
HSPA+/LTE-A Turbo Decoder on GPU and Multicore CPU

Michael Wu, Guohui Wang, Bei Yin, Christoph Studer, and Joseph R. Cavallaro

Dept. of Electrical and Computer Engineering, Rice University, Houston, TX
e-mail: {mbw2, gw2, by2, studer, cavallar}@rice.edu

Abstract—This paper compares two implementations of re-
configurable and high-throughput turbo decoders. The first
implementation is optimized for an NVIDIA Kepler graphics
processing unit (GPU), whereas the second implementation is
for an Intel Ivy Bridge processor. Both implementations support
max-log-MAP and log-MAP turbo decoding algorithms, various
code rates, different interleaver types, and all block-lengths, as
specified by HSPA+ and LTE-Advanced. In order to ensure
a fair comparison between both implementations, we perform
device-specific optimizations to improve the decoding throughput
and error-rate performance. Our results show that the Intel
Ivy Bridge processor implementation achieves up to 2× higher
decoding throughput than our GPU implementation. In addition
our CPU implementation requires roughly 4× fewer codewords
to be processed in parallel to achieve its peak throughput.

I. INTRODUCTION

Turbo codes are capacity-approaching channel codes that
can be decoded at high throughput and low power using
dedicated hardware accelerators. Hence, turbo codes are used
in a large number of cellular wireless standards, such as
3GPP HSPA+ [1] and LTE-Advanced [2]. Recently, a number
of software-based wireless testbeds have been developed to
demonstrate the feasibility of software-based real-time com-
munication systems on general purpose processors [3]–[5]. Im-
plementations on such architectures are attractive for multiple
reasons. First, they are inherently flexible (with respect to code
rates, block lengths, etc.) and capable of supporting multiple
standards. Second, they use off-the-shelf components, without
the need for dedicated hardware accelerator blocks.

Although turbo codes offer superior error-rate performance
over convolutional codes, turbo decoding requires higher
computational complexity [6]. To meet the throughput re-
quirements of existing wireless standards, turbo decoding is
typically carried out with specialized hardware accelerators,
such as ASIC designs [7]–[9] or FPGA implementations [10].
As a consequence, SDR systems such as the ones in [3]–[5]
rely on convolution codes instead of turbo codes to avoid
the high complexity of channel decoding. The use of con-
volutional codes, however, results in inferior error-correction
performance (compared to turbo codes). In addition, LTE-
Advanced, specifies the use of turbo codes for both uplink
and downlink. Hence, corresponding SDR receiver designs
necessitate the development of software-based turbo decoder
solutions that are capable of achieving high throughput.

This work was supported in part by Broadcom and by the US National
Science Foundation under grants CNS-1265332, ECCS-1232274, EECS-
0925942 and CNS-0923479. We would also like to thank Nvidia and Intel
for their generous hardware donations.

Figure 1. High-level structure of a rate-1/3 3GPP turbo decoder.

Contributions: In this paper, we evaluate the performance
of turbo decoder implementations on two different high per-
formance programmable processors, namely on a quad-core
Intel i7-3770K (Ivy Bridge) and a Nvidia GeForce GTX
680 (Kepler GK104). We design two parallel turbo decoder
implementations with a similar feature set. Both proposed
implementations support HSPA+ and LTE-Advanced and take
advantage of unique features of both platforms. In particular,
we perform a variety of device specific optimizations, such as
the use of linear-MAP approximation on the CPU and the use
of shuffle instructions on the GPU, to maximize the throughput
and/or to improve the error-rate performance. We conclude by
comparing the throughput of both implementations.

II. OVERVIEW OF TURBO DECODING

The high-level structure of a rate-1/3 3GPP turbo decoder
is shown in Figure 1. The turbo decoder consists of two
concatenated component decoders exchanging soft informa-
tion in terms of the log-likelihood ratio (LLR) for each
transmitted information bit through an interleaver (denoted
by
∏

) and a deinterleaver (denote by
∏−1). HSPA+ uses

intra-row and inter-row permutations to generate the inter-
leaver addresses [1], whereas LTE-Advanced (LTE-A) uses a
quadratic permutation polynomial (QPP) interleaver [11]. The
component decoders are the same for HSPA+ and LTE-A.

