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Abstract—We formulate a unified framework for the separa-
tion of signals that are sparse in “morphologically” different
redundant dictionaries. This formulation incorporates the so-
called “analysis” and “synthesis” approaches as special cases and
contains novel hybrid setups. We find corresponding coherence-
based recovery guarantees for an `1-norm based separation
algorithm. Our results recover those reported in Studer and
Baraniuk, ACHA, submitted, for the synthesis setting, provide
new recovery guarantees for the analysis setting, and form a
basis for comparing performance in the analysis and synthesis
settings. As an aside our findings complement the D-RIP recovery
results reported in Candès et al., ACHA, 2011, for the “analysis”
signal recovery problem

minimize
x̃

‖Ψx̃‖1 subject to ‖y −Ax̃‖2 ≤ ε

by delivering corresponding coherence-based recovery results.

I. INTRODUCTION

We consider the problem of splitting the signal x = x1+x2

into its constituents x1 ∈ Cd and x2 ∈ Cd—assumed
to be sparse in “morphologically” different (redundant) dic-
tionaries [1]—based on m linear, nonadaptive, and noisy
measurements y = Ax + e. Here, A ∈ Cm×d, m ≤ d, is the
measurement matrix, assumed to be known, and e ∈ Cm is a
noise vector, assumed to be unknown and to satisfy ‖e‖2 ≤ ε,
with ε known.

Redundant dictionaries [2], [3] often lead to sparser repre-
sentations than nonredundant ones, such as, e.g., orthonormal
bases, and have therefore become pervasive in the sparse signal
recovery literature [3]. In the context of signal separation,
redundant dictionaries lead to an interesting dichotomy [1],
[4], [5]:
• In the so-called “synthesis” setting, it is assumed that,

for ` = 1, 2, x` = D`s`, where D` ∈ Cd×n (d < n) is
a redundant dictionary (of full rank) and the coefficient
vector s` ∈ Cn is sparse (or approximately sparse in the
sense of [6]). Given the vector y ∈ Cm, the problem of
finding the constituents x1 and x2 is formalized as [7]:

(PS)

{
minimize

s̃1 ,̃s2
‖s̃1‖1 + ‖s̃2‖1

subject to ‖y −A(D1s̃1 + D2s̃2)‖2 ≤ ε.

• In the so-called “analysis” setting, it is assumed that, for
` = 1, 2, there exists a matrix Ψ` ∈ Cn×d such that
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Ψ`x` is sparse (or approximately sparse). The problem
of recovering x1 and x2 from y is formalized as [5]:

(PA)

{
minimize

x̃1,x̃2

‖Ψ1x̃1‖1 + ‖Ψ2x̃2‖1
subject to ‖y −A(x̃1 + x̃2)‖2 ≤ ε.

Throughout the paper, we exclusively consider redundant dic-
tionaries as for D`, ` = 1, 2, square, the synthesis setting can
be recovered from the analysis setting by taking Ψ` = D−1` .

The problems (PS) and (PA) arise in numerous applications
including denoising [8], super-resolution [8], inpainting [9]–
[11], deblurring [11], and recovery of sparsely corrupted
signals [12]. Coherence-based recovery guarantees for (PS)
were reported in [7]. The problem (PA) was mentioned in [5].
In the noiseless case, recovery guarantees for (PA), expressed
in terms of a concentration inequality, are given in [13] for
A = Id and Ψ1 and Ψ2 both Parseval frames [2].

Contributions: We consider the general problem

(P)

{
minimize

x̃1,x̃2

‖Ψ1x̃1‖1 + ‖Ψ2x̃2‖1
subject to ‖y −A1x̃1 −A2x̃2‖2 ≤ ε,

which encompasses (PS) and (PA). To recover (PS) from (P),
one sets A` = AD` and Ψ` = [Id 0d,n−d]

T , for ` = 1, 2.
(PA) is obtained by choosing A` = A, for ` = 1, 2. Our
main contribution is a coherence-based recovery guarantee
for the general problem (P). This result recovers [7, Th. 4],
which deals with (PS), provides new recovery guarantees
for (PA), and constitutes a basis for comparing performance
in the analysis and synthesis settings. As an aside, it also
complements the D-RIP recovery guarantee in [5, Th. 1.2]
for the problem

(P∗) minimize
x̃

‖Ψx̃‖1 subject to ‖y −Ax̃‖2 ≤ ε

by delivering a corresponding coherence-based recovery guar-
antee. Moreover, the general formulation (P) encompasses
novel hybrid problems of the form

minimize
s̃1,x̃2

‖s̃1‖1 + ‖Ψ2x̃2‖1
subject to ‖y −A(D1s̃1 − x̃2)‖2 ≤ ε.

