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ABSTRACT
Consider a large database of questions that assess the knowl-
edge of learners on a range of different concepts. In this
paper, we study the problem of maximizing the estimation
accuracy of each learner’s knowledge about a concept while
minimizing the number of questions each learner must an-
swer. We refer to this problem as test-size reduction (TeSR).
Using the SPARse Factor Analysis (SPARFA) framework,
we propose two novel TeSR algorithms. The first algorithm
is nonadaptive and uses graded responses from a prior set
of learners. This algorithm is appropriate when the instruc-
tor has access to only the learners’ responses after all ques-
tions have been solved. The second algorithm adaptively
selects the “next best question” for each learner based on
their graded responses to date. We demonstrate the efficacy
of our TeSR methods using synthetic and educational data.
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1. INTRODUCTION
A course instructor is naturally interested in estimating how
well learners understand certain concepts (or topics) that are
relevant to the course. Information about each learner’s un-
derstanding is useful in (i) providing feedback to instructors
to assess whether the material is suitable for the class and
(ii) recommending remediation/enrichment for concepts a
learner has weak/strong knowledge of. In practice, accurate
estimates for each learner’s concept knowledge can be ex-
tracted automatically by analyzing the responses to a (typ-
ically large) set of questions about the concepts underlying
the given course (see, e.g., [8] for the details). In order to
minimize each learner’s workload, however, it is important
to reduce the number of questions, or—more colloquially—
the test-size, while still being able to retrieve accurate esti-
mates of each learner’s concept knowledge. In what follows,
we refer to this problem as test-size reduction (TeSR).

Contributions: We propose two novel algorithms for
test-size reduction (TeSR). Our algorithms build on the
SPARse Factor Analysis (SPARFA) framework proposed
in [8], which jointly estimates the question–concept relation-
ships, question intrinsic difficulties, and the latent concept
knowledge of each learner, based solely on binary-valued
graded response data obtained in an homework, test, or
exam. Given the SPARFA model, we leverage theory of

maximum likelihood (ML) estimators to formulate TeSR
as a combinatorial optimization problem of minimizing the
uncertainty in estimating the concept knowledge of each
learner. We then propose two algorithms, one nonadaptive
and one adaptive, that approximates the combinatorial op-
timization problem at low computational complexity using
a combination of convex optimization and greedy iterations.
The nonadaptive TeSR algorithm, referred to as NA-TeSR,
reduces the test size in a way that enables accurate concept
estimates for all learners in a course. The adaptive TeSR
algorithm, referred to as A-TeSR, adapts the test questions
to each individual learner, based on their previous responses
to questions. A range of experiments with synthetic data
and two real educational datasets demonstrates the efficacy
of both TeSR algorithms.

Prior Work: Prior results on test-size reduction build pri-
marily on the Rasch model [1–3,6,9], which characterizes a
learner using a single ability parameter [11]. In contrast, the
SPARFAmodel used in this paper characterizes a learner us-
ing their concept knowledge on multiple latent concepts. In
this way, SPARFA models educational scenarios of courses
consisting of multiple concepts more accurately. Moreover,
we show using experiments in Section 4 that the efficacy of
the Rasch model for TeSR is inferior to SPARFA combined
with our TeSR algorithms. The problem of selecting “good”
questions is related to the sensor selection problem [5, 7],
which finds use in environmental monitoring, for example.
However, measurements from sensor-networks are typically
real-valued, whereas, TeSR relies on discrete measurements.

2. PROBLEM FORMULATION

2.1 SPARFA in a nutshell
Suppose we have a total set of Q questions that test knowl-
edge from K concepts. For example, in a high school math-
ematics course, questions can test knowledge from concepts
like solving quadratic equations, evaluating trigonometric
identities, or plotting functions on a graph. For each ques-
tion i = 1, . . . , Q, let wi ∈ R

K be a column vector that
represents the association of question i to all K concepts.
Note that each question can measure knowledge from multi-
ple concepts1. The jth entry in wi, which we denote by wij ,
measures the association of question i to concept j. In other
words, if question i does not test any knowledge from con-
cept j, then wij = 0. Let W = [w1, . . . ,wQ]

T be a sparse,

1Solving x2 − x = sin2(x) + cos2(x) for x ∈ R, for example,
requires conceptual understanding of both solving quadratic
equations as well as trigonometric identities.



non-negative Q × K matrix, assuming that each question
only tests a subset of all concepts. Let µi ∈ R be a scalar
that represents the intrinsic difficulty of a question. A larger
(smaller) µi corresponds to an easier (harder) question. Let
µ = [µ1, . . . , µQ]

T be a Q× 1 column vector that represents
the difficulty of each question. Finally, let c∗ ∈ R

K be a
column vector that represents the concept knowledge of a
particular learner. It is this parameter vector that we are
interested in estimating accurately.

