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Abstract—In a variety of neural data analysis problems,
“neural events” such as action potentials or post-synaptic poten-
tials (PSPs), must be recovered from noisy and possibly corrupted
measurements. For instance, in calcium imaging, an action poten-
tial or group of action potentials give rise to a stereotyped calcium
signal with quick rise and slow decay. In this work, we develop
a general-purpose method for learning a template waveform that
characterizes the waveform of neural events and neural event
recovery to determine the times at which such events occur. Our
approach is based upon solving a sparse signal separation problem
to separate the neural signal of interest from any noise and
other corruptions that arise due to baseline drift, measurement
noise, and breathing/motion artifacts. For both synthetic and
real data, we demonstrate that our approach accurately detects
neural events and learns the underlying template waveform, even
in the presence of strong amounts of noise and corruptions. The
method’s robustness and simplicity makes is amenable for use
in the analysis of datasets arising in large-scale studies of both
time-varying calcium imaging and whole cell electrophysiology.

I. INTRODUCTION

Experimental neuroscience has experienced dramatic
growth over the past few years. Out of this growth, experimen-
talists now possess the tools necessary to modulate and record
from increasingly large populations of neurons [1]. In order
to analyze the data generated from large-scale experiments,
computationally efficient, robust, and automated methods for
neural data analysis are of paramount importance.

While a great deal of work has focused on the detection
and classification of spikes (the basic unit of information in
neural systems) from both single and multi-electrode arrays,
researchers are increasingly turning toward optical imaging
techniques that have the potential to record from a greater
number of individual neurons. The fact that these methods
(voltage or calcium-sensitive imaging) rely on indirect optical
measurements of the transmembrane voltage, the resulting
estimates of spike timing are often imprecise. Further com-
plicating things is the fact that the signal generated from
a sequence of spikes is often corrupted by noise and/or an
additive baseline or drift component that can vary in its
structure, depending on the experimental setup and conditions.

In many settings, neural signals that are associated with
either the action potentials (APs) of the cell-under-test or
the neural events generated by the pre-synaptic partners of
the cell-under-test (post synaptic potentials), give rise to a
stereotyped waveform that can be modeled by a common
template waveform that approximates the time-course of the
neural signal produced by a single spike event. Thus, a

common method to extract the times at which events occur,
is to use a matched filter to correlate the known template
with the measured signal [2]. If the correlation between the
template and the signal exceeds a certain threshold, then such
algorithms declare the presence of a spike event. Previous
studies of event detection in both the analysis of PSPs and
calcium imaging data, have demonstrated that standard tem-
plate matching-based approaches that rely on the correlation
between the observations are unable to resolve events that
occur in rapid succession or appear in noisy conditions [3],
[4]. Hence, deconvolution methods that aim to reverse the
effects of convolution on the data, are employed to improve
the temporal resolution of correlation-based methods.

In this work, we develop a novel, robust method for
neural event detection that improves upon state-of-the-art
deconvolution-based methods such as [5], [3] in a number of
ways. First, we introduce a novel sparsity-based deconvolution
approach that not only finds an estimate of the time and
amplitude of neural events but also separates it from the
baseline and noise components corrupting the measurement
of the neural activity. By exploiting known signal structure
in both the neuronal signal and the baseline component, we
demonstrate that the proposed approach reliably recovers the
neuronal signal from significant amounts of baseline drift and
noise, in both real and synthetic data. The second contribution
is the development of a alternating minimization framework
for obtaining estimates of the underlying template waveform
that generated the observed signal. This template learning
method employs a constrained least-squares (LS) method to
learn a kernel without any assumed parametric model; instead,
we simply enforce the fact that the template must be non-
negative and of limited duration relative to the length of the
measurement. Our results on both synthetic and real data
demonstrate that the proposed approach provides a nearly
parameter-free method that enables accurate and robust event
recovery from large-scale experimental datasets.

II. SIGNAL MODEL AND SPARSE SIGNAL RECOVERY

We start by introducing a convolution-based signal model
for neuronal signals arising in calcium imaging and electro-
physiology recordings. We then show how this model can
be used to derive a robust and computationally efficient
deconvolution approach to detect neural events.