Notation: Lowercase boldface letters stand for column
vectors and uppercase boldface letters denote matrices. The
transpose, conjugate transpose, and Moore-Penrose inverse
of the matrix M are designated as MT , MH , and M†,
respectively. The jth column of M is written [M]j , and



(a) Original cartoon image (b) Corrupted image (c) Restored cartoon image

Fig. 1: Image separation in the presence of Gaussian noise (SNR = 20 dB).

the entry in the ith row and jth column of M is [M]i,j .
We let σmin(M) denote the smallest singular value of M,
use In for the n × n identity matrix, and let 0k×m be
the k × m all zeros matrix. For matrices M and N, we
let ωmin(M) , minj ‖[M]j‖2, ωmax(M) , maxj ‖[M]j‖2,
ωmin(M,N) , min{ωmin(M), ωmin(N)}, and ωmax(M,N) ,
max{ωmax(M), ωmax(N)}. The kth entry of the vector x is
written [x]k, and ‖x‖1 ,

∑
k |[x]k| stands for its `1-norm.

We take suppk(x) to be the set of indices corresponding
to the k largest (in magnitude) coefficients of x. Sets are
designated by uppercase calligraphic letters; the cardinality
of the set S is |S| and the complement of S (in some given
set) is denoted by Sc. For a set S of integers and n ∈ Z, we
let n + S , {n + p : p ∈ S}. The n × n diagonal projection
matrix PS for the set S ⊂ {1, . . . , n} is defined as follows:

[PS ]i,j =

{
1, i = j and i ∈ S
0, otherwise,

and we set MS , PSM. We define σk(x) to be the `1-norm
approximation error of the best k-sparse approximation of x,
i.e., σk(x) , ‖x−xS‖1 where S = suppk(x) and xS , PSx.

II. RECOVERY GUARANTEES

Coherence definitions in the sparse signal recovery litera-
ture [3] usually apply to dictionaries with normalized columns.
Here, we will need coherence notions valid for general (un-
normalized) dictionaries M and N, assumed, for simplicity of
exposition, to consist of nonzero columns only.

Definition 1 (Coherence): The coherence of the dictio-
nary M is defined as

µ̂(M) = max
i,j,i 6=j

|[MHM]i,j |
ω2

min(M)
. (1)

Definition 2 (Mutual coherence): The mutual coherence of
the dictionaries M and N is defined as

µ̂m(M,N) = max
i,j

|[MHN]i,j |
ω2

min(M,N)
. (2)

The main contribution of this paper is the following recov-
ery guarantee for (P).

Theorem 1: Let y = A1x1+A2x2+e with ‖e‖2 ≤ ε and
let Ψ1 ∈ Cn1×p1 and Ψ2 ∈ Cn2×p2 be full-rank matrices.
Let x = [xT

1 xT
2 ]

T , µ̂1 = µ̂(A1Ψ
†
1), µ̂2 = µ̂(A2Ψ

†
2), µ̂m =

µ̂m(A1Ψ
†
1,A2Ψ

†
2), and µ̂max = max{µ̂1, µ̂2, µ̂m}. Without

loss of generality, we assume that µ̂1 ≤ µ̂2. Let k1 and k2 be
nonnegative integers such that

k1 + k2 < max

{
2(1 + µ̂2)

µ̂2 + 2µ̂max +
√
µ̂2
2 + µ̂2

m

,
1 + µ̂max

2µ̂max

}
.

(3)
Then, the solution (x∗1, x∗2) to the convex program (P) satisfies

‖x∗ − x‖2 ≤ C0 ε+ C1(σk1
(Ψ1x1) + σk2

(Ψ2x2)) , (4)

where C0, C1 ≥ 0 are constants that do not depend on x1

and x2 and where x∗ = [x∗1
T x∗2

T ]T .
Note that the quantities µ̂1, µ̂2, and µ̂m characterize the in-

terplay between the measurement matrix A and the sparsifying
transforms Ψ1 and Ψ2.

