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Abstract—Online education affords the opportunity to revolu-
tionize learning by providing access to high-quality educational
resources at low costs. The recent popularity of so-called MOOCs
(massive open online courses) further accelerates this trend.
However, these exciting advancements result in several challenges
for the course instructors. Among these challenges is the detection
of collaboration between learners on online tests or take-home
exams which, depending on the courses’ rules, can be considered
cheating. In this work, we propose new models and algorithms for
detecting pairwise collaboration between learners. Under a fully
Bayesian setting, we infer the probability of learners’ succeeding
on a series of test items solely based on their response data.
We then use this information to estimate the likelihood that two
learners were collaborating. We demonstrate the efficacy of our
methods on both synthetic and real-world educational data; for
the latter, we find strong evidence of collaboration for a certain
pair of learners in a non-collaborative take-home exam.

Index Terms—Bayesian methods, cheating, collaboration detec-
tion, hypothesis testing, online education, sparse factor analysis.

I. INTRODUCTION

A well-known challenge for educators and course instructors
is the ability to detect collaboration among learners in a course,
test, or exam [1], [2]. Detecting collaboration is of particular
interest in situations where it is prohibited and considered
as cheating, such as for certain take-home exams or tests.
In the setting of online education, e.g., MOOCs (massive
open online courses), the capability of automatically detect-
ing learner collaboration (or cheating-through-collaboration)
becomes even more important, as potentially thousands of
learners may be enrolled in a course, without ever having face-
to-face interaction with an instructor [3]. In such situations,
the massive number of learners simply prohibits a manual
detection of collaboration.

A. Collaboration Detection via Learning Analytics

A naïve approach for computer-aided detection of col-
laboration in educational datasets, such as multiple-choice
tests, would consist of simply comparing the answer patterns
between all pairs of learners, and flagging learner pairs that
exhibit a high degree of similarity. This approach, however, is
prone to fail as it ignores the aptitude of the individual learners,
as well as the difficulty of each test item or question [2], [4].
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In [5], the authors proposed a novel framework for learning
analytics (LA), referred to as SPARFA (short for SPARse
Factor Analysis). This framework builds upon a principled
statistical model for analyzing probability of a set of learners
providing correct (or incorrect) answers to test items, solely
given binary-valued (right/wrong) graded response data to
multiple-choice tests. Put simply, SPARFA jointly infers the
probability that each learner will answer a given question
correctly or incorrectly, as well as the difficulty of each
question. Armed with these capabilities, SPARFA can be used
to develop powerful collaboration detection tests that take into
account learner aptitude as well as question difficulties.

B. Contributions

This paper develops new collaboration detection methods
that leverage SPARFA to infer information regarding learner
aptitude and question difficulty. Given this information, we
propose two Bayesian hypothesis tests for detecting collabo-
ration in educational datasets obtained from multiple-choice
tests. The first test examines the number of agreements be-
tween pairs of learners given the SPARFA parameters and
uses this information to infer the likelihood of collaboration.
The second test examines the joint answer sequence of pairs
of learners using a specific collaboration model and evaluates
the likelihood that such patterns would arise independently.
While the first collaboration test has its main advantage in
computational efficiency, the second test provides superior
detection performance at higher computational complexity.

II. LEARNING ANALYTICS VIA SPARSE FACTOR ANALYSIS

We start by summarizing the SPARFA framework [5] to
analyze graded response data. We then outline SPARFA-B, a
fully Bayesian method to extract the SPARFA parameters.

A. Sparse Factor Analysis (SPARFA)

We consider a test consisting of Q of questions that test
the knowledge of N learners of various portions of a course’s
content. We assume that there are K latent factors, referred
to as concepts, that govern the learners’ responses to these
questions. Let Yi,j denote the binary-valued (right/wrong)
graded response for learner j on question i. SPARFA builds
upon the following model for the graded response data [5]:

Yi,j ∼ Ber(Φ(Zi,j)), Zi,j = wT
i cj + µi, ∀i, j. (1)

Here, Φ(x) =
∫ x
−∞

1√
2π

exp(−t2/2)dt corresponds to the
inverse probit link function, with Φ(Zi,j) ∈ [0, 1] governing



the probability of learner j answering question i correctly.
Ber(z) designates a Bernoulli distribution with mean z. The
vector cj ∈ RK , j = 1, . . . , N , represents the concept mastery
of the jth learner, with its kth entry representing the learner’s
mastery of concept k. The vector wi ∈ RK models the
concept associations, i.e., encodes how question i is related
to each concept. The scalar µi models the intrinsic difficulty
of question i, where large values indicate easy questions.

