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Abstract—Sparse signal recovery finds use in a variety of prac-
tical applications, such as signal and image restoration and the
recovery of signals acquired by compressive sensing. In this paper,
we present two generic VLSI architectures that implement the
approximate message passing (AMP) algorithm for sparse signal
recovery. The first architecture, referred to as AMP-M, employs
parallel multiply-accumulate units and is suitable for recovery
problems based on unstructured (e.g., random) matrices. The
second architecture, referred to as AMP-T, takes advantage of
fast linear transforms, which arise in many real-world applica-
tions. To demonstrate the effectiveness of both architectures, we
present corresponding VLSI and FPGA implementation results
for an audio restoration application. We show that AMP-T is
superior to AMP-M with respect to silicon area, throughput,
and power consumption, whereas AMP-M offers more flexibility.

Index Terms—Approximate message passing (AMP), compres-
sive sensing, fast discrete cosine transform, field-programmable
gate array (FPGA), `1-norm minimization, signal restoration,
sparse signal recovery, very-large scale integration (VLSI).

I. INTRODUCTION

SPARSE signal recovery has established itself as a powerful
tool in various fields by enabling the recovery of a sparse

vector from an underdetermined system of linear equations
using sophisticated (non-linear) recovery algorithms [1]. Since
many natural or man-made signals exhibit a sparse represen-
tation in certain bases (e.g., speech signals are approximately
sparse in the Fourier domain) and many real-world problems
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can be formulated in terms of a system of linear equations,
sparse signal recovery finds use in a large number of practical
applications. Prominent examples are the restoration of audio
signals or images from saturation, impulse noise, or narrow-
band interference [2]–[4], signal separation [5], de-noising [6],
de-blurring [7], super-resolution [6], and in-painting [8], as
well as compressive sensing (CS) [9], [10]. CS has recently
gained significant attention in the research community by
enabling the sampling of sparse signals using fewer measure-
ments than the Nyquist rate suggests. In particular, CS has the
potential of lowering the costs of sampling (compared to con-
ventional analog-to-digital converters) and is used in a large
number of practical applications, such as magnetic resonance
imaging (MRI) [11], electroencephalography [12], imaging
devices [13], radar [14], or wireless communication [15], [16].

Unfortunately, high-performance sparse signal recovery al-
gorithms typically require a significant computational effort
for the problem sizes occurring in most practical applications.
While the computational complexity is not a major issue for
applications where off-line processing on CPUs or graphics
processing units (GPUs) can be afforded (e.g., in MRI), it
becomes extremely challenging for applications requiring real-
time processing at high throughput or for implementations
on battery-powered (e.g., mobile) devices. Hence, to meet
the stringent throughput, latency, and power-consumption con-
straints of real-time audio, image, and video restoration, CS-
based imaging devices, radar, or wireless systems, developing
dedicated hardware implementations, such as application spe-
cific integrated circuits (ASICs) or field-programmable gate
arrays (FPGAs), is of paramount importance.

While significant research effort has been devoted to the
design of high-performance and low-complexity sparse signal
recovery algorithms, e.g., [17]–[25], much less is known
about their economical implementation in dedicated hardware.
Notable exceptions are the ASIC designs reported in [15],
where the authors compared several implementations of greedy
pursuit (GP) algorithms for sparse channel estimation in
wireless communication systems. A similar recovery algorithm
specifically designed for signals acquired by the modulated
wideband converter was implemented on an FPGA in [16].
Another FPGA implementation for generic CS problems of
dimension 32 × 128 was developed in [26]. All these imple-
mentations rely on GP algorithms, which are well-suited for
the recovery of very sparse signals in hardware. However, for
applications featuring less sparse (or approximately sparse)
signals, such as audio signals, images, or videos, these al-
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gorithms quickly become inefficient in terms of throughput,
silicon area, and power consumption, as their complexity
scales roughly linearly in the signal’s sparsity level (see [15]
for a corresponding discussion).

A. Contributions
In this paper, we present—to the best of our knowledge—the

first VLSI designs of a basis pursuit denoising (BPDN) solver
for signal restoration and signal recovery from CS measure-
ments. We compare possible candidate algorithms and identify
the approximate message passing (AMP) algorithm [25] to be
well suited for the recovery of approximately sparse signals,
such as audio signals, images, or videos, in hardware. To
demonstrate the suitability of AMP for VLSI implementations,
we develop two generic architectures:
• The first architecture, referred to as AMP-M, is a general-

purpose solution employing multiply-accumulate (MAC)
units, which is suitable for sparse signal recovery prob-
lems relying on arbitrary (e.g., unstructured or random)
linear measurements.

• The second architecture, referred to as AMP-T, is specif-
ically designed for recovery problems for which the
measurement matrices (i.e., the aggregation of the linear
measurement operators) have fast transform algorithms.

In order to demonstrate the efficacy of both sparse-signal re-
covery architectures, we present corresponding VLSI designs
for a real-time audio restoration example. For the AMP-T
architecture, we employ a fast implementation of the discrete
cosine transform (DCT), which substantially improves upon
the MAC-based AMP-M solution in terms of silicon area,
throughput, and power consumption. For both architectures,
we present reference VLSI and FPGA implementation results
to highlight the effectiveness of AMP-T and AMP-M for
sparse signal recovery and CS in practical systems.

B. Outline of the Paper
The remainder of the paper is organized as follows. Sec-

tion II briefly introduces CS and evaluates prominent sparse
signal recovery algorithms, including AMP. Section III dis-
cusses the application of AMP for signal restoration. The
VLSI architectures for AMP-M and AMP-T are detailed in
Section IV; corresponding reference VLSI and FPGA imple-
mentation results and a comparison to existing solutions are
given in Section V. We conclude in Section VI.