A. Signal Model

In a wide range of neural datasets, the precise timing of a
neural event is obscured by the fact that the event is convolved
with a template waveform that produces the effective neural
signal in the measurement. For this reason, sophisticated
methods for event detection must be employed in place of
conventional thresholding strategies used in spike detection
from electrode arrays [5]. Here, we consider a general signal
model for neural datasets that admit convolutional structure.
We next provide a brief description of two exemplar datasets
and outline the challenges that arise in the recovery and
detection of neural events from these datasets.

1) Spike recovery from calcium imaging data: To monitor
the spiking activity of large neuronal populations, calcium-
sensitive fluorophores can be used to measure the intracellular
calcium concentration. When an AP is emitted, this results in
a transient increase in the intracellular calcium concentration
that can be monitored as a change in the calcium-sensitive
fluoresence. The corresponding fluorescence waveform is often
modeled as an instantaneous rise followed by an exponential or
multi-exponential decay curve. The template that approximates
this event-driven activity is governed by the binding kinetics of
the calcium-sensitive dye used to monitor calcium activity. For
this reason, different neurons will produce a similar fluores-
cence waveform for each AP. In addition to this event-driven
signal, in vivo imaging data is also corrupted by baseline drift
and motion/breathing artifacts.

2) Recovery of PSPs: In order to study properties of
synapses, plasticity, and functional connectivity of neural
circuits, patch clamp techniques are employed to record post-
synaptic potentials (PSPs) of a neuron-under-test, in response
to stimulation of single or multiple pre-synaptic partners. Low-
pass filtering by the dendritic arbor, and the time constant of
the cell membrane lead to PSP waveforms that are roughly
approximated by a function with a fast rise time and much
slower decay. Since the amplitude of a PSP provides infor-
mation about the strength of the synaptic connection between
a pre-synaptic cell and the neuron-under-test, in addition to
recovering the times that events occur, we must also recover
the amplitude of the event.

In both of the aforementioned examples, the transformation
from a neural event to the measured signal can be modeled
as a convolution of the original signal with a template. Thus,
the generation of (noiseless and uncorrupted) neuronal signals
y, € RY can be described by the following signal model,
Yo = Zle[xa]i(ém ® h)7 where [x,]; € R is the amplitude
of the i" event, On; € RY is the Kronecker delta function
with 1 at the n' entry and zeros otherwise, h € RY is
the template waveform that represents the transformation of
a spike into the domain of the observations, and k is the
number of events present in y,. To simplify notation, we will
rewrite y, as a linear transformation, y, = Ax,, where the
amplitude of the i event, [x,]; is contained in the i entry of
the vector x, € R™ and the ™ column of A consists of the
template h circularly shifted by ¢ samples; thus, the matrix A
is circulant. Note that we have A = F*AF with F being the
discrete Fourier transform (DFT) matrix and A = diag(\),
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Fig. 1. Synthetic model of calcium imaging data with slowly-varying baseline
component and additive noise: observations (blue), baseline component (green,
solid), neural signal (red, dashed), and recovered signal (magenta, dashed).

where A € C¥ is the frequency-domain representation of the
template waveform h, i.e., Fh = A.

The final model for measured neural data in z € RY is
given by the following input-output relation:

Z=Yat+yp+n ey

Here, the measurement vector z is composed from three com-
ponents: the observed neuronal signal y, = Ax,, a corruptive
baseline or drift component y;, € R™ generated from other
neural and/or measurement processes that we wish to remove
from the neuronal signal y,, and additive measurement noise
n € RY. We provide a synthetic example of calcium imaging
data generated according to this model in Fig. 1; in Fig. 2 we
show an example of a real intracellular measurement that is
well-approximated by the model in (1).

B. Sparse Deconvolution Methods for Event Detection

State-of-the art methods for event recovery from measure-
ments generated in accordance with (1) use an estimate of
the template h to deconvolve the measurements to obtain an
estimate of the signal x,. LS-based methods for deconvolution
provide reasonable estimates of x, when the signal-to-noise
ratio is high and the amount of corruptions is very low.
However, when the measurements are corrupted, additional
regularization or signal-specific information regarding both y,
and yy is required to obtain an accurate estimate of the neural
signal of interest.