Retrieving the parameters cj , wi, and µi from the set of
observations Yi,j in (1) is in an ill-posed inverse problem.
To make the model both tractable as well as interpretable,
SPARFA assumes that the number of concepts K is small
relative to both the number of learners and questions. Further-
more, SPARFA imposes sparsity and non-negativity on the
question–concept vectors wi; we refer to [5] for the details.

B. A Bayesian Method to Extract the SPARFA Parameters
Inference of the model parameters in (1) can be carried

in a variety of ways [5]. One attractive solution is to use
a fully Bayesian approach, which provides distributions for
all model parameters of interest, rather than simple point
estimates. Such distributions are capable of incorporating the
estimation uncertainty of each parameter, which can then
be used to improve corresponding inference tasks. In the
case of collaboration detection, such Bayesian methods enable
tempering both the false alarm and miss rate.

In [5], the authors develop SPARFA-B, a fully Bayesian
algorithm for extracting the SPARFA parameters. By imposing
specific prior distributions on the parameters of interest, such
as exponentials on the non-negative, active entries in wi,
SPARFA-B estimates posterior distributions on the model pa-
rameters via Markov Chain Monte-Carlo (MCMC) sampling;
given space constraints, we omit the sampling details.

III. COLLABORATION TEST IN EDUCATIONAL DATA

We now summarize two Bayesian likelihood tests for detect-
ing pairwise collaboration via SPARFA. We then detail how
to incorporate these tests into the SPARFA-B algorithm.

A. Collaboration Test 1: Agreement Matching
The first test to detect collaboration among pairs of learners

focuses on the number of agreements in the graded learner
response data between a pair of learners (k, `). The first
hypothesis H1

1[k, `] of Test 1 corresponds to the case where
learner k and ` decide to agree on a specific graded response
with some (unknown) probability δ. The second hypothe-
sis H1

2[k, `] assumes that the number of agreements between
the graded responses of learner k and ` were generated
independently, given the SPARFA parameters. For the sake
of simplicity of notation, we omit the learner labels k and `.

1) Collaboration Hypothesis: We start by defining the
probability of the first hypothesis H1

1, which corresponds to
the probability P (H1

1) = P (A) indicating that learner k
and ` agree on A graded responses. The number of such
agreements A between learner k and ` is given by

A =

Q∑
i=1

ai with ai =

®
1, if Yi,k = Yi,`

0, if Yi,k 6= Yi,`.

We now assume that there is an unknown probability δ
indicating that learner k and ` agreed to provide the same
graded response for question i. Under this model, the proba-
bility of having A agreements out of Q questions is given by
the binomial distribution:

P (A |Q, δ) =

Ç
Q

A

å
δA(1− δ)(Q−A).

We now assume a uniform prior on δ over the range [0, 1],
indicating that we have no informative belief on the value
of δ. With this Bayesian approach, we obtain

P (H1
1) =

∫ 1

0

Ç
Q

A

å
δA(1− δ)(Q−A)dδ. (2)

Note that this probability corresponds to the Beta func-
tion B(A+ 1, Q−A+ 1) as defined in [6].

2) Independence Hypothesis: The probability of the second
hypothesis H1

2 is defined as

P (H1
2) = P (A | (wi, µi)∀i, ck, c`) (3)

and assumes that the number of agreements A are generated
independently, given the SPARFA parameters. In order to
expand the right-hand side of (3), we first need the probability
of having an agreement of the graded responses for the ith

question. From (1) follows that the probability of learner j
answering question i correctly or incorrectly is simply given
by Φ(Zi,j) or 1−Φ(Zi,j), respectively. Hence, the probability
that both learners k and ` independently achieve the same
graded learner response at question i is given by

pai = p(ai = 1 | (wi, µi)∀i, ck, c`) =

Φ(Zi,k)Φ(Zi,`) +
(
1− Φ(Zi,k)

)(
1− Φ(Zi,`)

)
(4)

with Zi,k and Zi,` as defined in (1).With (4), we can rewrite
the probability p(H1

2) in (3) as

p(H1
2) = PoiBin

(
A,Q,pa

)
, (5)

where PoiBin(A,Q,pa) denotes the Poisson-Binomial prob-
ability mass function with A successful trials out of a total
number of Q [7], and pa = {pa1 , . . . , paQ}.

We note that a related model was proposed in [2]. This
model relies on simple statistics for learners and questions,
which are used to estimate the expected number of agreements
between two learners via a normal approximation to the
Poisson-Binomial model. From these parameters, the authors
then calculate the probability of collaboration.

