of conventional OFDM demodulation in the
receiver, we next formulate the convex optimization problem,
which jointly performs MU precoding, OFDM modulation,
and PAR reduction.

5Note that [24, Prop. 1] implicitly excludes certain specific instances of the
matrix H, such as instances having collinear columns.
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We start by specifying the necessary constraints. In order to
remove MUI, the following precoding constraints must hold:

sw = Hwxw, w ∈ T . (6)

To ensure certain desirable spectral properties of the transmit-
ted OFDM signals, the inactive OFDM tones (indexed by T c)
must satisfy the following shaping constraints:

0N×1 = xw, w ∈ T c. (7)

PAR reduction is achieved similarly to (P-INF), with the main
difference that we want to minimize the `∞̃-norm of the
time-domain samples ân, ∀n. In order to simplify notation,
we define the (linear) mapping between the time-domain
samples ân, ∀n, and the wth (frequency-domain) transmit
vector xw as xw = fw(â1, . . . , âN ), where the linear function
fw(·) applies the DFT according to an = FW ân, ∀n and
performs the re-ordering defined in (2).

With (6) and (7), we are able to formulate the downlink
transmission scheme as a convex optimization problem:

(PMP)


minimize
ã1,...,ãN

max
{
‖ã1‖∞̃ , . . . , ‖ãN‖∞̃

}
subject to sw = Hwfw(ã1, . . . , ãN ), w ∈ T

0N×1 = fw(ã1, . . . , ãN ), w ∈ T c.

The vectors ân, ∀n which minimize (PMP) correspond to
the time-domain OFDM samples to be transmitted from each
antenna. Following the reasoning of Section III-A, we expect
these vectors to have low PAR (see Section V for correspond-
ing simulation results). In what follows, “PMP” refers to the
general method of jointly performing precoding, modulation,
and PAR reduction, whereas “(PMP)” refers to the actual
optimization problem stated above.

C. Relaxation of (PMP)

The high dimensionality of (PMP) for large-scale MIMO
systems necessitates corresponding efficient optimization al-
gorithms. To this end, we relax the constraints of (PMP) to
arrive at an optimization problem that can be solved efficiently
using the algorithm developed in Section IV.

To simplify the notation, we aggregate all time-domain
vectors in a = [ âT1 · · · âTN ]T and rewrite the constraints of
(PMP) as a single linear system of equations. Specifically, both
constraints in (PMP) can be rewritten as b = Ca, where the
vector b is a concatenation of sw, w ∈ T and |T c| all-zeros
vectors of dimension N ; the matrix C implements the right-
hand-side of the constraints (6) and (7), i.e., also includes the
inverse Fourier transforms.6 We can now re-state (PMP) in
more compact form as

(PMP) minimize
a

‖a‖∞̃ subject to b = Ca.

In practice, it is desirable to relax the constraint b = Ca.
Firstly, from an implementation point-of-view, relaxing the
constraints in (PMP) enables us to develop an efficient algo-
rithm (see Section IV). Secondly, in the medium-to-low SNR

6For the sake of simplicity of exposition, the actual structural details of the
matrix C are omitted.

regime, the effect of thermal noise at the receiver is com-
parable to that of MUI and out-of-band interference. Hence,
relaxing the equation b = Ca to

∥∥b−Ca
∥∥
2
≤ η does not

significantly degrade the performance for small values of η. To
develop an efficient algorithm for the large dimensions faced
in large-scale MU-MIMO-OFDM systems (see Section IV),
we state a relaxed version of (PMP) in Lagrangian form as

(PMP-L) minimize
a

λ‖a‖∞̃ +
∥∥b−Ca

∥∥2
2
,

where λ > 0 is a regularization parameter. Note that (PMP-
L) is an `∞̃-norm regularized LS problem and λ allows one
to trade fidelity to the constraints with the amount of PAR
reduction (similarly to the parameter η); the associated trade-
offs are investigated in Section V-D. Note that the algorithm
developed in Section IV operates on real-valued variables.7

To this end, (PMP) and (PMP-L) must be transformed into
equivalent real-valued problems. This transformation, how-
ever, is straightforward and we omit the details due to space
limitations.

D. Extensions of PMP
The basic ideas behind PMP can be extended to several

other scenarios. Corresponding examples are outlined in the
next paragraphs.