C. Notation
Lowercase and uppercase boldface letters stand for column

vectors and matrices, respectively. The ith entry of a vector a
is ai; the kth column and the `th entry on the kth column of
a matrix A are denoted by ak and [A]k,`, respectively. IM
and 0M×N stand for the M ×M identity and the M × N
all-zeros matrix, respectively; the transpose of a matrix A is
designated by AT . The Euclidean (or `2) norm of a vector x
is denoted by ‖x‖2. The `1-norm of x is designated by ‖x‖1,
and ‖x‖0, often referred to as the `0-norm, corresponds to the
number of non-zero entries in x. The complex conjugate, real
part, and imaginary part of a ∈ C is denoted by a∗, <{a} and
={a}, respectively. For x ∈ R, we define [x]+ = max{x, 0}.

II. SPARSE SIGNAL RECOVERY AND
COMPRESSIVE SENSING (CS)

We next review the basics of sparse signal recovery and
CS and evaluate potential candidate recovery algorithms, with
a focus on their suitability for VLSI. We then summarize
AMP [25], which is considered in the remainder of the paper.

A. Compressive Sensing in a Nutshell

Compressive sensing (CS), as put forward in [9], [10], aims
to sample a signal vector y ∈ RN using fewer measurements
than the Nyquist rate suggests. Specifically, CS considers
the acquisition of y through M linear (and non-adaptive)
measurements as follows:

z = Φy + n (1)

Here, Φ ∈ RM×N is a sensing matrix satisfying M < N ,
and n ∈ RM represents additive measurement noise. Since
the recovery of y from the noiseless measurements z = Φy
corresponds to solving an under-determined set of linear equa-
tions, the estimation of y from the noisy measurements (1) is,
in general, an ill-posed problem. Nevertheless, many natural
or man-made signals have a sparse representation x in a given
orthonormal basis Ψ, i.e., y = Ψx, where only a few entries
K � N of x are non-zero. Sparsity enables us to estimate
the signal y if the effective matrix D = ΦΨ satisfies the so-
called restricted isometry property (RIP) [10]. For instance,
if the entries of Φ are i.i.d. zero-mean Gaussian, then D
is known to satisfy the RIP with overwhelming probability
provided that [27]

M ∼ K log(N/K). (2)

In this case, a fundamental result of CS states that a stable
estimate for x can be obtained with the aid of sparse signal
recovery algorithms. More specifically, recovery from (1) is
commonly achieved by a convex optimization-based method
known as basis pursuit de-noising [28]

(BPDN) minimize
x̃

‖x̃‖1 subject to ‖z−Dx̃‖2 ≤ ε,

with ‖n‖2 ≤ ε. Finally, an estimate for the desired signal
vector y can be obtained by computing Ψx̂, where x̂ denotes
the solution to BPDN.

B. Evaluation of Sparse Signal Recovery Algorithms

In order to compute the solution to BPDN, a variety of
optimal and sub-optimal sparse signal recovery algorithms
have been proposed in the literature [17]–[19], [22]–[25].
We next evaluate several potential candidate algorithms with
respect to their suitability for VLSI implementation.

1) Interior-point methods: Convex optimization problems,
such as BPDN, can be solved accurately using interior point
methods [17]. Such methods are known to exhibit high com-
putational complexity for moderate-to-large problem sizes and
typically require high numerical precision; both drawbacks
render an efficient implementation in VLSI challenging.
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2) First-order methods: To alleviate the complexity and
precision requirements of interior-point methods, a variety of
first-order methods (i.e., algorithms involving matrix-vector
multiplications with D and DT only) for solving the La-
grangian BPDN problem

(BPDN∗) minimize
x̃

‖z−Dx̃‖22 + 2λ‖x̃‖1

have been proposed in the literature [18], [23]. Here, the
regularization parameter λ > 0 controls a trade-off between
fidelity to the measurements and `1-norm of the solution x̂.

Iterative soft-thresholding (IST) [18], for example, is a
simple first-order method that computes

xi+1 = ηθi

(
xi + DT ri−1

)
with ri−1 = z−Dxi

for each iteration i = 1, . . . , Imax. Here, Imax denotes the
maximum number of iterations, xi the current estimate for
x, ri−1 represents the residual error, θi is an iteration-
dependent threshold, and ηθi(·) implements an entry-wise soft-
thresholding policy as follows:

ηθ(x) = sign(x) [|x| − θ]+ . (3)

The IST algorithm is able to deliver the result to BPDN∗ given
that D and the thresholds θi satisfy certain properties [29]. Un-
fortunately, IST exhibits slow convergence, which eventually
leads to high computational complexity. To this end, first-order
algorithms achieving faster convergence than IST have been
developed in the literature, e.g., [20], [21], [23]. The associated
computational complexity is, however, still too high for most
real-time applications in dedicated hardware.

3) Greedy pursuit (GP): Rather than solving BPDN or
BPDN∗ altogether, a variety of GP-based algorithms that
deliver approximations to these convex problems have been
proposed in the literature, including:

• Matching pursuit (MP) [19] iteratively identifies the col-
umn di of D that is most correlated to a current signal
estimate, followed by a simple update that computes an
improved signal estimate. While each iteration of MP
requires very low computational effort, the number of
iterations heavily depends on the sparsity level K and
hence, MP is only suitable for extremely sparse signals.

• Orthogonal matching pursuit (OMP) [22] and compres-
sive sampling matching pursuit (CoSaMP) [24] are more
sophisticated GP-based algorithms that incorporate a least
squares (LS) step to compute a signal estimate. The
LS step significantly reduces the number of required
iterations compared to MP, but it induces a high computa-
tional complexity per iteration and requires considerable
numerical precision (see, e.g., [15]).

While GPs are well-suited for recovering very sparse signals
in VLSI, as in certain applications in wireless communication
or radar [15], [16], [26], for example, they turn out to be
rather inefficient for large-dimensional problems and/or (ap-
proximately sparse) signals exhibiting moderate-to-high spar-
sity levels, such as audio signals, images, or videos.

Algorithm 1 Approximate Message Passing (AMP) [25]
1: initialize r0 = z and x0 = 0N×1

2: for i = 1, . . . , Imax do
3: θ ← λ 1√

M
‖ri−1‖2

4: xi ← ηθ
(
xi−1 + DT ri−1

)
5: b← 1

M ‖x
i‖0

6: ri ← z−Dxi + bri−1

7: end for
8: return xImax

C. Approximate Message Passing (AMP)

AMP [25] is a recently developed sparse signal recovery
algorithm that delivers excellent recovery performance, ex-
hibits fast convergence at low computational complexity per
iteration, while requiring low arithmetic precision. All these
properties render AMP advantageous for the implementation
in VLSI compared to the algorithms evaluated above.