3) Log Bayes Factor: Given the probabilities (2) and (5)
for the hypotheses H1

1 and H1
2, respectively, we can finally

compute the log Bayes factor for Test 1 as follows:

LBF1 = log

Å
P (H1

1)

P (H1
2)

ã
. (6)

Note that a log Bayes factor of LBF1 > 0 indicates that a
collaboration between learner k and ` is more likely than
independent work for the considered collaboration model.1

1Note that the log Bayes factor coincides with the log likelihood ratio (LLR)
as typically used in the statistical signal processing community.



TABLE I
PROBABILITY OF OBSERVING THE GRADED RESPONSE PAIR (Yi,k, Yi,`)

Yi,k Yi,` P (Yi,k, Yi,` | pi,k, pi,`, εk, ε`)

0 0 p̄i,kp̄i,` + p̄i,kpi,`ε̄kε` + pi,kp̄i,`εk ε̄`
0 1 p̄i,kpi,`ε̄k ε̄` + pi,kp̄i,`εkε`
1 0 pi,kp̄i,`ε̄k ε̄` + p̄i,kpi,`εkε`
1 1 pi,kpi,` + p̄i,kpi,`εk ε̄` + pi,kp̄i,`ε̄kε`

B. Collaboration Test 2: Sequence Matching

The collaboration test detailed above solely considers the
number of agreements in the graded responses between pairs
of learners. In addition, Test 1 does not rely on the SPARFA
parameters for the correlation hypothesis H1

1. Furthermore,
the results in [8], [9] demonstrate that the use of particular
cheating models is capable of improving the detection per-
formance. One would surmise that considering the pair of
response sequences in combination with a collaboration model
that uses the SPARFA parameters for both hypotheses is likely
to be more accurate in detecting collaboration. We therefore
introduce a novel collaboration test that (i) uses a specific
Bayesian collaboration model, (ii) relies directly on the graded
responses sequences of learner k and `, (iii) makes use of the
SPARFA parameters for both hypotheses.

1) Collaboration Hypothesis: We start by defining the first
hypothesis H2

1, which models the situation of observing the
given pair of graded responses sequences for learner k and `
under a specific collaboration model. The model proposed
here relies on the individual probabilities of learner k and `
succeeding in question i given the SPARFA parameters

pi,k = Φ(Zi,k) and pi,` = Φ(Zi,`). (7)

In addition, the proposed collaboration model assumes that
there are two unknown probabilities εk and ε`. The probabil-
ity εk represents a “copy probability,” which indicates the like-
lihood of learner k copying a graded response from learner `;
the probability ε` is defined analogously for learner `.

With (7) and the copy probabilities εk and ε`, we can
write the probability of observing the graded response pair
(Yi,k, Yi,`) for question i. Table I summarizes all four cases;
to simplify notation, we define p̄i,k = 1− pi,k, p̄i,` = 1−pi,`,
ε̄k = 1−εk, and ε̄` = 1−ε`. For instance, the graded response
pair (1, 1) can be either achieved if both learners get the ith

question right, or if learner k gets it wrong but copies the
correct response from learner `, or vice versa. The remaining
cases in Tbl. I are obtained analogously.

Similar to Sec. III-A1, we follow a Bayesian approach and
assume uniform priors on εk and ε` over the range [0, 1] as

P (H2
1) =

∫ 1

0

∫ 1

0

Q∏
i=1

P (Yi,k, Yi,` | pi,k, pi,`, εk, ε`)dεkdε`, (8)

which corresponds to the probability of observing the pair
of sequences of graded responses for all Q questions under
the collaboration model specified in Tbl. I. Note that the
double integral in (8) can be evaluated analytically. Numerical
computation for a large number of questions Q, however, is
non-trivial due to finite precision artifacts.

2) Independence Hypothesis: The probability of the second
hypothesis H2

2 for Test 2 corresponds to the probability of the
observed pair of graded response sequences, given the success
probabilities (7) obtained from SPARFA, are assumed to be
independent. This probability corresponds to

P (H2
2) =

Q∏
i=1

p
Yi,k

i,k p̄
(1−Yi,k)
i,k p

Yi,`

i,` p̄
(1−Yi,`)
i,` . (9)

3) Log Bayes Factor: Given the probabilities (8) and (9)
for the hypotheses H2

1 and H2
1, respectively, the log Bayes

factor for Test 2 is given by:

LBF2 = log

Å
P (H2

1)

P (H2
2)

ã
. (10)

C. Bayesian Collaboration Detection

Both collaboration tests discussed above can be imple-
mented directly into SPARFA-B as additional sampling steps.
Concretely, we compute (6) and (10) at each iteration of the
MCMC given the current estimates of cj , wi, and µi,∀i, j.
The log Bayes factor can be equivalently converted to a
posterior probability for each hypothesis, from which we can
sample the hypotheses directly as part of the MCMC.