To model the interplay between W, µ, and c∗, we use the
SPARFA framework proposed in [8]. Let Yi be a binary
random variable that indicates whether question i has been
answered correctly or not, indicated by 1 and 0, respec-
tively. More specifically, the SPARFA model assumes that
Yi ∈ {0, 1} admits the following distribution:

Pr(Yi = 1 |wi, µi, c
∗) = Φ(wT

i c
∗ + µi), (1)

where Φ(x) = 1/(1 + e−x) is the inverse logistic link func-
tion. In words, (1) says that the probability of answering
a question correctly depends on a sparse linear combina-
tion of the entries in the concept understanding vector c∗.
This sparsity arises because of the assumption that wi is
sparse, i.e., it only contains a few non-zero entries. Given
graded question responses from multiple learners, the factors
W and µ can be estimated using either the SPARFA-M or
SPARFA-B algorithms introduced in [8].

2.2 Test-size reduction (TeSR)
The problem we consider in this paper is the selection of an
appropriate subset of q < Q questions so that c∗, a learner’s
unknown concept understanding vector, can be estimated
accurately. We assume that a set of responses from N learn-

ers, i.e., a binary-valued matrix Ỹ, is known a-priori ; an

entry Ỹi,j of Ỹ refers to whether a learner j answered ques-
tion i correctly or incorrectly. In many educational settings,
such a data matrix can be obtained by looking at past of-
ferings of the same course. As mentioned in Section 2.1,

the matrix Ỹ can be used to estimate the question to con-
cept matrix W and the intrinsic difficulty vector µ using the
algorithms proposed in [8].

Suppose, hypothetically, that we choose a subset I of q < Q
questions, and we are given a response vector yI . Let ĉ be
an estimate of the unknown concept knowledge vector c∗

that can be computed using standard maximum likelihood
(ML) estimators. The test-size reduction (TeSR) problem is
to choose an appropriate set of questions I so that the error
ĉ − c∗ is as small possible. Although this problem seems
impossible since we do not have access to the response vector
yI , it turns out that the covariance of the error

√
q(ĉ− c∗)

can be approximated by the inverse of the Fisher information
matrix [4], which is defined as follows:

F(WI ,µI , c
∗)) =

∑

i∈I

exp(wT
i c

∗ + µi)

(1 + exp(wT c∗ + µi))2
wiw

T
i . (2)

The notationWI refers to the rows ofW indexed by I. Sim-
ilarly, µI refers to the entries in µ indexed by I. Thus, a
natural strategy for choosing a “good” subset of questions I,
is to minimize the uncertainty (formally, the differential en-
tropy) of a multivariate normal random vector with mean
zero and covariance F(WI ,µI , c

∗))−1. Consequently, the

Algorithm 1: Nonadaptive test-size reduction (NA-TeSR)

Step 1) First choose K questions by solving

Î[K] = arg max
I⊂{1,...,Q},|I|=K

log det
(
WT

I V̂WI

)
(3)

using the convex optimization, see [7]. The entries of the

diagonal matrix V are defined as V̂kk = exp(v̂k), where

v̂i =
1
N

∑N

j=1 log
(
Ỹij − 1

N

∑N

j=1 Ỹij

)2

Step 2) Select questions K + 1, . . . , q in a greedy manner:

Îj+1 = arg max
i∈{1....,Q}\Î[j]

v̂iw
T
i

(
WT

I[j]
V̂I[j]

WI[j]

)−1

wi.

optimization problem considered in the remainder of the pa-
per, referred to as the test-size reduction (TeSR) problem,
corresponds to

(TeSR) Î = arg max
I⊂{1,...,Q},|I|=q

log det(F(WI ,µI , c
∗)) .

The main challenges in solving (TeSR) are (i) the TeSR
problem is a combinatorial optimization problem and (ii)
the concept knowledge vector c∗ is unknown, so the objec-
tive function cannot be evaluated exactly.

3. TESR ALGORITHMS
Our proposed algorithms, that are data driven and compu-
tationally efficient, for solving TeSR are summarized in Al-
gorithms 1 and 2. Due to space constraints, in what follows,
we only present a high level summary of the methods.