1) Algorithm: The pseudo-code for AMP is given in Al-
gorithm 1. One can immediately see that AMP has a similar
structure as IST (cf. Section II-B2), with the key difference
that the residual ri is computed not only based upon the
current estimate xi but also using the residual obtained in
the previous iteration ri−1 (cf. line 6). In order to identify a
suitable thresholding policy, we decided to set θ proportionally
to the regularization parameter λ and the root mean square
error (RMSE) of the residual RMSE = 1√

M
‖ri−1‖2 (see line 3

of Algorithm 1) as proposed in [30]. All these differences
to IST render AMP vastly superior in terms of convergence
rate, without noticeably penalizing the complexity per itera-
tion. Moreover, AMP provably delivers the solution to BPDN∗

for matrices D having zero-mean i.i.d. Gaussian distributed
entries1 of order 1/

√
M [25]. For arbitrary (e.g., deterministic)

matrices, AMP does not necessarily converge to the BPDN∗

solution. We emphasize, however, that AMP has been shown
(empirically) to deliver excellent recovery performance for a
large class of deterministic and highly structured matrices,
such as sub-sampled Fourier or DCT matrices [31].

2) Computational complexity: The main computational bur-
den of AMP corresponds to the matrix-vector multiplications
required in each iteration (cf. lines 4 and 6 in Algorithm 1). If
the multiplication with the matrix D and DT can be replaced
by a fast transform, e.g., using a fast Fourier transform (FFT),
then each iteration can be performed with very low com-
putational complexity (see Section IV-C for a corresponding
example). The maximum number of iterations Imax required
by the algorithm to converge usually ranges between 10-to-
100 (depending on the target accuracy, the signal sparsity, and
the dimensionality of D). The square-root computation in the
RMSE (cf. line 3) requires a specialized hardware unit, but can
be implemented at low cost (see Section IV-A1 for the details).
All remaining computations can be carried out efficiently using
standard circuitry, which renders AMP well-suitable for the
implementation in VLSI.

1Proper normalization of the columns in D is crucial for AMP to converge
to the solution to BPDN∗; see [25] for the details.
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Fig. 1. Audio recovery example for the old phonograph recording “Mus-
sorgsky” from [32]; a snapshot of the original (corrupted) signal and the signal
recovered by AMP using the DCT–identity pair are shown.

3) Early termination: The complexity of AMP can be re-
duced further by means of early termination (ET). In partic-
ular, the iterations of AMP can be terminated as soon as the
RMSE is small enough (depending on the target application).
To this end, we define an ET threshold γ ≥ 0 and stop the
iterative procedure (cf. lines 2–7) as soon as RMSE ≤ γ.
Determining when ET occurs comes at virtually no additional
hardware costs, since computation of the RMSE is anyway
required for the soft-thresholding parameter θ (cf. line 3).
Furthermore, the ET threshold γ in combination with the max-
imum number of iterations Imax allows us to trade performance
for complexity; this trade-off is analyzed in Section III-B for
an audio restoration application.

III. SIGNAL RESTORATION

In addition to CS, sparse signal recovery has been employed
in the restoration of signals corrupted by impulse noise and/or
saturation [2]–[4]. We next show how signal restoration can
be formulated as a sparse signal recovery problem and demon-
strate the suitability of AMP for this particular application.

A. Signal Restoration as a Sparse Signal Recovery Problem

As shown in [2]–[4], signals corrupted by impulse noise and
saturation can be modeled as

z = Aa + Bb + n = Dx + n, (4)

with D = [ A B ], x = [ aT bT ]T , and the corrupted obser-
vation z ∈ RM . Here, the matrix A ∈ RM×Na sparsifies the
signal s = Aa to be restored and the matrix B ∈ RM×Nb

sparsifies the corruptions on the signal s. Signal restoration
now amounts to the recovery of the sparse vector x from (4)
using, BPDN or BPDN∗, for example, followed by computing
s = Aa. In certain cases, one can identify the locations of the
corrupted entries in z prior to recovery, which typically results
in improved restoration performance [2]–[4].

For the restoration to succeed, the matrix A must not only
sparsify the (uncorrupted) signal s, but also be incoherent to B;
i.e., the mutual coherence [3]

µm = max
k,`

|aHk b`|
‖ak‖2‖b`‖2

(a) Convergence behavior for different click rates and ET thresh-
olds.

(b) Impact of ET to the RSNR.

Fig. 2. Convergence behavior and impact of early termination (ET) to the
RSNR performance of AMP for sparsity-based audio restoration.

should be small (see [3], [4] for a theoretical analysis). This
important observation allows one to select a matrix pair A,B
that is suitable for the given signal-restoration application.

For the restoration of audio signals from clicks/pops and
saturation, as considered in the remainder of the paper, set-
ting A to the M ×M (unitary) DCT matrix defined as

[A]k,` =
√
ck
M

cos
(

(2`− 1)(k − 1)π
2M

)
with ck = 1 for k = 1 and ck = 2 otherwise, enables one to
sparsify audio signals; setting B = IM sparsifies clicks/pops
and saturation artifacts. Since A is incoherent to B, excellent
performance for audio restoration can be achieved by using
this pair of matrices. In particular, as shown in [3], [4], if
the number of corrupted entries of z is small compared to
its dimension M , then the DCT–identity pair is guaranteed to
enable stable recovery of x = [ aT bT ]T and, hence, of the
desired (uncorrupted) signal s = Aa.

B. Numerical Results for AMP

We next evaluate the performance of AMP for audio restora-
tion. Figure 1 shows a snapshot of the old phonograph record-
ing “Mussorgsky” from [32] and the restored signal via AMP.
Restoration is performed in blocks of length M = 512 us-
ing the DCT–identity pair; 16 samples between each pair of
adjacent blocks are added and overlapped using raised-cosine
windows to avoid artifacts at the block boundaries. Each block
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is recovered using AMP with Imax = 20 iterations, λ = 2, and
no ET (i.e., γ = 0). Figure 1 illustrates the fact that AMP using
the DCT–identity pair efficiently removes clicks/pops from old
phonograph recordings, without knowing the locations of the
sparse corruptions (also see [4] for similar results).