In order to mitigate the drawbacks of LS-based recovery, a
sparse signal model can be imposed on the vector x,, which
assumes that the number of events k is small compared to
the length of the observation, i.e., k < IN. Sparsity has
recently been shown to provide a powerful signal model
for neural data, and sparse deconvolution techniques have
been applied successfully to estimate timing information from
calcium signals [5], [4] and from multi-electrode arrays [6].
To obtain a sparse estimate x,, one typically uses an ¢;-norm
penalty term, which leads to the well-known basis pursuit
denoising (BPDN) optimization problem [7]

(BPDN) minimize ||x||; subject to ||z — Ax||z < 4.
xERN
Here, the parameter § > 0 must be set in accordance to

the amount of noise present in the system. In [4], it was
shown that such a sparsity-based approach provides significant



improvements over standard deconvolution methods for neural
event recovery [3].

C. Sparse Signal Separation

While sparse deconvolution techniques provide significant
improvements over LS-based methods, the presence of corrup-
tions by, e.g., a baseline drift y;, inhibits accurate estimates
of x, when solving the BPDN problem. Instead, to simulta-
neously extract the baseline y; and the neural signal y, from
the noisy measurements z, a sparse signal separation problem
can be solved. This problem has been studied extensively in
the context of signal restoration and recovery from sparsely
corrupted measurements, and solves [8], [9]

minimize  ||Xq||1 + ||xs |1
xa,beRN (2)

(BP-SEP)
subject to ||z — Ax, + Bxy|2 < 0.

Here, we assume that the baseline y;, admits a sparse represen-
tation with the respect to the basis B € RV*M_ Provided that
both y, and y; admit sparse representations with respect to
A and B, respectively, and that A and B are incoherent (the
maximum inner product between the columns of A and B is
small), then stable signal separation is guaranteed (see [8], [9]
for the details). In what follows, we show how sparse signal
separation approach can be utilized for neural event detection
from noisy and corrupted measurements.

III. NERDS: NEURAL EVENT RECONSTRUCTION
AND DETECTION VIA SPARSITY

We now detail our method for joint neural event detection
and template estimation.

A. Algorithm Outline

In order to both recover the time instances and amplitudes of
neural events from the measurements in z and to estimate the
underlying kernel h, we propose an alternating optimization
approach. Specifically, we perform the following three-step
procedure: 1) we hold h fixed while optimizing x,, 2) we solve
a model-based thresholding operation to clean up the sparse
representation x, by keeping only the dominant neural events,
and 3) we hold the cleaned version X, fixed and estimate the
template waveform h. This procedure is repeated until both
estimates converge; the associated details are provided below.

B. Step 1: Coefficient Estimation via Sparse Signal Separation

To obtain a sparse estimate of x,, while assuming that the
template h is fixed, we propose to solve the sparse signal sep-
aration problem provided in (2). In our application, we set B
to an orthonormal discrete cosine transform (DCT) matrix,
which allows us to separate the baseline signal y;, = Bx,
from the signal of interest y, present in the measurements z.
The DCT basis provides sparse representations for slowly-
varying and oscillatory baseline components observed in real
datasets, while also satisfying the incoherence properties with
the circulant matrix A (which consist of circular shifts of
the template h) required to enable signal separation (see [8],

[9] for the details).! Hence, solving BP-SEP simultaneously
estimates the sparse representations x, and x; from z.

C. Step 2: Peak Detection via Model-Based Thresholding

In order to suppress spurious non-zero coefficients in x,
that are identified close to the true firing event of a neuron,
we employ a greedy method developed for model-based sparse
recovery of neural signals in [10], [4]. The deployed method
accurately detects the main firing events, while suppressing
non-zeros coefficients that are in the vicinity of A € NT
around the main peak. The window size A can be chosen
in accordance with the refractory period of the neuron. We
emphasize that this peak detection step is particularly useful
in the presence of a model mismatch between the true and
estimated template waveform h, which often causes non-zero
coefficients close to the main peak in x,. Let x, denote the
coefficient vector after this cleanup step.