Nonadaptive TeSR: Algorithm 1 summarizes a nonadap-
tive method (NA-TeSR) for solving the TeSR problem. To
deal with the problem of the unknown c∗ in (2), we notice
that the coefficient of the term wiw

T
i in (2) is simply the

variance of a learner in answering a question i. This vari-
ance can easily be estimated using the prior student response

data Ỹ. The first step in NA-TeSR is to estimate K ques-
tions, where K is the number of concepts involved in the
question database. We are able to make use of properties
of the determinant to formulate TeSR as a convex optimiza-
tion problem, which we solve using low complexity methods
in [7]. The second step is to select the remaining q − K
questions using a greedy algorithm that selects the “best”
question iteratively until all q questions have been selected.

Remark 1: Note that when W is a Q × 1 vector of all
ones, the SPARFA model reduces to the Rasch model [11].
In this case, (TeSR) reduces to a problem of maximizing
the sum of the variance terms over the selected questions.
Thus, all the questions can be selected independently of the
others when using the Rasch model. On the other hand,
when using SPARFA, since we account for the statistical
dependencies among questions, the questions can no longer
be chosen independently as it is evident from Algorithm 1.

Adaptive TeSR: Our second algorithm, A-TeSR, is de-
signed for the situation where one can iteratively and in-
dividually ask questions to a learner and then use the re-
sponses to adaptively select the next “best” question based
on the previous responses. Such an approach is often re-
ferred to as computerized adaptive testing [12].



Algorithm 2: Adaptive test-size reduction (A-TeSR)

Choose K questions I[K] as in Step 1 of Algorithm 1.
Acquire graded learner responses yI[K]

.

for j = K + 1, . . . , q do
Compute the ML estimate ĉ using yI[j−1]

if ĉ exists then
Find Ij using Step 2 of Algorithm 2 by replacing v̂k
with Var[Yi|ĉ].

else
Find Ij using Step 2 of Algorithm 2 by searching
only amongst questions so that ĉ will most likely
exist in subsequent iterations.

Acquire graded learner responses yIj
.

The main idea behind A-TeSR is to use NA-TeSR until a
maximum likelihood estimate (MLE) ĉ of c∗ can be com-
puted. Then, we use ĉ to evaluate the objective function of
the TeSR problem and keep updating ĉ as the learner re-
sponds to adaptively chosen questions. The main challenge
of such an adaptive algorithm is the fact that a solution
may not exist for certain patterns of the graded response of
a given learner when computing the MLE. Thus, we would
like our proposed adaptive algorithm to select questions such
that the MLE can be computed using less number of ques-
tions than the nonadaptive algorithm. To this end, when-
ever the MLE does not exist, we choose the next question
(using a simple modification of Step 2 of NA-TeSR) in such
a way that the MLE may exist with higher probability in
each subsequent iteration.

Remark 2: Just as in the case of NA-TeSR, A-TeSR re-
duces to an adaptive Rasch model-based method when W is
aQ×1 vector of ones; see [3] for examples of such algorithms.
The main differences when using the SPARFA model for se-
lecting questions, as opposed to using the Rasch model, are
that the condition for the MLE to exist changes and in each
iteration we estimate a multidimensional concept vector as
opposed a scalar parameter.

4. EXPERIMENTAL RESULTS
Baseline algorithms: We compare NA-TeSR and A-TeSR
to four baseline algorithms.

• NA-Rasch and A-Rasch: Nonadaptive and adaptive
methods that use the Rasch model to select questions.
See Remark 1 and 2 for more details.

• Greedy: Iteratively selects a question from each concept
until the required number of q questions has been se-
lected. If all questions from a given concept have been ex-
hausted, then Greedy skips to the next concept to select a
question. Note that this approach completely ignores the
intrinsic difficulty of a question when performing TeSR.

• Oracle: Uses the true underlying (but in practice un-
known) vector c∗ to solve the TeSR problem. Note that
the oracle algorithm is not practical and is only used to
characterize the performance limits of TeSR.

Performance measure: We assess the performance of the
algorithms using the root mean-square error (RMSE), de-
fined as RMSE = ‖ĉ − c∗‖2. Although c∗ is known for
synthetic experiments, for real data, we assume that the
ground truth is the concept vector estimated when asking
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Figure 1: TeSR methods for synthetic data.

all Q available questions.