The performance and complexity of AMP for audio restora-
tion is studied in Figure 2. We artificially corrupt a 16 bit
44.1 kHz speech signal from [33]; the clicks/pops are modeled
by adding Gaussian pulses consisting of five samples whose
peak value is uniformly distributed in [−1, 1]. We define
the click rate rc as the number of clicks per sample. The
restoration performance is measured using the recovery signal-
to-noise-ratio (RSNR), defined as RSNR = ‖s‖22/‖s− ŝ‖22,
where s corresponds to the original (uncorrupted) signal
and ŝ to the signal restored by AMP. Figure 2(a) shows the
RSNR for different numbers of maximum iterations Imax; the
regularization parameter λ has been optimized for each click
rate rc. One can immediately see that AMP converges quickly;
i.e., setting Imax = 20 turns out to be sufficient for near-optimal
performance for the considered click rates.

The impact of ET on the performance and complexity
is studied in Figure 2(b). We see that, for γ = 0.02, the
number of average iterations Iavg is reduced while slightly
degrading the RSNR. Lowering the ET threshold leads to a
smaller reduction of average iterations Iavg but results in higher
RSNR. Thus, carefully selecting γ enables one to reduce the
complexity of AMP at no loss in terms of RSNR. For example,
Figure 2(b) shows that for rc = 1/400, γ = 0.006, and
Imax = 25, only 16.2 iterations are necessary to achieve the
same performance of Imax = 20 without ET. Hence, in prac-
tice, ET can either be used to increase the average restoration
throughput or for power reduction, e.g., by silencing the entire
circuit during idle clock cycles.

IV. VLSI ARCHITECTURES OF THE AMP ALGORITHM

In this section, we present two novel VLSI architectures
for the AMP algorithm. The first architecture, referred to as
AMP-M, is a generic multiply-accumulate (MAC)-based solu-
tion that is applicable to arbitrary sparsity-based signal restora-
tion and CS problems. The second architecture, referred to
as AMP-T, is a generic solution for situations where mul-
tiplications of a vector with D and DT can be carried out
by a fast transform. While the computational complexity of
AMP-M is dominated by matrix-vector multiplications scaling
with NM , a fast transform computes the same operation with
lower asymptotical complexity. We start by describing the
architectural principles for AMP-M and AMP-T suitable for
arbitrary sparse signal recovery applications and then derive
corresponding optimized architectures for audio restoration.

A. AMP-M: MAC-Based AMP Architecture

The first architecture implements the matrix-vector multi-
plications on lines 4 and 6 of Algorithm 1 using a pre-defined
number of parallel MAC units. This MAC-based architecture
has the advantage of being suitable for arbitrary matrices
D, including unstructured (e.g., random) matrices or matrices
obtained through dictionary learning [34], as used, e.g., in

many signal restoration or de-noising problems. Moreover,
if D is explicitly stored in a memory, the matrices used in
AMP-M can be reconfigured at run-time, without the need to
re-design and re-implement the circuit.

1) Architecture: Figure 3(a) shows the high-level block dia-
gram of the AMP-M architecture. The AMP algorithm requires
memories to store the input signal z, the residual ri, and the
signal estimate xi obtained after applying the thresholding
function. The input vector z and the residual ri can be stored in
the same memory (referred to as ZR-RAM in Figure 3(a)), i.e.,
each coefficient of z and ri can be stored at the same address,
which allows for memory instances having suitable address-to-
word-length ratios leading to small S-RAM macro cells. The
signal estimate xi is stored in a separate memory, referred
to as X-RAM. Depending on the application, the entries of
the matrix D are either stored in a RAM or ROM, or can be
generated on the fly.

All matrix-vector multiplications are carried out in P paral-
lel MAC instances; the number of MAC units is configurable
during compile-time of the architecture and determines the
maximum achievable throughput (see Section V-B). Pipeline
registers are added at the multiplier inputs to increase the
maximum achievable clock frequency. Each MAC unit is used
to sequentially compute an inner product of a row of the matrix
D with xi or DT with ri−1. Hence, each MAC unit requires
access to a different entry of D in each clock cycle, while the
same vector entry is shared among all units (see Figure 3(a)).

The RMSE is computed using a separate unit that is special-
ized for computing sums of squares. The subsequent square
root computation is implemented using the approximation de-
veloped in [35], which requires neither multipliers nor look-
up-tables (LUTs). The RMSE is computed in parallel to the
matrix-vector multiplication DT ri−1 (line 4 of Algorithm 1).
Note that the rather limited numerical accuracy of the deployed
square-root approximation was found to be sufficient for our
purposes (see the discussion in Section V-A).

To implement the thresholding function (3), we instantiated
a subtract-compare-select unit that applies thresholding in a
serial and element-wise manner (performed in the TRSH unit).
The `0-norm on line 5 of Algorithm 1 is computed in the
L0-unit, which counts the non-zero entries of xi in a serial
manner and concurrently to the matrix-vector multiplications.
To avoid additional hardware resources, all remaining arith-
metic operations, e.g., computation of the residual ri (line 6
of Algorithm 1), are performed using the available MAC units
in a time-shared fashion.

2) Optimization for audio restoration: The main bottleneck
of the AMP-M architecture is the memory bandwidth required
to deliver the entries of D to the parallel MAC units. For un-
structured (e.g., random) matrices, (multi-port) LUTs, ROMs,
or on-chip S-RAMs can be used for small dimensions (in the
order of a few hundred kbit). For large-dimensional problems,
external memories (e.g., off-chip D-RAMs) become neces-
sary, which shifts the memory bottleneck to the bandwidth
of the external memory interface. Fortunately, in many real-
world applications, the matrix D is highly structured; hence,
it is often possible to generate its coefficients on the fly at
very high throughput. Specifically, for the DCT–identity pair
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(a) High-level block diagram of the MAC-based AMP-M architecture.

