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Abstract—The high processing complexity of data detection in
the large-scale multiple-input multiple-output (MIMO) uplink ne-
cessitates high-throughput VLSI implementations. In this paper,
we propose—to the best of our knowledge—first matrix inversion
implementation suitable for data detection in systems having
hundreds of antennas at the base station (BS). The underlying
idea is to carry out an approximate matrix inversion using a small
number of Neumann-series terms, which allows one to achieve
near-optimal performance at low complexity. We propose a novel
VLSI architecture to efficiently compute the approximate inverse
using a systolic array and show reference FPGA implementation
results for various system configurations. For a system where 128
BS antennas receive data from 8 single-antenna users, a single
instance of our design processes 1.9 M matrices/s on a Xilinx
Virtex-7 FPGA, while using only 3.9% of the available slices
and 3.6% of the available DSP48 units.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) combined with spa-
tial multiplexing [1] is the key technology in most modern
wireless communication standards, such as 3GPP LTE or IEEE
802.11n. MIMO technology offers improved link reliability
and higher data rates compared to single-antenna systems
by simultaneously transmitting multiple data streams in the
same frequency band. However, conventional point-to-point
and multi-user (MU) MIMO wireless systems already start
to approach the theoretical throughput limits. Consequently,
novel transmission technologies become necessary to meet
the ever-growing demand for higher data rates without further
increasing the communication bandwidth [2], [3].

Large-scale MIMO (or massive MIMO) is an emerging
technology, which uses antenna arrays having orders of mag-
nitude more elements at the base station (BS) compared to
conventional (small-scale) MIMO systems, while simultane-
ously serving a small number of users in the same frequency
band [2]. This technology promises further improvements
in spectral efficiency and link reliability over conventional
(small-scale) MIMO systems [3], [4]. In addition, large-scale
MIMO has the potential to reduce the operational power
consumption at the BS [2], [5].

Unfortunately, the benefits of large-scale MIMO come at
the cost of significantly increased computational complexity in
the BS compared to small-scale MIMO systems. Specifically,
data detection in the large-scale MIMO uplink is among the
most critical tasks, as the presence of hundreds of antennas
at the BS requires novel detection algorithms that scale fa-
vorably to high-dimensional problems. Since optimal meth-
ods, such as maximum-likelihood (ML) detection or sphere

decoding (SD) [6], would entail prohibitive complexity, one
has to resort to low-complexity sub-optimal linear detection
schemes [3] or stochastic techniques, such as Markov-chain
Monte-Carlo (MCMC)-based detection methods [7].

Contributions: In this paper, we address the complexity
issue associated with data detection in the large-scale MIMO
uplink. We focus on linear soft-output data detection in combi-
nation with a novel approximate method for matrix inversion
relying on Neumann series, which significantly reduces the
computational complexity compared to exact inversion algo-
rithms, while approaching the performance of SD methods. To
demonstrate the efficacy of our inversion method, we present a
novel systolic VLSI architecture for carrying out the inversion
at high throughput for the high-dimensional problems arising
in large-scale MIMO systems. Finally, we present reference
implementation results on a Virtex-7 FPGA for various system
configurations.

II. LARGE-SCALE MIMO UPLINK

We consider a large-scale multi-user (MU) MIMO system
with N antennas at the BS communicating with M < N single
antenna users.1 In what follows, we focus on the uplink, i.e.,
where M users are simultaneously transmitting to the BS.

A. Uplink System Model

The transmitted bit stream for each user is first encoded
using a channel encoder and then mapped to constellation
points in the set O. The transmit vector s = [s1, . . . , sM ]T

with s ∈ OM contains the transmit symbols for all M
users. The vector s is then transmitted over the wireless
channel modeled as y = Hs + n, where y = [y1, . . . , yN ]T

corresponds to the vector received at the BS, H ∈ CN×M

is the (tall and skinny) uplink channel matrix, and n ∈ CN

models additive noise at the BS; its entries are assumed to be
i.i.d. zero-mean Gaussian with variance N0. We furthermore
assume that the transmit symbols satisfy E{|si|2} = Es, ∀i.

B. Soft-Output Detection for Large-Scale MIMO

The task of the BS is to compute soft-estimates in the form
of log-likelihood ratios (LLRs) for the coded bits given the
channel matrix2 H and the receive-vector y, by means of a
soft-output MIMO detection algorithm (see, e.g., [8]). Since

1Note that the model can easily be generalized to the case, where each user
is equipped with multi-antenna terminals.

2In practice, channel-state information is acquired through training pilots.



the number of BS antennas N and the number of users M is
expected to be much larger than that of conventional (small-
scale) MIMO systems, one must resort to low-complexity
detection schemes because sophisticated detection methods,
such as the k-Best algorithm or sphere decoding, would
entail prohibitive complexity [3]. The most prominent low-
complexity MIMO detection method is minimum mean-square
error (MMSE) detection [6], which mitigates MU interference
by inverting the effect of the channel matrix.