Methods: In the experiments shown next, we assume that
a matrix Y is given that contains graded responses of Q
questions from M students. As mentioned in Section 2, for
real data, we use SPARFA-M [8] to estimate W, µ, and
the ground truth concept values of each learner. For each
learner, we apply the baseline and our proposed TeSR al-

gorithms using W and a training data Ỹ obtained after
removing the responses of the learner from the matrix Y.
To show the performance of our TeSR algorithms, we report
the mean of the RMSE evaluated over all M learners.

MLE convergence: As mentioned in Section 3, the MLE
may not exist for certain patterns of the response vectors.
In the case of inexistent ML estimates, we make use of the
sign of the ML estimates (since each value in ĉ will either
be ∞ or −∞) to compute the RMSE. We then assign each
entry in ĉ to the worst (for −∞) or best (for +∞) value
obtained from a prior set of learners who have taken the
course. In our simulations, these worst and best concept

values are computed using the training data Ỹ.

Synthetic Data: We generated a sparse 50× 5 matrix W
that maps 50 questions to 5 concepts. There were roughly
30% non-zero entries in W with the non-zero entries cho-
sen from an exponential random variable with parameter
λ = 2/3. Each entry in the intrinsic difficulty vector µ was
generated from a standard normal distribution. We assumed
25 learners whose concept understanding vectors were again
generated from a standard normal distribution. For each Y,
we computed the reduced test-size with q = 5, 6, . . . , 44.

Figure 1(a) shows the mean value of the RMSE over 100 ran-
domly generated response vectors Y. Note that the mean
RMSE is taken over all 25 learners. We observe that NA-
TeSR and A-TeSR are superior to the baseline algorithms
A-Rasch, NA-Rasch, and Greedy. This observation suggests
that the Rasch model is not an appropriate model for select-
ing questions for the purpose of test-size reduction in courses
having more than one underlying concept.

Algebra test dataset: The first dataset was obtained by a
high school algebra test administered on Amazon’s Mechan-
ical Turk (see [8] for more details). This dataset contains no
missing data and consists of responses from 99 learners on
34 questions.

We used SPARFA-M assuming that there are K = 3 latent
concepts. The estimated concept–question matrix W con-
tains roughly 40% non-zero values. Figure 2(a) shows the



5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

Number of questions

m
ea

n 
of

 R
M

S
E

(a)

0

10

20

30

Greedy A-TeSR NA-TeSR A-Rasch NA-Rasch Oracle

N
um

be
r 

of
 q

ue
st

io
ns

(b)

Figure 2: Mechanical Turk algebra test with 3 con-
cepts; see Figure 1(a) for the legend.
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Figure 3: AssissMENT system data with 4 concepts;
see Figure 1(a) for the legend.

mean RMSE over 78 learners2. We see similar trends as in
the synthetic experiments. The main difference is that the
performance of Rasch-based algorithms is much worse when
compared to the synthetic data case. As we will explain
later, this behavior is mainly because the ML estimates for
the Rasch model did not converge for q < 17. Interestingly,
for q < 7, the mean RMSE of NA-TeSR is much lower when
compared to other algorithms. This behavior can be ad-
dressed to the fact that we deal with convergence failures
of the ML estimates. Furthermore, we note that the mean
performance of Greedy is better, in some regimes, than NA-
TeSR. However, this gain in performance, for some ques-
tions, comes at the cost of slightly higher variability in the
estimation of concept knowledge.

ASSISTment system dataset: The second real educa-
tional dataset corresponds to response data obtained from
the ASSISTment system that was studied in [10]. The origi-
nal data contained responses from 4354 learners on 240 ques-
tions. There are a large number of missing responses in this
dataset. In order to get a dataset with a sufficient number
of observed entries, we focused on a subset of 219 questions
answered by 403 learners. The resulting trimmed Y matrix
has roughly 75% missing values. Figures 3(a) shows the as-
sociated results and we observe trends that are similar to
the algebra test dataset.

How many questions are needed? Another interesting
measure to evaluate the performance of the TeSR algorithms
is the number of questions needed for the ML to converge.
Intuitively, this measure signifies the number of questions
needed to get accurate estimates of each learner’s concept
knowledge. Figures 1(b)–3(b) show box plots of the number
of questions needed for the ML estimates to converge for

2For some of the questions, the ML estimate did not exist
when using all the 34 questions; hence, the ground truth
could not be computed.

each algorithm and for each dataset considered here. Each
box corresponds to the 25th and 75th percentiles over all
learners in a class. We see that the A-TeSR algorithm is the
fastest to converge amongst all the practical algorithms (the
oracle algorithm is not practical since it utilizes information
about the unknown concept vector of interest c∗).
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