1) Emulating Other Linear Precoders: By replacing the
precoding constraints in (6) by

HwPwsw = Hwxw, w ∈ T , (8)

where Pw is an N ×M precoding matrix of choice, one can
generalize PMP to a variety of linear precoders. We emphasize
that this generalization allows one to trade MUI removal with
noise enhancement and could be used to take into account
imperfect channel-state information at the transmitter, e.g., by
using a minimum mean-square error precoder (see, e.g., [17]).

2) Peak-Power Constrained Optimization: Instead of nor-
malizing the power of the transmitted vectors as in (1), one
may want to impose a predefined upper bound Pmax on the
transmit power already in the optimization problem. To this
end, an additional constraint of the form ‖a‖22 ≤ Pmax could
be added to (PMP), which ensures that—if a feasible solu-
tion exists—the transmit power does not exceed Pmax. This
constraint maintains the convexity of (PMP) but requires the
development of a novel algorithm, as the algorithm proposed in
Section IV is unable to consider such peak-power constraints
in a straightforward manner.

3) Combining PMP with Tone-Reservation (TR): In [15],
the authors proposed to combine Kashin representations [24],
[25] with TR to reduce the PAR in OFDM-based communica-
tion systems. The underlying idea is to obtain a time-domain
signal that exhibits low PAR by exploiting the DoF offered by
TR. We emphasize that PMP can easily be combined with TR,
by removing certain precoding constraints (6). Specifically,
only a subset Td ⊂ T is used for data transmission; the
remaining tones T cd are reserved for PAR reduction. This
approach offers additional DoF and is, therefore, expected to
further improve the PAR-reduction capabilities of PMP.

7A complex-valued formulation of the `∞-norm minimization algorithm
proposed in Section IV is straightforward.
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4) Application to Point-to-Point MIMO Systems: The pro-
posed transmission scheme can be used for point-to-point
MIMO systems for which channel-state information is avail-
able at the transmitter, e.g., IEEE 802.11n [20]. In such
systems, MUI does not need to be removed as the MIMO
detector is able to separate the transmitted data streams;
hence, there is potentially more flexibility in the choice of the
precoding matrices Pw, ∀w, as opposed to in a MU-MIMO
scenario, which requires the removal of MUI.

5) Application to Single-Carrier Systems: The idea of PMP,
i.e., to simultaneously perform precoding, modulation, and
PAR reduction, can also be adapted for single-carrier large-
scale MIMO systems exhibiting ISI. To this end, one might
want to replace the constraints in (P-INF) by8



ŝ1
ŝ2
...
ŝD

ŝD+1

...
ŝQ


=



Ĥ1 0M×N · · · 0M×N
Ĥ2 Ĥ1 · · · 0M×N

...
...

. . .
...

ĤD ĤD−1 · · · Ĥ1

0M×N ĤD · · · Ĥ2

...
...

. . .
...

0M×N 0M×N · · · ĤD





x̂1

x̂2

...
x̂D

x̂D+1

...
x̂Q


and minimize the `∞̃-norm of the vector x = [ x̂T1 · · · x̂TQ ]T ,
which contains the PAR-reduced time-domain samples to be
transmitted. The channel matrices Ĥt are associated to the
delay (or tap) t = 1, . . . , D, the information symbols are
denoted by ŝq , q = 1, . . . , Q, and Q ≥ D refers to the number
of transmitted information symbols per block. Alternatively to
PMP, the CE precoding scheme developed in [7] can also be
used with the constraints given above. A detailed investigation
of both transmission schemes is, however, left for future work.

IV. FAST ITERATIVE TRUNCATION ALGORITHM

A common approach to solve optimization problems of the
form (PMP) and (PMP-L) is to use interior-point methods [26].
Such methods, however, often result in prohibitively high
computational complexity for the problem sizes faced in large-
scale MIMO systems. Hence, to enable practical implementa-
tion, more efficient algorithms are of paramount importance.
While a large number of computationally efficient algorithms
for the `1-norm regularized LS problem have been developed
in the compressive-sensing and sparse-signal recovery litera-
ture, e.g., [27], efficient solvers for the `∞-norm regularized
LS problem (PMP-L), however, seem to be missing.

A. Summary of ISTA/FISTA

In this section, we summarize the framework developed
in [28] for `1-norm-based LS, which builds the basis of the
algorithm derived in Section IV-B for solving (PMP-L).

8Note that the exact structure of the Toeplitz matrix depends on the pre-
and post-ambles of the used block-transmission scheme.