A. Algorithm outline

Turbo decoding is carried out in multiple iterations (de-
noted by I) where each iteration consists of two component
decoding phases. In each phase, a component decoder per-
forms maximum a-posteriori (MAP) decoding using the BCJR
algorithm [12], which generates so-called extrinsic LLRs given
the LLRs obtained by the detector and a-priori LLRs obtained
from the other component decoder. The BCJR algorithm
consists of one forward and one backward traversal on a
trellis, which is defined by the underlying code. Specifically, to
decode a codeword of N information bits, the BCJR algorithm
performs the following steps: (i) In the forward traversal step,

Figure 2. Structure of the 3GPP trellis. There are 8 states per trellis step and
one step per transmitted information bit. The vector sk consists of all state
metrics at trellis step k. The values uk and pk , are the kth information bit
and the parity bit (both ±1) respectively.

it iteratively computes N sets of forward state metrics for
each transmitted information bit. (ii) In the backward traversal
step, it iteratively computes N sets of backward state metrics
for each transmitted information bit. To compute the extrinsic
LLRs, the BCJR algorithm then combines the forward and
backward state metrics.

B. Branch-metric computation

HSPA+ and LTE-Advanced both operate on a 8-state trellis,
which is illustrated in Figure 2. Let sk+1

j be the jth state
associated with information bit k+1. There are two incoming
branches into state sk+1

j . Each incoming branch is associated
with values uk and pk, the kth information bit and the parity
bit (both ±1), respectively. The branch metrics associated with
states ski and sk+1 are computed as follows:

γ
(
ski , s

k+1
j

)
= 0.5(Lk

sys + Lk
a)uk + 0.5(Lk

ppk).

Here, Lk
sys and Lk

a are the systematic channel LLR and the
a-priori LLR for kth trellis step, respectively. In addition, the
parity LLRs for the kth trellis step are Lk

p = Lk
p0 for MAP

decoder 0 and Lk
p = Lk

p1 for MAP decoder 1. Note that we
do not need to evaluate the branch metric γ (sk, sk+1) for all
16 possible branches (see Figure 2), as there are only four
different branch metrics: γ0k = 0.5(Lk

sys + Lk
a + Lk

p), γ
1
k =

0.5(Lk
sys + Lk

a − Lk
p), −γ0k , and -γ1k .

C. Forward and backward state metric computation

The forward state metrics can be computed iteratively from
trellis step to trellis step. The forward state metrics of step k+1
correspond to the vector αk+1 = [αk+1

1 , . . . , αk+1
8], where the

jth forward state metric αk+1
j only depends on two forward

state metrics of stage k. These state metrics are computed by

αk+1
j = max∗i∈F

{
αk
i + γ(ski , s

k+1
j)

}
(1)

where the set F contains the two indices of the states in step k
connected to state sk+1

j (as defined by the trellis). The max∗{·}
operator is defined as

max∗{a, b} = max{a, b}+ log (1 + exp(−|a− b|)) , (2)

where log (1 + exp(−|a− b|)) is a correction term. For
the max-log approximation, we approximate max∗ by
max∗(a, b) ≈ max(a, b). In this case, one can scale the

extrinsic LLRs by a factor of 0.7 to to partially recover the
error-rate performance loss induced by the approximation (see,
e.g., [8], [13] for additional details).

Computation of the backward state metrics is similar to that
of the forward trellis traversal in (1). The vector of backward
state metrics, denoted by βk = [βk

1 , . . . , β
k
8], is computed as

βk
j = max∗i∈B

{
βk+1
i + γ(skj , s

k+1
i)

}
. (3)

Here, the set B contains the indices of states in step k + 1
connected to state skj as defined by the trellis.

D. LLR computation

After the forward and backward iterations have been carried
out, the extrinsic LLRs for the kth bit are computed as

Lk
e = max∗{sk,sk+1}∈U1

{
αk
i + βk+1

j + γ
(
ski , s

k+1
j

)}
−max∗{sk,sk+1}∈U−1

{
αk
i + βk+1

j + γ
(
ski , s

k+1
j

)}
− Lk

sys − Lk
p,

where the sets U1 and U−1 designate the set of states
connected by paths where uk = 1 and the set of states
connected by paths where uk = −1, respectively.

III. TURBO DECODER IMPLEMENTATIONS

At a high level, both the Ivy-Bridge and Nvidia Kepler
architectures can be viewed as multi-core SIMD processors.
For the Intel CPU, we explicitly deploy SIMD instructions
via Intel intrinsics to vectorize the MAP decoding algorithm.
For the NVIDIA GPU, we used CUDA [14] to parallelize
the workload. The CUDA compiler can easily vectorize the
GPU computations, since in the CUDA programming model,
threads execute the same set of computations, just on different
input data.