As a corollary to our main result, we get the following
statement for the problem (P∗) considered in [5].

Corollary 2: Let y = Ax + e with ‖e‖2 ≤ ε and let Ψ ∈
Cn×p be a full-rank matrix. Let k be a nonnegative integer
such that

k <
1

2

(
1 +

1

µ̂(AΨ†)

)
. (5)

Then, the solution x∗ to the convex program (P∗) satisfies

‖x∗ − x‖2 ≤ C0 ε+ C1σk(Ψx), (6)

where C0, C1 ≥ 0 are constants1 that do not depend on x.
The proofs of Theorem 1 and Corollary 2 can be found in

the Appendix.
We conclude by noting that D-RIP recovery guarantees

for (P∗) were provided in [5]. As is common in RIP-based

1Note that the constants C0 and C1 may take on different values at each
occurrence.



recovery guarantees the restricted isometry constants are,
in general, hard to compute. Moreover, the results in [5]
hinge on the assumption that Ψ forms a Parseval frame, i.e.,
ΨHΨ = Id; a corresponding extension to general Ψ was
provided in [14]. We finally note that it does not seem possible
to infer the coherence-based threshold (5) from the D-RIP
recovery guarantees in [5], [14].

III. NUMERICAL RESULTS

We analyze an image-separation problem where we remove
a fingerprint from a cartoon image. We corrupt the 512× 512
greyscale cartoon image depicted in Fig. 1(a) by adding a
fingerprint2 and i.i.d. zero-mean Gaussian noise.

Cartoon images are constant apart from (a small number of)
discontinuities and are thus sparse under the finite difference
operator ∆ defined in [15]. Fingerprints are sparse under the
application of a wave atom transform, W, such as the redun-
dancy 2 transform available in the WaveAtom toolbox3 [16].
It is therefore sensible to perform separation by solving the
problem (PA) with Ψ1 = ∆, Ψ2 = W, and A = Id. For our
simulation, we use a regularized version of ∆ and we employ
the TFOCS solver4 from [17].

Fig. 1(c) shows the corresponding recovered image. We can
see that the restoration procedure gives visually satisfactory
results.

APPENDIX A
PROOFS

For simplicity of exposition, we first present the proof of
Corollary 2 and then describe the proof of Theorem 1.

A. Proof of Corollary 2

We define the vector h = x∗ − x, where x∗ is the solution
to (P∗) and x is the vector to be recovered. We furthermore
set S = suppk(Ψx).

1) Prerequisites: Our proof relies partly on two important
results developed earlier in [5], [6] and summarized, for
completeness, next.

Lemma 3 (Cone constraint [5], [6]): The vector Ψh obeys

‖ΨSch‖1 ≤ ‖ΨSh‖1 + 2‖ΨScx‖1, (7)

where S = suppk(Ψx).
Proof: Since x∗ is the minimizer of (P∗), the inequality

‖Ψx‖1 ≥ ‖Ψx∗‖1 holds. Using Ψ = ΨS + ΨSc and x∗ =
x + h, we obtain

‖ΨSx‖1 + ‖ΨScx‖1 = ‖Ψx‖1
≥ ‖Ψx∗‖1 = ‖ΨSx + ΨSh‖1 + ‖ΨScx + ΨSch‖1
≥ ‖ΨSx‖1 − ‖ΨSh‖1 + ‖ΨSch‖1 − ‖ΨScx‖1.

We retrieve (7) by simple rearrangement of terms.
Lemma 4 (Tube constraint [5], [6]): The vector Ah satis-

fies ‖Ah‖2 ≤ 2ε.