1) ISTA: The goal of the iterative soft-thresholding algo-
rithm (ISTA) developed in [28] is to compute the solution x̂
to real-valued convex optimization problems of the form

(P) minimize
x

F (x) = g(x) + h(x),

where g(x) is a real-valued continuous convex function that is
possibly non-smooth and h(x) is a smooth convex function,
which is continuously differentiable with the Lipschitz con-
stant L. The resulting algorithms are initialized by an arbitrary
vector x0. The main ingredient of ISTA is the proximal map
defined as [28]

pL(y) = arg min
x

{
g(x)+

L

2

∥∥∥∥x−(y− 1

L
∇h(y)

)∥∥∥∥2
2

}
, (9)

which constitutes the main iteration step defined as:

xk = pL(xk−1), k = 1, . . . ,K.

Here, K denotes the maximum number of iterations. We
emphasize that (9) has a simple closed-form solution for
`1-norm regularized LS, leading to a low-complexity first-
order algorithm, i.e., an algorithm requiring i) matrix-vector
multiplications and ii) simple shrinkage operations only. The
first property renders ISTA an attractive solution for PMP,
as the involved matrices C and its adjoint C

H
exhibit a

structure that enables fast matrix-vector multiplication (see
Section III-C).

2) Fast Version of ISTA: As detailed in [28], ISTA ex-
hibits sub-linear convergence, i.e., F (xk)− F (x∗) ' O(1/k),
where x∗ designates the optimal solution to (P). In order to
improve the convergence rate, a fast version of ISTA, referred
to as FISTA, was developed in [28]. The main idea of FISTA
is to evaluate the proximal map (9) with a (linear) combination
of the previous two points (xk−1,xk−2) instead of xk−1 only
(see [28] for the details), which improves the convergence rate
to F (xk) − F (x∗) ' O(1/k2) and builds the foundation of
the algorithm for solving (PMP-L) described next.

B. Fast Iterative Truncation Algorithm (FITRA)

To simplify the derivation of the first-order algorithm for
solving (PMP-L), we describe the algorithm for solving the
Lagrangian variant of (P-INF) defined as follows:

(P-INF-L) minimize
x̃

λ‖x̃‖∞ + ‖s−Hx̃‖22 .

First, we must compute the (smallest) Lipschitz constant L
for the function h(x) = ‖s−Hx‖22 and then, evaluate the
proximal map (9) for the functions g(x) = λ‖x‖∞ and h(x).

1) FITRA: The (smallest) Lipschitz constant of the gradient
∇h(x) corresponds to L = 2σ2

max(H), which can, for example,
be calculated efficiently using the power method [29]. To
compute the proximal map (9) for (P-INF-L), we define the
auxiliary vector

w = y − 1

L
∇h(y) = y − 2

L
HT(Hy − x)
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Algorithm 1 Fast Iterative Truncation Algorithm (FITRA)
1: initialize x0 ← 0N×1, y1 ← x0, t1 ← 1, L← 2σ2

max(H)
2: for k = 1, . . . ,K do
3: w← yk − 2

LH
T (Hyk − s)

4: α← arg min
α̃

{
λα̃+ L

2

∑N
i=1

(
[|[w]i| − α̃]+

)2}
5: xk ← truncα(w)
6: tk+1 ← 1

2

(
1 +

√
1 + 4t2k

)
7: yk+1 ← xk +

tk−1
tk+1

(xk − xk−1)
8: end for
9: return xK

which enables us to re-write the proximal map in more
compact form as

pL(y) = arg min
x̃

{
λ‖x̃‖∞ +

L

2
‖x̃−w‖22

}
. (10)

Unfortunately, (10) does—in contrast to `1-norm regularized
LS—not have a simple closed-form solution for (P-INF-L).
Nevertheless, standard algebraic manipulations enable us to
evaluate the proximal map efficiently using the following two-
step approach: First, we compute

α = arg min
α̃

{
λα̃+

L

2

N∑
i=1

(
[|[w]i| − α̃]+

)2}
, (11)

for which general-purpose scalar optimization algorithms, such
as the bisection method [30], can be used.9 Then, we apply
element-wise truncation (clipping) of w to the interval [−α, α]
according to pL(x) = truncα(w). The truncation operator
applied to the scalar x ∈ R is defined as

truncα(x) = min
{
max{x,−α},+α

}
.

The resulting first-order algorithm, including the methods
proposed in [28] to improve the convergence rate (compared
to ISTA), is detailed in Algorithm 1 and referred to as the fast
iterative truncation algorithm (FITRA).