By using this fully Bayesian approach, our method leverages
the full posterior distribution of the SPARFA parameters when
computing the probability of each hypothesis. This method
improves the robustness of our inference over classical ap-
proaches. We emphasize, however, that the proposed collabo-
ration tests do not rely on Bayesian sampling and can easily be
incorporated into classical models for educational data, such
as the Rasch model [10] or item-response theory (IRT) [11].

IV. EXPERIMENTS

A. Synthetic Experiments

As a first experiment, we examine the performance of
Tests 1 and 2 for a simple synthetic scenario involving
two learners and Q questions. Here, we avoid the use of
SPARFA and characterize each learner by their probability of
answering question i correctly. Let pi,1 denote the probability
that Learner 1 will answer question i correctly. We draw
pi,1 ∼ Beta(α, β), where α, β are tunable parameters. Now,
with some copy probability ε, Learner 2 copies the answer
provided by Learner 1; with probability 1 − ε, Learner 2
correctly answers the question according to his own prior pi,2.

We examine the ability of our tests to correctly detect the
scenarios where Learner 2 is collaborating under a variety of
priors. In Fig. 1(a) we consider copy probabilities ε swept
in the range [0, 1] in increments of 0.1 for the case where
pi,1 ∼ Beta(3, 1) and pi,2 ∼ Beta(1, 3), corresponding to the
case where Learner 1 has a relatively high and Learner 2 has
a relatively low probability of success. In this scenario, it is
relatively easy to detect collaboration. We further note that
Test 2 outperforms Test 1 for all copy probabilities ε. Thus,
Test 2 is preferred over Test 1 and related variants, such as [2].

We repeat the experiment for other distributions on pi,1
and pi,2. Figure 1(b) shows the case where pi,1, pi,2 ∼
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(a) pi,1 ∼ Beta(3, 1) and pi,2 ∼ Beta(1, 3)
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(b) pi,1, pi,2 ∼ Beta(1, 1)
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(c) pi,1, pi,2 ∼ Beta(3, 1)

Fig. 1. Impact of collaboration test, prior distribution, and number of questions Q on the log Bayes factor for two synthetic learners with priors pi,1, pi,2.
Sequence matching (Test 2) consistently outperforms agreement matching (Test 1) and larger question sets enable more accurate collaboration detection.

Fig. 2. Collaboration detection result for a take-home exam in an under-
graduate electrical engineering course consisting of 97 learners answering
38 questions. The connected nodes correspond to learners for which the
collaboration hypothesis under Test 2 was accepted with probability 0.98 or
higher. Manual inspection of the open-form responses provided by Learners 1
and 90 (surrounded by the red dashed oval) reveals obvious collaboration.

Beta(1, 1), assuming a uniform distribution for both learn-
ers, and pi,1, pi,2 ∼ Beta(3, 1), assuming that both learners
have a generally high probability of answering each question
correctly. In all cases, the both methods accurately detect col-
laboration when applicable, while Test 2 outperforms Test 1.

B. Real-World Experiment
We finally analyze a real-world educational dataset taken

from a low-level undergraduate course in electrical engineer-
ing administered on OpenStax Tutor2. This course consists
of 97 learners answering a total of 203 questions, distributed
over various homework assignments and exams. We examine
collaboration among students in the final exam, which con-
sisted of 38 questions. The final exam was administered as a
take-home examination where learners were instructed not to
collaborate with their peers.

In order to learn the SPARFA parameters, we use all
questions in the entire course and then use Test 2 to extract
the log Bayes factors for each pair of learners on the subset
of questions corresponding to the final exam and use these
to sample one of the two hypotheses at each iteration. We
display the resulting collaboration graph in Fig. 2. Each learner

2http://www.openstaxtutor.org

is represented by a node; green nodes designate learners for
which no significant evidence of collaboration was found;
blue nodes correspond to learners for which collaboration
is strongly suspected; edges between pairs of nodes indicate
likely collaborations. We accept the collaboration hypothesis
only if it is sampled in over 99% of the MCMC iterations.

A specific example concerns Learners 1 and 90. These
two learners exhibited identical answer patterns on the exam,
but have very different priors on successfully answering the
questions. In addition, they both respond incorrectly to one
question that is labeled by SPARFA as relatively easy. In order
to prevent false accusations [12], we manually inspected the
open-form responses available in OpenStax Tutor; these reveal
that Learner 1 consistently provides a shortened response of
all the responses provided by Learner 90. These preliminary
results demonstrate that Test 2 provides accurate information
regarding collaboration in real datasets.
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