(b) High-level block diagram of the transform-based AMP-T architecture.

Fig. 3. VLSI architectures of the approximate message passing (AMP) algorithm for signal restoration and compressive sensing (CS).

often used in audio restoration, we can avoid the explicit
storage of all entries of the DCT matrix (which would result
in prohibitively large on-chip memory). Instead, we exploit
the regular structure of the DCT matrix and make use of
symmetries to generate the M×2M matrix D at high through-
put by using a small cosine LUT having only M entries.
The LUT address is calculated on the basis of the row and
column of the required DCT entry. The parallel LUT outputs
(or their negative values) are directly fed to the MAC units.
Thus, instead of a multi-port M × 2M memory for explicitly
storing D, only M values needed to be stored; this results in
a 1024× memory-size reduction for a block size of M = 512
samples. The multiplications with the identity basis obviously
do not require any memory and are implemented by simple
control logic.

B. AMP-T: Transformation-Based AMP Architecture

While the AMP-M architecture is well-suited for unstruc-
tured matrices, small-scale problems, or applications for which
the matrix D must be re-configurable at run time, the com-
plexity scaling, storage requirements, and memory bandwidth
requirements (which are roughly proportional to the number of
entries MN of the matrix D) render its application difficult
for throughput intensive and/or large-scale problems. Fortu-
nately, in many practical applications the matrix D has a fast
transform, e.g., the fast Fourier, DCT, Hadamard, or wavelet
transform (or combinations thereof), which allows for the de-
sign of more efficient VLSI implementations. The AMP-T

architecture described next exploits these advantages.
1) Architecture: Figure 3(b) shows the high-level block di-

agram of the AMP-T architecture. The structure of AMP-T
is similar to that of the AMP-M architecture, apart from the
following key differences:
• No storage for the matrix D or logic to generate its entries

on the fly is required.
• The parallel MAC units have been replaced by a special-

ized fast transform unit, which must support both the fast
forward transform and its inverse.

• The residual, which was calculated in the MAC units in
the AMP-M architecture, is now computed in a dedicated
unit (referred to as R-CALC); this unit only consists of
a small multiplier and a few adders.

• The RMSE is calculated simultaneously to the fast for-
ward transform, whereas the `0-norm is computed simul-
taneously to the fast inverse transform.

The architecture for carrying out the fast forward and its
inverse heavily depends on the used transform and algorithm.
Hence, AMP-T is less flexible compared to AMP-M, as the
transform unit must be re-designed for each target applica-
tion. However, as shown in Section V, AMP-T substantially
improves upon AMP-M in terms of throughput, silicon area,
and power consumption.

2) Optimization for audio restoration: For the audio restora-
tion application considered in this paper, we use an architec-
ture implementing a fast DCT (FCT) and its inverse (IFCT).
The corresponding algorithm and the resulting VLSI architec-
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TABLE I
HIGH-LEVEL COMPARISON OF FCT/IFCT ALGORITHMS

Algorithm Regularity Memory Complexity

Matrix-vector multiplication ++ −− −−
Direct approach [37] −− − ++
Recursive method [38] − ++ ++
Via 2M -point FFT [39] + − −
Via M -point FFT [40] + + +
Via M/2-point FFT [40] + ++ ++

ture are detailed in Section IV-C. The additions required to
implement the identity basis are carried out in the R-CALC
unit. The X-RAM has been divided into two memories to
support parallel access, which enables fast thresholding.

C. VLSI Implementation of the FCT/IFCT

Existing VLSI implementations of a fast DCT/IDCT have
mainly been designed for MPEG-2 video compression, which
relies on problems of size 8 × 8 (see, e.g., [36]). For the
targeted audio restoration application, however, the problem
size is M = 512 for which—to the best of our knowledge—no
VLSI architecture has been described in the open literature. To
this end, we next evaluate potential algorithms for efficiently
computing a large-dimensional FCT/IFCT and then, we detail
the architecture used in the final AMP-T implementation.

1) Algorithm evaluation: A variety of algorithms to com-
pute the FCT/IFCT have been proposed in the literature [37]–
[40]. A high-level comparison of some of the most prominent
algorithms is provided in Table I. We consider the algorithm’s
regularity, memory requirements, and computational complex-
ity. While the computational complexity is a key metric for
most implementations, regularity and low memory require-
ments are of similar importance when designing dedicated
VLSI circuits. As a reference, we compare all candidate algo-
rithms to a straightforward matrix-vector multiplication-based
DCT/IDCT approach.

The algorithm proposed in [37] directly performs divide-
and-conquer on the DCT matrix to achieve very low compu-
tational complexity. This algorithm, however, exhibits an irreg-
ular data flow and corresponding architectures cannot easily be
parametrized to support different problem sizes. Another direct
approach is the recursive method proposed in [38], which
is more efficient than [37] (in terms of operation count and
memory), but still lacks a regular data flow. Another line of
fast DCT algorithms relies on the well-established fast Fourier
transform (FFT). A straightforward approach is based on a
2M -point FFT, which exhibits high regularity and requires
almost no overhead for the DCT-to-FFT conversion [39]. An
improved algorithm relying on an M -dimensional FFT only,
was proposed in [40]. This approach exhibits lower complexity
while causing only a small conversion overhead. An even
faster method replaces the real-valued FFT by a complex-
valued M/2-dimensional FFT followed by a few additional
computations [40]. This approach reduces the computational
complexity and memory requirements compared to the M -
FFT approach, while maintaining high regularity. Hence, we

Fig. 4. High-level block diagram of FCT/IFCT unit. The highlighted block
corresponds to the time-shared radix-2 FFT butterfly.

decided to implement this M/2-FFT-based algorithm in the
remainder of the paper.