2The fingerprint image is taken from http://commons.wikimedia.org/
3We used the WaveAtom toolbox from http://www.waveatom.org/
4We used TFOCS from http://tfocs.stanford.edu/

Proof: Since both x∗ and x are feasible (we recall that
y = Ax + e with ‖e‖2 ≤ ε), we have the following

‖Ah‖2 = ‖A(x∗ − x)‖2
≤ ‖Ax∗ − y‖2 + ‖y −Ax‖2 ≤ 2ε,

thus establishing the lemma.
2) Bounding the recovery error: We want to bound ‖h‖2

from above. Since σmin(Ψ) > 0 by assumption (Ψ is assumed
to be full-rank), it follows from the Rayleigh-Ritz theorem [18,
Th. 4.2.2] that

‖h‖2 ≤
1

σmin(Ψ)
‖Ψh‖2. (9)

We now set Q = suppk(Ψh). Clearly, we have for i ∈ Qc,

|[Ψh]i| ≤
‖ΨQh‖1

k
.

Using the same argument as in [19, Th. 3.1], we obtain

‖ΨQch‖22 =
∑
i∈Qc

|[Ψh]i|2 ≤
∑
i∈Qc

|[Ψh]i|
‖ΨQh‖1

k

= ‖ΨQch‖1
‖ΨQh‖1

k
. (10)

Since Q is the set of indices of the k largest (in magnitude)
coefficients of Ψh and since Q and S both contain k elements,
we have ‖ΨSh‖1 ≤ ‖ΨQh‖1 and ‖ΨQch‖1 ≤ ‖ΨSch‖1,
which, combined with the cone constraint in Lemma 3, yields

‖ΨQch‖1 ≤ ‖ΨQh‖1 + 2‖ΨScx‖1. (11)

The inequality in (10) then becomes

‖ΨQch‖22 ≤
‖ΨQh‖21

k
+ 2‖ΨScx‖1

‖ΨQh‖1
k

≤ ‖ΨQh‖22 + 2‖ΨScx‖1
‖ΨQh‖2√

k
(12a)

≤ 2‖ΨQh‖22 +
‖ΨScx‖21

k
, (12b)

where (12a) follows from ‖u‖1 ≤
√
k‖u‖2 for k-sparse5 u

and (12b) is a consequence of 2xy ≤ x2 + y2, for x, y ∈ R.
It now follows that

‖Ψh‖2 =
√
‖ΨQh‖22 + ‖ΨQch‖22

≤
√
3‖ΨQh‖22 +

‖ΨScx‖21
k

(13a)

≤
√
3‖ΨQh‖2 +

‖ΨScx‖1√
k

, (13b)

where (13a) is a consequence of (12b) and (13b) results from√
x2 + y2 ≤ x+ y, for x, y ≥ 0.
Combining (9) and (13b) leads to

‖h‖2 ≤
1

σmin(Ψ)

(√
3‖ΨQh‖2 +

‖ΨScx‖1√
k

)
. (14)

5A vector is k-sparse if it has at most k nonzero entries.



3) Bounding the term ‖ΨQh‖2 in (14): In the last step of
the proof, we bound the term ‖ΨQh‖2 in (14). To this end, we
first bound ‖AΨ†ΨQh‖22, with Ψ† = (ΨHΨ)−1ΨH , using
Geršgorin’s disc theorem [18, Th. 6.2.2]:

θmin‖ΨQh‖22 ≤ ‖AΨ†ΨQh‖22 ≤ θmax‖ΨQh‖22 (15)

where θmin , ω2
min − µ(k − 1) and θmax , ω2

max + µ(k − 1)
with

µ = max
i,j,i 6=j

|[(AΨ†)HAΨ†]i,j | (16)

and ωmin , ωmin(AΨ†) and ωmax , ωmax(AΨ†).
Using Lemma 4 and (15) and following the same steps as

in [20, Th. 2.1] and [7, Th. 1], we arrive at the following chain
of inequalities:

θmin‖ΨQh‖22 ≤ ‖AΨ†ΨQh‖22 = (AΨ†ΨQh)HAΨ†ΨQh

= (Ah)HAΨ†ΨQh− (AΨ†ΨQch)HAΨ†ΨQh (17a)

≤ |(Ah)HAΨ†ΨQh|+ |(ΨQch)H(AΨ†)HAΨ†(ΨQh)|
≤ ‖Ah‖2‖AΨ†ΨQh‖2

+
∑

i∈Qc,j∈Q
|[(AΨ†)HAΨ†]i,j ||[Ψh]i||[Ψh]j | (17b)

≤ 2ε
√
θmax‖ΨQh‖2 + µ‖ΨQh‖1‖ΨQch‖1 (17c)