To achieve high decoding throughput, the BCJR algorithm
outlined in Section II needs to be vectorized. We deploy the
vectorization scheme put forward in [15], which vectorizes
the BCJR algorithm into SIMD operations on vectors with
eight 8 bit elements to accelerate a UMTS turbo decoder on
an Analog Devices DSP. In the following subsections, we
compare and contrast our turbo decoder implementations for
the Intel CPU and the NVIDIA GPU.

A. SIMD data types

For the quad-core Intel Ivy-Bridge processor, each core can
execute SIMD instructions, supporting operations on various
vector data types. Most hardware implementations of turbo
decoders carry out fixed point calculations and use 10 bit-
to-12 bit precision to achieve an error-rate performance close
to a floating point implementation [7]–[9]. To achieve high
throughput on the CPU, while maintaining good error-rate per-
formance, we used vectors with eight 16 bit integer elements.

The targeted Nvidia GTX 680 consists of 8 Next Generation
SM (SMX) units, where each SMX unit is roughly equivalent
to an Intel Ivy-Bridge core. An SMX unit can issue multiple
1024 bit SIMD instructions in parallel, where each instruction
operates on vectors with 32 elements each having 32 bit. The
architecture is optimized for single-precision floating-point

operations (integer operations can be up to 6× slower). As
a result, we used single-precision floating point operations in
our GPU implementation. Since the computations for turbo-
decoding consists of operations on vectors with 8 elements,
we also decode at least 4 codewords in parallel to ensure a
full utilization of the 1024 bit SIMD instruction.

B. Memory allocation

Among all possible codes in HSPA+ and LTE-A, the longest
code is the LTE codeword with K = 6144 information bits.
The length of the rate-1/3 encoded data is 18444 bit, which is
the largest amount of memory required among all codewords.

For our CPU implementation, we store all data as 16 bit
values. The implementation requires 48 KB for input/output
LLRs, and 96 KB for forward state metrics. Since the amount
of L2 cache per core is 256 KB, all data fits into the cache.

On the GPU, shared memory, a small amount of mem-
ory (48KB per SMX) managed using explicit load and store
instructions, can be used to cache data locally. Unfortunately,
we cannot store data in the shared memory. This is because
we decode at least 4 codewords in parallel to ensure the full
utilization of the 1024 bit SIMD instruction and requires at
least 4× the amount of storage, which outstrip the amount of
available shared memory. Therefore, we store the input/output
LLRs and forward state metrics in the device’s memory, which
has high access latency, reducing the throughput of the design.

C. Multi-mode interleaver lookup table

To support HSPA+ and LTE-A, we need to support both
interleaver types. Generating the HSPA interleaver addresses
is rather complicated [1]. To achieve high throughput, we
decided to generate lookup tables which contain all possible
interleaved and deinterleaved memory addresses instead of
computing the addresses on-the-fly. For the Intel architecture,
we store the lookup table in memory and rely on the fact
that the entries in the lookup table will be cached. For the
Nvidia architecture, we explicitly copy the correct entries of
the lookup table at the start of the decoding iteration into
constant memory, a small amount of read-only cache available
on the GPU; this enables efficient lookup table accesses.

D. Max∗ operation

For the max-log approximation, we simply omit the correc-
tion term of max∗ operator, as defined in (2), and approximate
max∗ as a simple max operation followed by scaling the
extrinsic LLRs by a factor of 0.7. For both the CPU and GPU
implementations, the max-log approximation corresponds to a
vertical (element-wise) max instruction.

Since the GPU supports element-wise logarithm and expo-
nential functions, we can implement the log-MAP algorithm
directly. Overall, the log-MAP algorithm requires one vertical
max instruction, one vector subtraction, one vector absolute
value, one call to the element-wise log function, one call to
element-wise exponential function, and one vector addition.

The Intel architecture does not support scalar or vec-
tor fixed-point logarithm or exponential functions. We
therefore approximate the correction term c(a, b) =

log (1 + exp(−|a− b|)) with a piece-wise linear function as
c(a, b) = max{0.25(2.77− |a− b|), 0} [16]. We then add this
correction term to max{a, b}. This approximation requires 6
additional instructions compared to the max-log approxima-
tion: one vector subtraction, one vector absolute value, one
vector shift, one vector maximum, and one vector addition.

E. Branch-metric computation

In order to compute all branch metrics for every state k,
we need to compute four branch metrics, γ0k and γ1k and the
negated versions, −γ0k and −γ1k (see Section II-B), which
requires scalar operations only.