2) M/2-FFT-based FCT/IFCT algorithm: The M/2-FFT
approach described in [40] is summarized in Table II and
performs the FCT and IFCT in multiple steps. For the FCT, the
entries of the real-valued input vector x are first reordered and
stored to a vector c′. Then, the reordered vector is converted
into a complex-valued vector c of half the length, i.e., M/2.
The main task of the FCT algorithm is to compute a M/2-
length FFT of the vector c. The result f is expanded into a
conjugate-symmetric vector f ′, which corresponds to a M -
point FFT of the real-valued vector c′. To obtain the result a
of the FCT, the entries of f ′ are rotated by certain twiddle
factors (as used in the FFT), defined as

tMk = exp
(
2πj

k − 1
M

)
, (5)

followed by extracting the real value of the rotated entries
of f ′. The procedure for the IFCT is analogous to that of the
FCT; see Table II for the details.

3) Architecture: We now detail the FCT/IFCT architecture
used in AMP-T for audio restoration. To process a stereo
192 kHz audio signal with a block size of M = 512 samples
and 16 samples overlap, restoration of one block must be
completed within 1.29 ms. Since Imax = 20, an FCT/IFCT
operation must be computed in no more than 32.3 µs.

Figure 4 shows the high-level block diagram of an
FCT/IFCT architecture achieving the specified throughput in
65 nm CMOS technology. The input vectors and intermediate
results are stored in a single-port S-RAM with M/2 = 256
complex-valued entries. The address generator computes the
FFT addressing scheme proposed in [41] and also controls the
operations carried out during the other phases of the algorithm.

We perform a complex-valued M/2 in-place FFT/IFFT us-
ing a single radix-2 butterfly in a time-shared fashion. With a
single memory access per clock cycle, each butterfly operation
requires four clock cycles. The complex-valued multiplier in
the butterfly is implemented using four real-valued multipliers
and two adders. All the additional operations (carried out in
the Reorder, Reduce, Expand, and Rotate phases) are also
calculated on the same butterfly unit by re-using the existing
arithmetic circuitry. A dedicated twiddle generator unit is used
to provide the necessary factors for the FFT as well as for
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TABLE II
NECESSARY COMPUTATIONS FOR THE FCT (TOP) AND IFCT (BOTTOM) ALGORITHM AS IN [40]

a = FCT(x) x, c′,a ∈ RM , f ′ ∈ CM , f , c ∈ CM/2

Reorder c′k =


x2k−1

x2(M−k)+2

k = 1, . . . , M/2
k = M/2 + 1, . . . , M

Reduce ck = c′2k−1 + jc′2k k = 1, . . . , M/2

FFT f = FFT(c)

Expand f ′k =

(
fk + f∗

M/2−k+2
− j(tMk )−1(fk − f∗

M/2−k+2
)

f∗
k−M/2

k = 1, . . . , M/2
k = M/2 + 1, . . . , M

Rotate ak =

8<:
1√
M
<{f ′1}q

2
M
<{(t4M

k )−1f ′k}
k = 1
k = 2, . . . , M

x = IFCT(a) x, c′,a ∈ RM , f ′ ∈ CM , f , c ∈ CM/2

Inv. rotate f ′k =

( √
Ma1q
M
2

t4M
k (ak − jaM−k+2)

k = 1
k = 2, . . . , M

Inv. expand fk = 1
2

“
fk + f∗

M/2−k+2
+ jtMk (fk − f∗

M/2−k+2
)
”

k = 1, . . . , M/2

IFFT c = IFFT(f)

Inv. reduce c′k =


<{ck}
={ck}

k = 1, 3, . . . , M − 1
k = 2, 4, . . . M

Inv. reorder xk =


c′k
c′
M+M/2−k+1

k = 1, . . . , M/2
k = M/2 + 1, . . . , M

Reduce

Reorder

FFT/IFFT

Expand

Rotate

M/2-point

re
a
l-
v
a
lu

e
d
 M

-p
o
in

t 
F

F
T

the FCT/IFCT steps in Table II. This unit contains a real-
valued LUT with 512 entries; the real and imaginary parts of
the twiddle factors are assembled from two consecutive table
look-ups.

The resulting architecture is able to compute an M = 512
FCT/IFCT in 8 200 clock cycles, which is sufficiently fast
for the targeted audio restoration assuming a clock frequency
of at least 255 MHz. We note that for applications requiring
substantially higher throughput, such as for sparse signal
recovery of high-resolution images or videos, significantly
faster FFT/IFFT architectures become necessary; this can be
achieved by parallel and higher-order butterfly units, as well
as by using parallel multi-port S-RAM macro cells. The
FCT/IFCT architecture developed here enables us to achieve
the specified throughput at minimum silicon area and, hence,
was chosen for the VLSI designs described next.

V. IMPLEMENTATION RESULTS

In this section, we provide reference VLSI and FPGA im-
plementation results of AMP-M and AMP-T for the audio
restoration application described in Section III-B. We empha-
size that the corresponding implementation results do also re-
flect the performance, implementation complexity, and power
consumption of the proposed VLSI designs for signal recovery
from CS measurements.

A. Fixed-Point Parameters for Audio Restoration

In order to optimize the hardware efficiency (in terms of
area per throughput) and the power dissipation, fixed-point
arithmetic is employed in our AMP architectures. For the
targeted audio restoration application, the most critical word
length of the AMP-T architecture resides in the FCT/IFCT
unit. To achieve the performance of a floating-point imple-
mentation with a 16 bit quantized audio input/output, 26 bit

are sufficient for the real and imaginary part in the M/2-point
FFT/IFFT block. Another important word length parameter
is the accuracy of the RMSE and the resulting thresholding
parameter θ. Simulation results have shown that only 11 bit are
sufficient to represent θ to achieve the full RSNR performance
with respect to the original audio signal. Therefore, we employ
the fast and low-area square-root approximation in [35] to cal-
culate θ. The Z-RAM uses 16 bit, the XU-, XL-, and R-RAM
use 26 bit word-width. The AMP-M-architecture requires the
same memory word lengths as AMP-T; the precision required
in the accumulator of the MAC units in AMP-M, however,
corresponds to 30 bit to achieve the performance of AMP-T.
The implementation loss of both AMP architectures is less
than 0.013 dB RSNR compared to their floating-point models.

In the final designs, the regularization parameter λ and the
ET threshold γ are both configurable at run-time: λ is tunable
to the values {0.125, 0.25, 0.5, 1, 2, 4}, whereas γ can be set
to any positive number representable by 13 fraction bits.