D. Step 3: Template Estimation via Constrained LS

The third step computes an improved estimate of the tem-
plate waveform h, where X, is assumed to be fixed. To this
end, we first subtract the estimated baseline from z to form
the residual r = z — Bx;, and then, compute a constrained
LS estimate to obtain h. To improve the estimation accuracy,
we constrain the template to be localized in time (i.e., the
actual template is nonzero for L < N samples) and non-
negative. Enforcing these constraints significantly improves
template estimation, compared to existing blind deconvolution
methods for neural data, e.g., [6]. In particular, we seek to
solve the following constrained LS problem:

minimize |r — F*AFX,]|2
(C-LS) A=diag()
subject to  [F*A]g > 0, [F*A]ge =0,

where A is the frequency-domain representation of the tem-
plate h = F*A. The constraints ensure that h is non-negative
in the set @ = {1,..., L} and zero in its complement Q°.

To efficiently solve C-LS, we reformulate the problem in
the time-domain by rewriting its objective function as

It — FAF*%,||2 = [|[F'r — AF*x, |2
= ||[F*r — diag(F*%4)Al2, (3
where (3) exchanges the diagonal matrix A = diag(\) with the

vector F*X,. By using the orthonormality property FF* =1
of the DFT matrix, we can rewrite the C-LS problem as

minimize ||F*r — diag(F*%x,)Fh||,
(C-LS™) heRN
subject to  [h]g > 0, [h]ge =0.

This problem can be solved efficiently using an accelerated
first-order method derived from the FISTA framework [11],
which directly delivers an improved estimate of the template h.

IV. RESULTS AND DISCUSSION

We now demonstrate the efficacy of the proposed NERDS
method for synthetic and real-world data.

'Depending on the template h, matrix A does in many cases not satisfy
the sufficient conditions for stable recovery in [8], [9]. Nevertheless, as it will
be shown in Section IV, signal separation via BP-SEP succeeds in practice.
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Fig. 2. Reconstruction of neuronal signal (dotted) from whole cell electro-
physiology (solid). Detected spikes are shown at the top of the traces.

A. Event Detection Performance

In Fig. 2, we show an example of the proposed method for
real data obtained from whole-cell current clamp recordings of
differentiated human neural progenitor cells that were cultured
for 17 days after removing basic fibroblast growth factor from
the culture media. In addition to obtaining an estimate that is
qualitatively similar to the neural signal of interest, the number
of events recovered seems to agree with a careful manual
analysis of the observations.

We provide results using synthetically generated calcium
imaging data in Fig. 3.2 These synthetic results demonstrate
the advantages of BP-SEP-based recovery over BPDN, which
does not account for baseline drift in the data. Moreover, we
show that setting 4 = 0 in BP-SEP performs very similar
to an oracle-based (optimal) choice of §. The reason for this
behavior is due to the observation that large part of the noise n
is absorbed into the coefficients of x;, thus effectively denois-
ing the sparse vector x,. This noise absorption phenomenon
effectively denoises the signal of interest y, = Ax,, without
the need of finding an optimum parameter 9.

Our results on both real and synthetic data provide pre-
liminary evidence that the proposed NERDS method provides
a robust method for event detection that requires minimal
manual intervention. In particular, NERDS only requires an
estimate of the maximum length of the template L (used for
template estimation), an appropriate window size A, and a
threshold 7 (both used for peak detection).

B. Template Estimation Performance

In Fig. 4, we show a manually labeled PSP event in the
dataset described in the previous experiment, with our initial
template estimate (following an exponential function) and the
final template learned via the NERDS method. The resulting
learned template exhibits a number of qualitatively similar
properties to that of the original data. Concretely, we observe
very similar rise and decay times, with an additional plateau
in the learned template that resembles the decay properties
of the true template. This preliminary result suggests that our
template estimation method could provide new insights into
the template waveforms that generate real neural events, rather
than simply fitting the data to a pre-specified model.

2We generate signals of length N = 4096 with 10 exponentially decaying
events and a random baseline component that is sparse in the DCT basis as
in Fig. 1. We then vary the variance of the additive noise vector n.
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Fig. 3. Mean-squared error (MSE) comparison of standard BPDN recovery
with BP-SEP for synthetic data. BP-SEP significantly outperforms BPDN. For
BP-SEP, an oracle based § performs only slightly worse than for § = 0.
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Fig. 4. Template estimation from electrophysiology Data: initial template
(solid) and learned template (dash) overlaid on a manually labeled PSP. The
NERDS method delivers accurate estimates of the template waveform h.
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