To parallelize the workload on the CPU and GPU, we
fetch 8 consecutive systematic channel LLRs, 8 consecutive
parity LLRs and 8 consecutive a priori LLRs at a time.
We then compute the branch metrics, {γ1k+1, . . . , γ

1
k+8} and

{γ0k+1, . . . , γ
0
k+8}, in parallel. Finally, we compute the negated

versions. In total, the branch metric computation requires two
vector additions and three vector subtractions.

F. Forward and backward traversal

Figures 3(a) and 3(b) depict the vectorized implementation
of the forward and backward state-metric computation units
in (1) and (3), respectively. Compared to the implementa-
tion in [15], we rearranged the placement of shuffles (data
exchange between SIMD lanes) to increase the instruction-
level parallelism (ILP). This approach does not increase the
number of required shuffle operations and is beneficial for the
Intel architecture, since multiple shuffles can be executed in
parallel. Figure 3(c) depicts the computations used to generate
the extrinsic LLRs, where β+ and β− are intermediate values
computed while computing βk (see Figure 3(b)).

On the Intel architecture, the αk and βk computations can
be implemented very efficiently using intrinsics. The vector
γk is constructed using one shuffle instruction. The rest of the
αk and βk computation consists of two vector additions, two
128 bit shuffles and two element-wise max∗ operations. Since
we use 16 bit for the forward state metrics, these metrics can
overflow. Hence, we re-normalize the metrics by subtracting
αk(1) from αk [9]. To reduce the number of instructions
required by this re-normalization step, we normalize the state
metric only every 8 trellis steps. As a result, the overhead of
renormalization is low, requiring three additional instructions
(extract the first element, broadcast, and vector subtract) every
8 trellis steps. The same normalization scheme is used during
the backward state metric computation phase.

In our previous work [17], we emulated shuffle instructions
with shared memory load and store instructions on the Nvidia
architecture. One new feature of Kepler is that it explicitly
supports shuffle instructions. We therefore replaced the shared
memory operations with shuffles. As a result, the number of
instructions for αk and βk computation is similar to that of the
CPU implementation. Since all computations are carried out
in floating point arithmetic, the forward and backward state
metrics do not need to be normalized.

Figure 3. (a) Vectorized computation of αk+1 for the 3GPP turbo code. The block vmax∗ implements the vectorized element-wise max∗ operator. (b)
Vectorized computation of βk−1 for the 3GPP turbo code. (c) Vectorized LLR computation for the 3GPP turbo code. The block hmax∗ reduces 8 elements
in the input vector to one element using the max∗ operator.

G. LLR computation

As shown in Figure 3(c), the LLR computation consists
of two vector addition instructions, two hmax∗ functions,
and a few scalar operations. The function hmax∗ reduces the
elements to one element using the max∗ operator; this can be
accomplished using a tree reduction, which requires 3 shuffle
instructions and 3 max∗ operations on the CPU.

Unfortunately, a tree reduction does not use all lanes of the
SIMD instruction. To increase computational efficiency, we
buffer the inputs to hmax∗ for 8 consecutive stages in shared
memory column wise, instead of evaluating hmax∗ one stage
at a time. We then apply the element-wise max∗ operation
row-wise to find the minimum in each column.

H. Multi-codeword decoding

Transmitted frame for both LTE-A and HSPA+ consists of
multiple codewords. Since both CPU and GPU are multi-core
processors, we parallelize the workload across all available
cores to maximize the peak decoding throughput.

For the CPU, such a parallelization is straightforward. We
assigned at least one codeword per core using OpenMP to
maximize the core utilization and, hence, the throughput.

The GPU heavily relies on multi-threading to hide pipeline
stalls and memory-access stalls. A corresponding implemen-
tation requires a large number of independent sets of in-
structions [14]. As a result, we assigned a large number of
codewords to each SMX using CUDA. To reduce the number
of codewords needed to achieve high throughput on the GPU,
we employed a windowed decoding approach, which divides
a codeword into P sections (or windows) and processes these
sections in parallel [17]. Since the forward and backward
state metrics are computed from the first trellis stage to the
last stage (in a continuous fashion), we exchange the forward
and backward state metrics among different windows between
the iterations. This approach reduces the performance loss
associated with parallel processing. Nevertheless, there is a
tradeoff between the number of windows and the decoding
latency, which we will discuss in the following section.