≤ 2ε
√
θmax‖ΨQh‖2 + µ‖ΨQh‖1 (‖ΨQh‖1 + 2‖ΨScx‖1)

(17d)

≤ 2ε
√
θmax‖ΨQh‖2 + µk‖ΨQh‖22
+ 2µ

√
k‖ΨScx‖1‖ΨQh‖2, (17e)

where (17a) follows from ΨQh = Ψh−ΨQch and Ψ†Ψ =
Id, (17b) is a consequence of the Cauchy-Schwarz inequality,
(17c) is obtained from (15), Lemma 4, and the definition of µ
in (16), (17d) results from (11), and (17e) comes from ‖u‖1 ≤√
k‖u‖2, for k-sparse u.
If h 6= 0, then ‖ΨQh‖2 6= 0, since Ψ is assumed to

be full-rank and Q is the set of indices of the k largest (in
magnitude) coefficients of Ψh, and therefore, the inequality
between θmin‖ΨQh‖22 and (17e) simplifies to

(ω2
min − µ(2k − 1))‖ΨQh‖2 ≤ 2ε

√
θmax + 2µ

√
k‖ΨScx‖1.

This finally yields

‖ΨQh‖2 ≤
2ε
√
θmax + 2µ

√
k‖ΨScx‖1

ω2
min − µ(2k − 1)

(18)

provided that
ω2

min − µ(2k − 1) > 0.

4) Recovery guarantee: Using Definition 1, we get µ̂ =
µ̂(AΨ†) = µ/ω2

min. Combining (14) and (18), we therefore
conclude that for

k <
1

2

(
1 +

1

µ̂

)
(19)

we have

‖x∗ − x‖2 = ‖h‖2 ≤ C0 ε+ C1‖ΨScx‖1

with

C0 =
2
√
3

σmin(Ψ)ωmin

√
ω2

max
ω2

min
(1 + µ̂(k − 1))

1− µ̂(2k − 1)

C1 =
1

σmin(Ψ)

(
2µ̂
√
3k

1− µ̂(2k − 1)
+

1√
k

)
.

B. Proof of Theorem 1
We start by transforming (P) into the equivalent problem

(P∗) minimize
x̃

‖Ψx̃‖1 subject to ‖y −Ax̃‖2 ≤ ε

by amalgamating Ψ1,Ψ2 and A1,A2 into the matrices Ψ and
A as follows:

A =
[
A1 A2

]
∈ Cm×p (20)

Ψ =

[
Ψ1 0n×d

0n×d Ψ2

]
∈ C2n×2d, (21)

where p = 2d in the analysis setting, p = 2n in the
synthesis setting, and p = d + n in hybrid settings. The
corresponding measurement vector is y = Ax + e, where
we set x = [xT

1 xT
2 ]

T .
A recovery condition for (P) could now be obtained by

simply inserting A and Ψ in (20), (21) above into (5).
In certain cases, we can, however, get a better (i.e., less
restrictive) threshold following ideas similar to those reported
in [7] and detailed next.

We define the vectors h1 = x∗1 − x1, h2 = x∗2 − x2, the
sets Q1 , suppk1

(Ψ1h1), Q2 , n + suppk2
(Ψ2h2), and

h = [hT
1 hT

2 ]
T , Q = Q1 ∪Q2, and set k = k1 + k2.

We furthermore let, for ` = 1, 2,

µ` = max
i,j,i 6=j

|[(A`Ψ
†
`)

HA`Ψ
†
`]i,j |

µm = max
i,j
|[(A1Ψ

†
1)

HA2Ψ
†
2]i,j |.

With the definitions of Q1 and Q2, we have from (15)

‖AΨ†ΨQh‖22 = ‖AΨ†ΨQ1
h‖22 + ‖AΨ†ΨQ2

h‖22
+ 2(AΨ†ΨQ1

h)HAΨ†ΨQ2
h. (22)

The application of Geršgorin’s disc theorem [18] gives

θmin,1‖ΨQ1h‖22 ≤ ‖AΨ†ΨQ1h‖22 ≤ θmax,1‖ΨQ1h‖22 (23)

θmin,2‖ΨQ2h‖22 ≤ ‖AΨ†ΨQ2h‖22 ≤ θmax,2‖ΨQ2h‖22 (24)

with θmin,` , ω2
min(A`Ψ

†
`) − µ`(k` − 1) and θmax,` ,

ω2
max(A`Ψ

†
`) + µ`(k` − 1), for ` = 1, 2.