To arrive at low-complexity, we follow the linear detection
approach of [9]. We start by computing the matched-filter
output yMF = HHy and the M×M Gram matrix G = HHH.
Then, we compute the following regularized matrix:

A = GEs +N0IM . (1)

An estimate of the transmit vector can then be computed as

ŝ = A−1yMF = A−1Gs + A−1n. (2)

For soft-output detection, we further decompose the right-hand
side of (2) for each user i as follows:

ŝi = āHi gisi +
∑

j 6=i ā
H
j gjsj + āHi n = µisi + wi, (3)

where āHi and gi is the ith row of A−1 and ith column of G,
respectively, µi = āHi gi and wi represents the noise-plus-
interference (NPI) at user i. The decomposition (3) finally
enables one to compute component-wise LLR-values by ap-
proximating the NPI as i.i.d. zero-mean Gaussian distributed
with variance σ2

i = E{|wi|2} (see [9] for the details).

III. LOW COMPLEXITY MATRIX-INVERSION FOR
LARGE-SCALE MIMO

The main computational complexity of the algorithm out-
lined above is caused by the inverse of A. More specifically,
computation of A−1 requires O(M3) number of operations,
which quickly results in prohibitive complexity for the typical
dimensions arising in large-scale MIMO. Hence, to arrive at
cost-effective hardware implementations, an efficient inver-
sion method is of paramount importance. We next present
a novel method that approximately inverts the matrix A at
low complexity, by exploiting the fact that in large-scale
MIMO systems the channel matrices H are tall and skinny
and therefore, well-conditioned, in general [2].

A. Neumann Series Approximation

To reduce the complexity of computing A−1 compared to
direct (and exact) matrix inversion methods, we propose to
use the Neumann series approximation [10]. Concretely, if A
is close to an invertible matrix X satisfying

lim
n→∞

(I−X−1A)n = 0 or lim
n→∞

(I−AX−1)n = 0, (4)

then the inverse of A can be rewritten using the following
Neumann series [10]:

A−1 =
∑∞

n=0(X−1(X−A))nX−1.

We can decompose A in (1) into its main diagonal D and off
diagonal E such that A = D+E. For M � N , the matrix A
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Fig. 1. Uplink BLER performance in the large-scale MIMO uplink; the
curves associated with N =∞ correspond to exact matrix inversion and the
curves associated with ‘FP’ correspond to fix-point implementations.

in (1) becomes a diagonally dominant matrix, i.e A ≈ D. For
i.i.d. Gaussian channel matrices H and in the large antenna
limit, i.e., for N → ∞ and a given M , it was shown in [2]
that A→ IM . This property of large-scale MIMO systems is
the key to arrive at a low-complexity matrix-inversion method.

B. Low-Complexity Approximate Matrix Inversion

Since A is close to D for large-scale MIMO, we apply
the Neumann series by letting X = D. By assuming that the
matrix D is invertible and (4) holds, we can rewrite the inverse
of A = D + E as

A−1 = (D + E)−1 =
∑∞

n=0(−D−1E)nD−1.

By keeping only the first k terms of the Neumann series, we
arrive at the following k-term approximation of A−1:

Ã−1k =
∑k−1

n=0(−D−1E)nD−1, (5)

For k = 1, the inverse coincides to a MF detector, as (2)
simply re-scales each entry of yMF. For k = 2, the inverse of A
is approximated by Ã−12 = D−1 − D−1ED−1, which only
requires O(M2) operations, in contrary to O(M3) operations
required by an exact inversion algorithm. Subsequently, we
use Ã−12 in place of A−1, which significantly reduces the
complexity of linear detection in large-scale MIMO systems.

C. Block Error-Rate (BLER) Performance in the Uplink

We now demonstrate the performance of the approximate in-
version method for the large-scale MIMO uplink. We simulate
a coded MIMO-OFDM system with 128 subcarriers, 16-QAM,
and assume a 10 m linear antenna array, where the antennas
are equally spaced similarly to [11]. We use the WINNER-
Phase-2 mode [12] to generate the channel matrices. At the BS,
we use the soft-output MMSE detector described in Sec. II-B
in combination with a rate-5/6 soft-input Viterbi decoder.