IV. IMPLEMENTATION RESULTS

We now show our implementation results on an Intel Core
i7-3770K, a quad core Ivy Bridge processor, and a Nvidia

Figure 4. FER performance of (a) log-MAP decoding and (b) max-log-MAP
decoding for K = 6144 and 6 decoding iterations.

GTX 680, a Kepler GK104 GPU. In our experiments, we
used the Intel C++ Compiler 14.0 and the CUDA 5.5 toolkit.
In the following, we first compare the error-rate performance
in terms of the frame error rate (FER) with a floating point
reference decoder [8], and then, we compare the throughput
of our optimized turbo decoder implementations.

A. FER performance

We evaluate the FER in an additive white Gaussian
noise (AWGN) channel. For the following experiments, we
used the longest LTE code-word, which consists of K = 6144
information bits, and a code rate of 1/3. Since the GPU turbo
decoder supports windowed decoding, we consider a different
number of windows (all of equal size), where the number of
windows is P ∈ {1, 32, 64, 96, 128}.

Figure 4(a) compares the FER of the CPU decoder using
the linear approximation detailed in Section II-B and the GPU
decoder using log-MAP decoding. Figure 4(b) compares the
FER of all turbo decoders using the max-log-MAP algorithm.

As expected, the use of 16 bit precision for the CPU imple-
mentation leads to a small loss (∼0.14 dB for the max-log-
MAP case) in terms of FER. The linear approximation results
in only a very small FER degradation (∼0.12 dB). For the GPU
implementation, the FER performance with P = 1 matches the

Table I
PEAK THROUGHPUT FOR THE K = 6144, RATE-1/3 LTE TURBO CODE.

CPU (Mbps) GPU (Mbps)

I max-log-MAP linear log-MAP max-log-MAP log-MAP

4 122.6 62.3 54.2 55.2
6 76.2 40.0 37.0 35.5
8 55.6 30.8 30.0 27.8
10 46.9 25.1 24.9 23.7

reference (floating-point) implementation; for larger window
sizes P , the FER performance degrades only slightly. We note
that the same behavior applies to the HSPA+ codes, which are
not shown here for the sake of brevity.

B. Peak decoding throughput

Table I shows the peak throughput of our CPU and GPU
implementations. The results for HSPA+ are similar; for
log-MAP algorithm and 6 decoding iterations, we achieved
41.6Mbps and 36.7Mbps on CPU and GPU respectively.

As expected, the throughput for both implementation is
inversely proportional to the number of decoding iterations I .
The CPU implementation appears to be instruction bounded
as additional instructions increase the runtime proportionally.
The number of instructions required to compute a forward
state metric is 7 using the max-log approximation, whereas the
use of the linear log-MAP approximation requires 6 additional
instructions. As a result, the number of instructions required
for linear log-MAP is 2× of max-log-MAP. For 6 decoding
iterations, the throughput of the linear log-MAP approximation
is 40 Mbps. The throughput of the linear log-MAP approxima-
tion is approximately 2× lower than the throughput of max-
log-MAP implementation, which is 76.2Mbps.

For the GPU implementation, we found the instructions per
cycle (IPC) is low, typically ∼1. Using the Nvidia profiler, we
found that instructions operands are often unavailable (due to
memory latency), leading to a low execution unit utilization.
As a result, additional instructions (that do not require ad-
ditional memory access) can execute on the idling execution
units and thus do not significantly degrade the throughput.
Hence, the throughput of log-MAP is not significantly slower
than that of the max-log-MAP algorithm on the GPU.

For the CPU implementation, a workload of 8 parallel
codewords is sufficient to reach the peak throughput. For the
GPU implementation, significantly more codewords need to
be processed in parallel. Given a codeword, increasing the
number of windows, P , does not increase peak throughput as
the number of computation and memory transactions required
to process the codeword stays the same. Increasing P , how-
ever, is an effective way of reducing the number of codewords
required to reach peak throughput. This trend is similar to our
previous implementation [17]. On the Kepler architecture, we
require 512 codewords for P = 1, 16 codewords for P = 32
and above, to reach the peak performance.

In summary, our GPU implementation is up to 2× slower
than that of our CPU implementation for the max-log ap-
proximation, and only 1.2× slower for the optimal log-MAP

algorithm. For the Nvidia Kepler architecture, the maximum
IPC is 6-to-7, while the achieved IPC is ∼1. The achieved
IPC is low as operands of the instructions are often not ready
due to memory access latency, leading to low execution unit
utilization and low throughput. Coupled by the fact that CPU
is clocked much faster than the GPU, the CPU implementation
was able to outperform the GPU implementation.