In addition, the last term in (22) can be bounded as

|(AΨ†ΨQ1
h)HAΨ†ΨQ2

h|

≤
∑

i∈Q1,j∈Q2

|[(AΨ†)HAΨ†]i,j ||[Ψh]i||[Ψh]j |

≤ µm‖ΨQ1
h‖1‖ΨQ2

h‖1 (25a)

≤ µm

√
k1k2‖ΨQ1

h‖2‖ΨQ2
h‖2 (25b)

≤ µm

2

√
k1k2

(
‖ΨQ1h‖22 + ‖ΨQ2

h‖22
)

(25c)

≤ µm

2

√
k1k2‖ΨQh‖22, (25d)



where (25a) follows from the definition of µm, (25b) results
from ‖u‖1 ≤

√
k‖u‖2, for k-sparse u, and (25c) is a conse-

quence of the arithmetic-mean geometric-mean inequality.
Combining (23), (24), and (25d) gives

θmin‖ΨQh‖22 ≤ ‖AΨ†ΨQh‖22 ≤ θmax‖ΨQh‖22,

where θmin , ω2
min−f(k1, k2), θmax , ω2

max+f(k1, k2), ωmin ,
ωmin(A1Ψ

†
1,A2Ψ

†
2), ωmax , ωmax(A1Ψ

†
1,A2Ψ

†
2), and

f(k1, k2) , max{µ1(k1 − 1), µ2(k2 − 1)}+ µm

√
k1k2.

Using the same steps as in (17a)-(17e), we get

g(k1, k2)‖ΨQh‖2 ≤ 2ε
√
θmax + 2µ

√
k‖ΨScx‖1,

where g(k1, k2) , ω2
min − f(k1, k2)− µk.

Next, we bound g(k1, k2) from below by a function of k =
k1+k2. This can be done, e.g., by looking for the minimum [7]

ĝ(k) , min
k1 : 0≤k1≤k

g(k1, k − k1) (26)

or equivalently

ĝ(k) , min
k2 : 0≤k2≤k

g(k − k2, k2). (27)

To find ĝ(k) in (26) or in (27), we need to distinguish between
two cases:
• Case 1: µ1(k1 − 1) ≤ µ2(k2 − 1)

In this case, we get

g(k − k2, k2) = ω2
min − µ2(k2 − 1)− µm

√
k2(k − k2)− µk.

A straightforward calculation reveals that the minimum of g
is achieved at

k2 =
k

2

(
1 +

µ2√
µ2
2 + µ2

m

)
,

resulting in

ĝ(k) = ω2
min −

1

2

(
µ2(k − 2) + k

√
µ2
2 + µ2

m

)
− µk.

If ĝ(k) > 0, then we have

‖x∗ − x‖2 = ‖h‖2 ≤ C0 ε+ C1‖ΨScx‖1 (28)

where

C0 =
2
√
3

σmin(Ψ)ĝ(k)

and

C1 =
1

σmin(Ψ)

(
2µ
√
3k

ĝ(k)
+

1√
k

)
.

Setting ĝ(k) > 0 amounts to imposing

k <
2 (1 + µ̂2)

µ̂2 + 2µ̂max +
√
µ̂2
2 + µ̂2

m

, (29)

where we used Definitions 1 and 2 to get a threshold depending
on the coherence parameters only.

• Case 2: µ2(k2 − 1) ≤ µ1(k1 − 1)
Similarly to Case 1, we get

ĝ(k) = ω2
min −

1

2

(
µ1(k − 2) + k

√
µ2
1 + µ2

m

)
− µk.

If ĝ(k) > 0, we must have

k <
2 (1 + µ̂1)

µ̂1 + 2µ̂max +
√
µ̂2
1 + µ̂2

m

. (30)

Since µ̂1 ≤ µ̂2, by assumption, the inequality in (30)
is tighter than the one in (29). We complete the proof by
combining the thresholds in (19) and (29) to get (3).
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