2) Convergence Rate: The following proposition is an
immediate consequence of the convergence results for
ISTA/FISTA in [28, Thm. 4.4] and characterizes the conver-
gence rate of FITRA analytically.

Proposition 2: The convergence rate of FITRA (as detailed
in Algorithm 1) satisfies

F (xk)− F (x∗) ≤
2L‖x0 − x∗‖22

(k + 1)2
,

where x∗ denotes the solution to (P-INF-L), xk is the FITRA
estimate at iteration k, x0 the initial value at iteration k = 0,
and F (x) = λ‖x‖∞ + ‖s−Hx‖22.

We emphasize that continuation strategies, e.g., [32], po-
tentially reduce the computational complexity of FITRA; the
investigation of such methods is left for future work.

9Note that in certain situations, borrowing techniques from [31] may lead
to faster computation of the proximal map (10).

C. Related Work

An algorithm to compute an approximation to (P-INF) re-
lying an iterative truncation procedure similar to FITRA was
proposed in [25]. The main differences between these algo-
rithms are as follows: The algorithm in [25] requires the ma-
trix H to be a tight frame and relies on a constant (and
pre-defined) truncation parameter, which depends on H and
cannot be computed efficiently in practice. In the present ap-
plication, however, the matrix H is, in general, not a tight
frame and depends on the channel realization; this requires
to chose the truncation parameter in [25] heuristically and
hence, convergence of this method is no longer guaranteed.
FITRA, in contrast, does not require the matrix H to be a
tight frame, avoids manual tuning of the truncation parameter,
and is guaranteed to converge to the solution of (P-INF-L).

V. SIMULATION RESULTS

In this section, we demonstrate the efficacy of the proposed
joint precoding, modulation, and PAR reduction approach, and
provide a comparison to conventional MU precoding schemes.

A. Simulation Parameters

Unless explicitly stated otherwise, all simulation results are
for a MU-MIMO-OFDM system having N = 100 antennas
at the BS and serving M = 10 single-antenna terminals. We
employ OFDM with W = 128 tones and use a spectral map T
as specified in the 40 MHz-mode of IEEE 802.11n [20].10 We
consider coded transmission, i.e., for each user, we indepen-
dently encode 216 information bits using a convolutional code
(rate-1/2, generator polynomials [133o 171o], and constraint
length 7), apply random interleaving (across OFDM tones),
and map the coded bits to a 16-QAM constellation (using
Gray labeling).

To implement (PMP-L), we use FITRA as detailed in Al-
gorithm 1 with a maximum number of K = 2000 iterations
and a regularization parameter of λ = 0.25. In addition to
LS and MF precoding, we also consider the performance of
a baseline precoding and PAR-reduction method. To this end,
we employ LS precoding followed by truncation (clipping)
of the entries of the time-domain samples ân, ∀n. We use a
clipping strategy where one can specify a target PAR, which
is then used to compute a clipping level for which the PAR
in (4) of the resulting time-domain samples is no more than
the chosen target PAR.

The precoded and normalized vectors are then transmitted
over a frequency-selective channel modeled as a tap-delay line
with T = 4 taps. The time-domain channel matrices Ĥt, t =
1, . . . , T , that constitute the impulse response of the channel,
have i.i.d. circularly symmetric Gaussian distributed entries
with zero mean and unit variance. To detect the transmitted
information bits, each user m performs soft-output demod-
ulation of the received symbols [yw]m, w = 1, . . . ,W and
applies a soft-input Viterbi decoder.

10We solely consider |T | = 108 data-carrying tones; the tones reserved
for pilot symbols in IEEE 802.11n [20] are ignored in all simulations.
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(a) (b)

Fig. 2. Time/frequency representation for different precoding schemes. The target PAR for LS+clip is 4 dB and λ = 0.25 for PMP relying on FITRA.
(a) Time-domain signals (PAR: LS = 10.4 dB, LS+clip = 4.0 dB, MF = 10.1 dB, and PMP = 1.9 dB). Note that PMP generates a time-domain signal of
substantially smaller PAR than LS and MF. (b) Frequency-domain signals (OBR: LS = −∞ dB, LS+clip = −11.9 dB, MF = −∞ dB, and PMP = −52.9 dB).
Note that LS, MF, and PMP preserve the spectral properties. LS+clip suffers from substantial OBR (visible at both ends of the spectrum).