Figures 1(a) and 1(b) show the BLER performance of the
proposed algorithm compared to an exact matrix inverse and
soft-output single tree-search SD [13] for M = 4 and M = 8
users. Evidently, the proposed inversion method approaches
the performance of an exact matrix inversion algorithm for a
large number of BS antennas N . Moreover, the performance
of linear detection approaches that of max-log optimal soft-
output SD at significantly lower complexity. In addition,
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Fig. 2. High-level architecture of the systolic array for M = 3.

the proposed method significantly outperforms MF detection
typically considered for low-complexity detection in large-
scale MIMO [2]. For smaller systems, the approximate method
incurs an error floor, which strongly depends on the number
of BS antennas. We emphasize that practical communication
standards commonly specify BLER = 10−2, which is below
the error floor in typical large-scale MIMO configurations.

IV. VLSI ARCHITECTURE

We now present an architecture that is able to compute
the 2-term approximation at very high throughput. In our
architecture, we partitioned the inversion into two tasks, i.e.,
1) computation of the Gram matrix G = HHH and 2)
computation of Ã−12 = D−1−D−1ED−1, which are executed
in pipelined fashion. Since both tasks produce symmetric
matrices, we only process the lower-triangular part.

A. Gram-Matrix Computation Unit

The first unit computes the Gram matrix using an M ×M
lower-triangular systolic array. The architecture is shown in
Fig. 2 for M = 3. Each processing element (PE, denoted by
Pk` in Fig. 2) in the systolic array consists of a multiply-
and-accumulate (MAC) unit. The transposed input matrix HT

is shifted one column at a time into the systolic array. Each
processing element performs a MAC operation with both input
operands. To ensure that each PE processes the correct set of
operands, the values in ith row of HT are delayed by i− 1
cycles. Once an input value reaches a diagonal PE, the value is
conjugated and passed to the lower part of the systolic array.

There are two PE variants in the architecture. A PE on the
main diagonal requires two multipliers to compute the squared
absolute value of a complex number, |a + bj|2 = a2 + b2. A
PE on the off-diagonal computes the product of two complex
numbers, i.e., (a + bj)(c − bj). To reduce the number of
multipliers, we deploy strength reduction, which requires three
multipliers and five additions [14]. Consequently, the number
of multipliers required in this unit is (3M2 + M)/2. To
minimize the critical path, each MAC unit is pipelined and
has a throughput of one MAC operation per clock cycle.

B. Approximate Matrix Inversion Unit

To implement the approximate inverse, Ã−12 , we need to
perform the following calculations. Let Gij be the element in
row i and column j of the Gram matrix G. For the ith diagonal
entry of Ã−12 , we need to compute D−1ii = (Gii + N0)−1.
Since the diagonal elements of G are real positive numbers,
D−1ii is computed with a reciprocal unit (see Sec. IV-C for the
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details). For the off-diagonal element in row i and column j
of Ã−12 , we need to compute D−1ii GijD

−1
jj which is one real

multiplication followed by a real to complex multiplication.
As a result, this module requires three multipliers in total.

In the proposed architecture, we compute the entries of Ã−12

row by row, from top to bottom, with the aid of a pipelined
functional unit consisting of a single reciprocal unit and M−1
parallel multiplier units. Since the output of the Gram-matrix
computational unit is lower-triangular, when D−1ii has been
computed by the reciprocal unit, it is guaranteed that the D−1kk

for i < k < M are computed as well. As a result, the
multipliers required to compute the off-diagonal elements in
row i can proceed right after the computation of the diagonal
element in the same row (D−1ii ) is completed. This pipelined
unit is able to compute one row of Ã−12 per clock cycle.
Figure 3 illustrates this processing schedule for M = 3.

C. FPGA-Friendly Reciprocal Unit

To compute D−1ii at high throughput, we designed a recipro-
cal unit that is particularly suitable for FPGA implementations.
To improve numerical stability, we use a similar approach as
described in [9] and shift the input value Dii = x such that
it falls between 0.5 and 2, i.e., we get x = 2my, where
y ∈ [0.5, 1) and m ∈ Z. We next rewrite y = ŷ + ∆,
where ŷ corresponds to the 10 most significant bits of y
and ∆ the 10 remaining bits of y. We can now apply a first-
order Taylor-series expansion to arrive at the approximation
a−1 ≈ â−1 − ∆â−2. Fig. 4 shows the block diagram of the
reciprocal unit implementing this approximation. The terms
â−1 and â−2 are obtained using two lookup tables (LUTs).
The term â−2 is multiplied by ∆ and added to â−1. Finally,
the result is multiplied by 2−m to compensate for the initial
shift. Since fixed-point simulations suggest that only the first
LUT is necessary, the shaded region in Fig. 4 was omitted in
the final design. Note that the proposed reciprocal unit requires
only one table look-up, which is in contrast to the architecture
used in [9] that consists of two multipliers and one LUT.

V. FPGA IMPLEMENTATION RESULTS

We implemented the approximate inversion architecture for
large-scale MIMO systems on a Virtex-7 XC7VX1140T FPGA
using Xilinx Vivado High-Level Synthesis 2012.