B. Comparison of AMP-M and AMP-T

In order to compare the hardware complexity of AMP-M
and AMP-T, we synthesized both architectures in a 65 nm
CMOS technology. The target throughputs for both designs
were set such that real-time restoration of audio signals can be
performed with different sampling rates up to 384 ksample/s,
which corresponds to a high-quality 192 ksample/s stereo
signal. For AMP-M, the throughput can be increased by
instantiating more parallel MAC units. In order to process
a single audio channel with 48 ksample/s in real-time, four
parallel MAC units are required; processing 384 ksample/s in
real-time necessitates 32 parallel MAC units. The throughput
of AMP-T can be adjusted (up to a certain speed) by reducing
the critical path of the AMP-T architecture during synthesis.

Fig. 5 shows the standard cell and memory area (in mm2) af-
ter synthesis of AMP-M and AMP-T. The number of required
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Fig. 5. Synthesis results of AMP-M and AMP-T for real-time audio restora-
tion in 65 nm 1P8M CMOS technology. The numbers given in parentheses
correspond to the number of MAC units in the associated AMP-M design.

MAC units in AMP-M is annotated in parentheses. When
targeting a high throughput, the silicon area of AMP-T is
substantially smaller than that of AMP-M. The reason for this
behavior is that implementing the FCT/IFCT rather than using
MAC units to perform matrix-vector multiplications requires
substantially fewer operations and, therefore, fewer hardware
resources. This behavior is reflected in the number of clock
cycles required by AMP-M and AMP-T, which can be ap-
proximated as follows:

CAMP-M ≈ 2Imax(4M +M2/P ) +M

CAMP-T ≈ 2Imax(7M +M log2(M) + 2) +M.

Here, P is the number of parallel MAC units. Since, for
large M , AMP-M scales approximately with ImaxM

2/P and
AMP-T with ImaxM log2(M), we conclude that the transform-
based architecture is both faster and more efficient (in terms
of area and power consumption) for large-scale problems.

C. ASIC Implementation

To demonstrate the efficacy of AMP-M and AMP-T, we
designed a reference ASIC including both designs for real-
time audio restoration in 1P8M 65 nm CMOS technology. The
target is to process 192 ksample/s stereo audio signals with
16 samples overlap between adjacent blocks; this requires an
AMP-throughput of 396 ksample/s. Figure 6 shows the cor-
responding chip layout, where we highlighted both designs
and their main processing blocks. The corresponding post-
layout results are listed in Table III. A detailed area and power
breakdown of both ASIC designs is provided in Table IV.

From Table III, we see that both designs achieve the spec-
ified target throughput of 396 ksample/s. AMP-M runs at a
higher clock frequency of 333 MHz compared to 256 MHz for
AMP-T, since more pipelining stages are used in AMP-M.
We furthermore observe that AMP-T is roughly five times
smaller than AMP-M. Note that AMP-M requires less memory
compared to AMP-T, which is due to the facts that i) we do not
store the DCT matrix in AMP-M but compute its entries on the
fly, and ii) AMP-T requires an additional memory (compared
to AMP-M) within the FCT/IFCT unit.

The power figures shown in Table III and Table IV are
extracted from post-layout simulations using node activities
obtained from simulations with actual audio data at maximum

FCT/IFCT

AMP-M

32 MAC units &
D generator

Z,R,FCT-RAM

X-RAM

X-RAMZ,R-RAM

AMP-T

R
M

S
E

Fig. 6. Layout of an ASIC containing the AMP-M and AMP-T designs for
real-time audio restoration in 1P8M 65 nm CMOS technology.

TABLE III
POST-LAYOUT IMPLEMENTATION RESULTS IN 1P8M 65 nm CMOS

AMP-M AMP-T

Max. clock freq. [MHz] 333 256
Throughput [ksample/s] 397 399

Cell areaa [kGE] 302.6 33.9
Memories [kB] 5.76 7.25
Core area [mm2] 0.629 0.136

Power consumption [mW] 177.5 24.4
Energy efficiency [µJ/sample] 0.447 0.061

aStandard cells only, excluding SRAM macro cells; 1 GE equals 1.44 µm2.

clock frequency, 1.2 V core voltage, and at 298 K. AMP-T
turns out to be roughly 7× more energy efficient than AMP-M
in terms of µJ per sample, which highlights the effectiveness
of the AMP-T design.

From Table IV we see that the FCT/IFCT unit of AMP-T
occupies almost 3/4 of the overall circuit area. The remaining
blocks, i.e., RMSE calculation and thresholding, make up for
around 1/4 of the design. In the AMP-M ASIC, almost 2/3
of the circuit area is occupied by the 32 parallel MAC units
and almost 1/3 is required to generate the entries of the DCT
matrix on-the-fly.

D. FPGA Implementation

In addition to the ASIC design shown above, we mapped
both AMP architectures to Xilinx Spartan-6 FPGAs, which
are fabricated in a 45 nm low-power CMOS technology. To
improve the throughput of both architectures (compared to a
straightforward implementation), we performed optimizations
for the underlying FPGA structure. The basic parameters,
such as the number of MAC units in AMP-M or the FCT
architecture in AMP-T are, however, equivalent to those of
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TABLE IV
CELL AREA AND POWER BREAKDOWN OF THE INDIVIDUAL DESIGNS

AMP-M AMP-T
kGEa (%) mW (%) kGEa (%) mW (%)

32 MAC units 197 (65) 76.5 (43) – –
D matrix gen. 93.6 (31) 88.1 (50) – –
FCT/IFCT unit – – 24.5 (72) 16.5 (68)
– butterfly – – 16.6 9
– twiddle gen. – – 2.6 0.7
RMSE 3 (1) 1.2 (1) 2.9 (9) 0.5 (2)
RAMs (X,R,Z) – 7.9 (4) – 6.2 (25)
Miscellaneous 9 (3) 3.8 (2) 6.5 (19) 1.2 (5)

Total 302.6 (100) 177.5 (100) 33.9 (100) 24.4 (100)

aStandard cells only.