(a) (b)

Fig. 3. PAR and SER performance for various precoding schemes. The target PAR for LS+clip is 4 dB and λ = 0.25 for PMP relying on FITRA. (a)
PAR performance (the curves of LS and MF overlap). Note that PMP effectively reduces the PAR compared to LS and MF precoding. (b) Symbol error-rate
(SER) performance. Note that the signal normalization causes 1 dB SNR-performance loss for PMP compared to LS precoding. The loss of MF is caused by
residual MUI; the loss of LS+clip is caused by normalization and residual MUI.

B. Performance Measures

To compare the PAR characteristics of different precoding
schemes, we use the complementary cumulative distribution
function (CCDF) defined as

CCDF(PAR) = P{PARn > PAR}.

We furthermore define the “PAR performance” as the maxi-
mum PAR level PAR∗ that is met for 99% of all transmitted
OFDM symbols, i.e., given by CCDF(PAR∗) = 1%. The
error-rate performance is measured by the average (across
users) symbol-error rate (SER); a symbol is said to be in error
if at least one of the information bits per received OFDM
symbol is decoded in error. The “SNR operating point” cor-
responds to the minimum SNR required to achieve 1% SER.

In order to characterize the amount of signal power that is
transmitted outside the active tones T , we define the out-of-
band (power) ratio (OBR) as follows:

OBR =
|T |
∑
w∈T c‖xw‖22

|T c|
∑
w∈T ‖xw‖

2
2

.

Note that for LS and MF precoding, we have OBR = 0, as
they operate independently on each of the W tones; for PMP
or LS followed by clipping, we have OBR > 0 in general.

C. Summary of PMP Properties

Figures 2 and 3 summarize the key characteristics of PMP
and compare its PAR-reduction capabilities and error-rate per-
formance to those of LS and MF precoding, as well as to
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(a) (b)

Fig. 4. SNR, PAR, and OBR performance trade-offs of PMP. The numbers next to the trade-off curve for FITRA correspond to the regularization parameter λ
used in (PMP-L). The LS+clip curves are parametrized by the target PAR in dB. (a) PAR/SNR trade-off (parts of the FITRA curves overlap). (b) OBR/SNR
trade-off (all curves labeled with K correspond to FITRA).

LS precoding followed by clipping (denoted by “LS+clip”
in the following). Fig. 2(a) shows the real part of a time-
domain signal â1 for all precoding schemes (the imaginary
part behaves similarly). Clearly, PMP results in time-domain
signals having a significantly smaller PAR than that of LS
and MF; for LS+clip the target PAR corresponds to 4 dB. The
frequency-domain results shown in Fig. 2(b) confirm that LS,
MF, and PMP maintain the spectral constraints. For LS+clip,
however, the OBR is −11.9 dB, which is a result of ignor-
ing the spectral constraints (see the non-zero OFDM tones
at both ends of the spectrum in Fig. 2(b)). Fig. 3(a) shows
the PAR-performance characteristics for all considered precod-
ing schemes. One can immediately see that PMP reduces the
PAR by more than 11 dB compared to LS and MF precoding
(at CCDF(PAR) = 1%); as expected, LS+clip achieves 4 dB
PAR deterministically. In order to maintain a constant transmit
power, the signals resulting from PMP require a stronger nor-
malization (roughly 1 dB) than the signals from LS precoding;
this behavior causes the SNR-performance loss compared to
LS (see Fig. 3(b)). The performance loss of MF and LS+clip
is mainly caused by residual MUI.

D. SNR, PAR, and OBR Trade-Offs
As observed in Fig. 3, PMP is able to significantly reduce

the PAR but results in an SNR-performance loss compared to
LS precoding. Hence, there exists a trade-off between PAR and
SER, which can be controlled by the regularization parameter
λ of (PMP-L). Fig. 4(a) characterizes this trade-off for λ = 2v

with v ∈ {−12, . . . , 4}. In addition to the performance of
LS and MF precoding, we show the behavior of LS+clip for
various target-PAR values.

Fig. 4(a) shows that PMP is able to cover a large trade-
off region that can be tuned by the regularization parame-
ter λ of (PMP-L). In particular, for a given number of FITRA
iterations K = 2000, decreasing λ approaches the perfor-
mance of LS precoding—increasing λ reduces the PAR but

results in a graceful degradation of the SNR operating point.11

Hence, (PMP-L) allows one to adjust the PAR to the linearity
properties of the RF components, while keeping the resulting
SNR-performance loss at a minimum. As shown in Fig. 4(a),
LS+clip achieves a similar trade-off characteristic as PMP; for
less aggressive values of the target PAR, LS+clip even seems
to outperform PMP.