TABLE I
RESOURCE USAGE AND PERFORMANCE OF THE APPROXIMATE MATRIX-INVERSION UNIT ON A VIRTEX-7 XC7VX1140T FPGA

Unit N ×M Slices LUTs FFs DSP48 BRAM Max. freq. Latency Throughput

Gram matrix 32× 4 824 (0.5%) 1784 (0.3%) 2106 (0.2%) 26 (0.8%) 0 302.29 MHz 46 cycles 6.57 M mat./s
Approx. inv. 4× 4 1095 (0.6%) 2804 (0.4%) 2465 (0.2%) 9 (0.3%) 1 301.57 MHz 52 cycles 5.80 M mat./s
Combined 32× 4 1919 (1.1%) 4588 (0.7%) 4571 (0.4%) 35 (1.1%) 1 301.57 MHz 52 cycles 5.80 M mat./s

Gram matrix 128× 8 2946 (1.7%) 6873 (1.0%) 7786 (0.6%) 100 (3.0%) 0 299.76 MHz 150 cycles 2.00 M mat./s
Approx. inv 8× 8 3985 (2.2%) 9476 (1.3%) 8094 (0.6%) 21 (0.6%) 1 285.46 MHz 55 cycles 5.18 M mat./s
Combined 128× 8 6931 (3.9%) 16349 (2.3%) 15880 (1.2%) 121 (3.6%) 1 285.46 MHz 150 cycles 1.90 M mat./s

Gram matrix 128× 16 11758 (6.6%) 26878 (3.8%) 30916 (2.2%) 392 (11.7%) 0 234.63 MHz 166 cycles 1.41 M mat./s
Approx. inv 16× 16 5330 (3.0%) 11147 (1.6%) 15883 (1.1%) 45 (1.3%) 1 222.41 MHz 80 cycles 2.78 M mat./s
Combined 128× 16 17088 (9.6%) 38025 (5.4%) 46796 (3.3%) 437 (13.0%) 1 222.41 MHz 166 cycles 1.34 M mat./s

A. Implementation Details and Fixed-Point Parameters

For the Gram matrix unit, the input values of the channel
matrix H are 16 bit and we mapped all multiplications onto
Xilinx DSP48E1 slices. As a result, the internal MAC registers
are 48 bit. To reduce the output word-length, we truncate the
final values of the Gram matrix to 20 bit for the next unit.
For the inversion unit, we mapped all multiplications onto
DSP48E1 slices and truncate the output to 16 bit. The LUT
in the reciprocal unit has 1024 addresses and 18 bit outputs.
Hence, we can implement it efficiently using one block-RAM
(RAMB18E1) available on the FPGA. The resulting fixed-
point performance is shown with dashed lines (and labeled
by ‘FP’) in Fig. 1(a). The implementation loss for 4 × 32 is
less than 0.2 dB SNR compared to a floating-point reference.

B. FPGA Implementation Results

We parameterized the architecture for N and M to explore
the impact on the required FPGA resources and the maxi-
mum achievable throughput. The corresponding implementa-
tion results are detailed in Tbl. I. Note that—to the best of
our knowledge—no implementation suitable for such high-
dimensional problems has been described in the open literature
and, hence, no comparison to existing designs can be given.

We can see that Gram-matrix unit requires more clock
cycles than the approximate inversion unit as the dimensions of
the MIMO system increases. The maximum clock frequency
of the approximate inversion unit is slightly slower than that
of the Gram-matrix unit. Assuming 64-QAM, the throughput
of a single unit for a 32× 4, 128× 8, and 128× 16 system is
139.2 Mb/s, 95.52 Mb/s, and 128.64 Mb/s, respectively. In the
case of OFDM or SCFDMA, the throughput can be increased
by simply instantiating more units that process multiple sub-
carriers in parallel. As shown in Tbl. I, the inversion units are
fairly small. Hence, the considered Virtex-7 FPGA has enough
free resources to instantiate more than 10 units for a 32 × 4
and 128 × 8 system; the corresponding designs would easily
reach throughputs exceeding 1 Gb/s. For 128× 16 system, we
could instantiate up to 7 units which corresponds to 0.9 Gb/s.

VI. CONCLUSIONS

We have developed—to the best of our knowledge—first im-
plementation of a matrix inversion unit for linear data detection
in the large-scale MIMO uplink. We have approximated the

required matrix inversion using a small number of Neumann-
series terms to reduces the complexity (compared to exact
inversion) while only slightly degrading the error-rate per-
formance in large-scale MIMO systems. To implement a fast
approximate inversion unit, we have proposed a systolic VLSI
architecture scaling favorably to large-dimensional problems.
We have provided three reference designs, which enable data
detection in large-scale MIMO systems at low complexity and
high throughput with state-of-the-art FPGAs.
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