We emphasize that it is possible to further improve the
decoding throughput on the GPU. For example, we can
reduce the number of memory accesses via data compression,
which reduces the time for which execution units wait for
operands. Nevertheless, the CPU implementation seems to be
better suited for SDR applications since we achieve higher
throughput with 2× fewer number of parallel codewords,
which significantly reduces the latency of the entire system.

REFERENCES

[1] A. Vosoughi, G. Wang, H. Shen, J. R. Cavallaro, and Y. Guo, “Highly
scalable on-the-fly interleaved address generation for UMTS/HSPA+
parallel turbo decoder,” in IEEE ASAP, June 2013, pp. 356–362.

[2] The 3rd Generation Partnership Project (3GPP), “Evolved universal
terrestrial radio access (E-UTRA); multiplexing and channel coding,
Tech. Spec. 36.212 Release-11,” 2012.

[3] K. Tan, J. Zhang, J. Fang, H. Liu, Y. Ye, S. Wang, Y. Zhang, H. Wu,
W. Wang, and G. M. Voelker, “Sora: High performance software radio
using general purpose multi-core processors,” in USENIX NSDI, Apr.
2009, pp. 75–90.

[4] C. R. Berger, V. Arbatov, Y. Voronenko, F. Franchetti, and M. Puschel,
“Real-time software implementation of an IEEE 802.11 a baseband
receiver on Intel multicore,” in IEEE ICASSP, May 2011, pp. 1693–
1696.

[5] K. Tan, J. Zhang, J. Fang, H. Liu, Y. Ye, S. Wang, Y. Zhang, H. Wu,
W. Wang, and G. M. Voelker, “Soft-LTE: A software radio implementa-
tion of 3GPP Long Term Evolution based on Sora platform,” in Demo
in ACM MobiCom 2009, Sept. 2009.

[6] C. Berrou and A. Glavieux, “Near optimum error correcting coding and
decoding: Turbo-codes,” IEEE Trans. on Commun., vol. 44, pp. 1261 –
1271, Oct. 1996.

[7] C. Benkeser, A. Burg, T. Cupaiuolo, and Q. Huang, “Design and
optimization of an HSDPA turbo decoder ASIC,” IEEE JSSC, vol. 44,
no. 1, pp. 98–106, Jan. 2009.

[8] C. Studer, C. Benkeser, S. Belfanti, and Q. Huang, “Design and
implementation of a parallel turbo-decoder ASIC for 3GPP-LTE,” IEEE
JSSC, vol. 46, no. 1, pp. 8–17, Jan. 2011.

[9] Y. Sun and J. R. Cavallaro, “Efficient hardware implementation of a
highly-parallel 3GPP LTE/LTE-advance turbo decoder,” INTEGRATION,
the VLSI journal, vol. 44, no. 4, pp. 305–315, Sept. 2011.

[10] Xilinx Corporation, 3GPP LTE turbo decoder v2.0, 2008.
[Online]. Available: http://www.xilinx.com/products/ipcenter/DO-DI-
TCCDEC-LTE.htm

[11] A. Nimbalker and Y. W. Blankenship and B. K. Classon and K. T.
Blankenship, “ARP and QPP interleavers for LTE turbo coding,” in IEEE
WCNC, Apr. 2008, pp. 1032–1037.

[12] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear
codes for minimizing symbol error rate,” IEEE Trans. on Inf. Theory,
vol. IT-20, pp. 284–287, Mar. 1974.

[13] J. Vogt and A. Finger, “Improving the max-log-MAP turbo decoder,”
IET Electron. Letters, vol. 36, no. 23, pp. 1937–1939, 2000.

[14] NVIDIA Corporation, CUDA Compute Unified Device Ar-
chitecture Programming Guide, 2008. [Online]. Available:
http://www.nvidia.com/object/cuda_develop.html

[15] K. Loo, T. Alukaidey, and S. Jimaa, “High Performance Parallelised
3GPP Turbo Decoder,” in IEEE Personal Mobile Commun. Conf., Apr.
2003, pp. 337–342.

[16] J.-F. Cheng and T. Ottosson, “Linearly approximated log-MAP algo-
rithms for turbo decoding,” in IEEE VTC Spring, vol. 3, May 2000, pp.
2252–2256.

[17] M. Wu, Y. Sun, G. Wang, and J. R. Cavallaro, “Implementation of a
high throughput 3GPP turbo decoder on GPU,” J. of Signal Process.
Syst., vol. 65, no. 2, pp. 171–183, Nov. 2011.