It is important to realize that even if LS+clip outperforms
PMP in terms of the PAR/SNR trade-off in the high-PAR
regime, LS+clip results in substantial out-of-band interference;
this important drawback is a result of ignoring the shaping
constraints (7). In particular, we can observe from Fig. 4(b)
that reducing the PAR for LS+clip quickly results in signifi-
cant OBR, which renders this scheme useless in practice. By
way of contrast, the OBR of PMP is significantly lower and
degrades gracefully when lowering the PAR. Furthermore, we
see that reducing the maximum number of FITRA iterations K
increases the OBR. Hence, the regularization parameter λ to-
gether with the maximum number of FITRA iterations K
determine the PAR, OBR, and SNR performance of PMP. We
finally note that for K = 2000 the computational complex-
ity of FITRA is one-to-two orders of magnitude larger than
that of LS precoding. The underlying reason is the fact that
LS precoding solves N independent problems, whereas PMP
requires the solution to a joint optimization problem among
all N transmit antennas.

E. Impact of Antenna Configuration and Channel Taps

We finally investigate the impact of the antenna configura-
tion to the PAR performance of PMP and LS precoding. To
illustrate the impact of the channel model, we also vary the
number of non-zero channel taps T ∈ {2, 4, 8}. Fig. 5 shows

11For λ > 0, a small SNR gap remains; for λ = 0, however, (PMP-L)
corresponds to LS precoding and the gap vanishes.
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Fig. 5. PAR performance of PMP and LS precoding depending on the
number of transmit antennas N and the number of non-zero channel taps T ;
the number of users M = 10 is held constant and λ = 0.25 for PMP relying
on FITRA. (The curves for LS precoding overlap.)

that increasing the number of transmit antennas yields im-
proved PAR performance for PMP; this behavior was predicted
analytically in (5) for the (narrow-band) system considered in
Section III-A2. Increasing the number of channel taps T also
has a beneficial impact on the PAR if using PMP. An intuitive
explanation for this behavior is that having a large number of
taps increases the number of DoF, which can then be exploited
by PMP to reduce the PAR. For LS precoding, however, the re-
sulting PAR is virtually independent of the number of channel
taps.12 In summary, PMP is suitable for MU-MIMO systems
offering a large number of DoF, but also enables substantial
PAR reduction for small-scale MIMO systems and channels
offering only a small amount of frequency-diversity.

VI. CONCLUSIONS AND OUTLOOK

The proposed joint precoding, modulation, and PAR re-
duction framework, referred to as PMP, facilitates an explicit
trade-off between PAR, SNR performance, and out-of-band
interference for the large-scale MU-MIMO-OFDM downlink.
As for the constant-envelope precoder in [7], the fundamental
motivation of PMP is the large number of DoF offered by sys-
tems where the number of BS antennas is much larger than the
number of terminals (users). Essentially, the downlink channel
matrix has a high-dimensional null-space, which enables us
to design transmit signals with “hardware-friendly” proper-
ties, such as low PAR. In particular, PMP yields per-antenna
constant-envelope OFDM signals in the large-antenna limit,
i.e., for N →∞. PMP is formulated as a convex optimization
problem for which a novel efficient numerical technique, called
the fast iterative truncation algorithm (FITRA), was devised.

Numerical experiments showed that PMP is able to reduce
the PAR by more than 11 dB compared to conventional precod-
ing methods, without creating significant out-of-band interfer-
ence; this substantially alleviates the linearity requirements of

12MF and LS+clip exhibit the same behavior; the corresponding curves are
omitted in Fig. 5.

the radio-frequency (RF) components. Furthermore, PMP only
affects the signal processing at the BS and can therefore be
deployed in existing MIMO-OFDM wireless communication
systems, such as IEEE 802.11n [20].

In addition to the extensions outlined in Section III-D,
there are many possibilities for future work. Analytical PAR-
performance guarantees of PMP are missing; the development
of such results is challenging and part of ongoing work [33].
Moreover, a detailed analysis of the impact of imperfect
channel state information on the performance of PMP is left
for future work. Finally, further reducing the computational
complexity of FITRA, e.g., using continuation strategies [32],
is vital for a practical realization of PMP in hardware.
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