TABLE V
IMPLEMENTATION RESULTS FOR XILINX SPARTAN-6 FPGAS (SG −3)

Architecture AMP-M AMP-T

FPGA type XC6SLX75 XC6SLX9

Clock freq. [MHz] 41.2 35.4
Throughput [ksample/s] 47.9 92.8

Occupied slices 3525 1200
Block RAMs 24 11
DSP blocks 132 15

Power consumptiona [mW] 516 96
Energy efficiency [µJ/sample] 10.76 1.05

aPower consumption is measured on a Digilent Atlys platform featuring
an XC6SLX45 FPGA (a down-sized version of AMP-M with 4 MAC units
was measured; the power figures were scaled to 32 MAC units). Since other
devices are connected to the same power supply, only the difference between
an active and inactive AMP core is reported.

the ASIC design. We also included an AC’97 audio interface
to process audio signals from analog audio sources in real
time. The interface consists mainly of control circuitry and
in-/output buffers to implement windowing and overlapping.

1) AMP-T optimization: For the AMP-T architecture, we
replaced the single-port S-RAMs with dual-port memories,
since dual-port block RAMs are readily available in the FPGA
used. This modification enables us to compute each butterfly
operation in two clock cycles (compared to four cycles re-
quired by the architecture used in the ASIC) resulting in a 2×
speed-up of the FCT/IFCT. The number of clock cycles re-
quired by this modified AMP-T architecture is approximately

CAMP-T2 ≈ 2Imax(5M +M/2 log2(M) + 2) +M,

which leads to an overall throughput increase of 40% com-
pared to the architecture used in the AMP-T ASIC at almost
no increase in FPGA logic complexity.

2) AMP-M optimizations: In the AMP-M architecture, the
synthesized LUT in the D matrix generator is replaced by
16 dual-port ROMs. Moreover, additional pipeline registers
are introduced after the multipliers, which increases the max-
imum clock frequency by 20% while slightly increasing the
processing latency (i.e., less than 1%).

3) Comparison: The FPGA implementation results of the
two optimized designs are shown in Table V. Note that AMP-T

can be mapped to a very small XC6SLX9 FPGA, whereas
AMP-M requires the much larger XC6SLX75 FPGA.

The optimized AMP-T architecture is able to process stereo
signals with the standard sampling rate of 44.1 ksample/s. De-
spite of the larger FPGA, AMP-M achieves only half the
throughput, which, however, still allows us to process a single
audio channel in real time. For stereo processing, the number
of MAC units must be doubled, which would require an FPGA
of twice the logic capacity. Note that the audio interface re-
quires only 140 slices, 2 RAM blocks, and a single DSP slice.

We additionally conducted power measurements using the
integrated power monitor of a Digilent Atlys prototype board.
Stereo audio data is fed into the line-in port, sampled at
44.1 ksample/s, restored using AMP, and then fed to a digital-
to-analog converter. The resulting power consumption and
energy efficiency is reported in Table V, which demonstrates
that AMP-T is roughly ten times more energy efficient than
AMP-M. Hence, if the flexibility advantage of AMP-M is not
required, then the AMP-T architecture is the preferred solu-
tion for FPGA implementations with respect to complexity,
throughput, and power consumption.

We emphasize that both FPGA designs only achieve 1/4 and
1/8 of the throughput of AMP-T and AMP-M compared to
the ASIC designs. An even more pronounced difference can be
observed in terms of power efficiency. Specifically, both ASIC
designs outperform the FPGA implementations by a factor of
17 and 24 for AMP-T and AMP-M, respectively.

E. Comparison with Existing Sparse Signal Recovery Circuits
We finally compare both AMP designs to the ASIC im-

plementations of MP and OMP presented in [15] for channel
estimation in 3GPP-LTE.2 A direct comparison is difficult,
because the ASICs in [15] perform sparse signal recovery in
0.5 ms of signals with roughly 12 to 18 significant entries and
problems of dimension 200×256; moreover, both applications
have different precision requirements.

Nevertheless, by scaling3 the required operations per time
unit of the MP and OMP implementation using results of [15,
Table I] to the throughput required by the single-channel audio
restoration problem considered here, the estimated circuit area
of OMP is more than 4× larger than AMP-M, which is mainly
caused by the complexity required by LS estimations for the
high sparsity levels typically arising in audio signals or images.
For signals having very low sparsity levels (as it is the case
in sparse channel estimation, for example), however, OMP is
likely to be more efficient than AMP.

The scaled circuit area of MP requires only half the area of
AMP-T, but delivers inferior performance when used for sig-
nal restoration or CS applications with strong undersampling.
Nevertheless, MP remains a valid low-complexity alternative
to AMP in applications where sub-optimal sparse signal re-
covery performance can be tolerated.

2We do not provide a comparison with the FPGA implementations in
[16], [26], as details about the performance and complexity scaling for
larger problem sizes are missing; furthermore, the recovery performance for
approximately sparse signals is unknown.

3We assume that the circuit area of the implementations in [15] scales
linearly with the number of operations per time unit. Furthermore, MP and
OMP are assumed to require 200 and 100 iterations, respectively.
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VI. CONCLUSIONS

Among the two generic VLSI architectures of the approxi-
mate message passing (AMP) algorithm for sparse signal re-
covery, the first one, referred to as AMP-M, was shown to be
suitable for the recovery of signals acquired by compressive
sensing (CS) or signal restoration problems relying on unstruc-
tured (e.g., random or learned) matrices. The second architec-
ture, referred to as AMP-T, is able to exploit fast transforms,
which significantly reduces circuit area and power dissipation
compared to AMP-M. To demonstrate the suitability of AMP
for real-time sparse signal recovery in dedicated hardware, we
have implemented both architectures in 65 nm CMOS technol-
ogy for a high-rate audio restoration application. Moreover,
we demonstrated the real-time restoration capabilities of both
architectures using an FPGA prototype implementation.

There are many avenues for future work. A theoretical per-
formance analysis of AMP in the presence of fixed-point arith-
metic and early termination is a challenging open research
topic. On the VLSI implementation side, developing an AMP-T
architecture suitable for real-time recovery of images or videos
from CS measurements is part of ongoing work.
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