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Abstract—We formulate a unified framework for the separa-
tion of signals that are sparse in ‘“morphologically” different
redundant dictionaries. This formulation incorporates the so-
called ““analysis” and ‘“‘synthesis” approaches as special cases and
contains novel hybrid setups. We find corresponding coherence-
based recovery guarantees for an /;-norm based separation
algorithm. Our results recover those reported in Studer and
Baraniuk, ACHA, submitted, for the synthesis setting, provide
new recovery guarantees for the analysis setting, and form a
basis for comparing performance in the analysis and synthesis
settings. As an aside our findings complement the D-RIP recovery
results reported in Candes et al., ACHA, 2011, for the “analysis”
signal recovery problem

minimize ||¥X|; subject to |y — AX|]. <e
xX
by delivering corresponding coherence-based recovery results.

I. INTRODUCTION

We consider the problem of splitting the signal x = x; +X2
into its constituents x; € C¢ and x, € C%—assumed
to be sparse in “morphologically” different (redundant) dic-
tionaries [l1]—based on m linear, nonadaptive, and noisy
measurements y = Ax + e. Here, A € C™*d m < d, is the
measurement matrix, assumed to be known, and e € C™ is a
noise vector, assumed to be unknown and to satisfy |le[|s < ¢,
with ¢ known.

Redundant dictionaries [2], [3] often lead to sparser repre-
sentations than nonredundant ones, such as, e.g., orthonormal
bases, and have therefore become pervasive in the sparse signal
recovery literature [3]. In the context of signal separation,
redundant dictionaries lead to an interesting dichotomy [1],
(41, [5]:

o In the so-called “synthesis” setting, it is assumed that,

for £ = 1,2, x; = Dysy, where D, € C¥*™ (d < n) is
a redundant dictionary (of full rank) and the coefficient
vector sy € C™ is sparse (or approximately sparse in the
sense of [6]). Given the vector y € C™, the problem of
finding the constituents x; and xo is formalized as [7]:

minimize  ||S1||1 + [|S2]]1
(PS) §1,82

subject to ||y — A(D18; + D28y)]|2 < e.

« In the so-called “analysis” setting, it is assumed that, for
¢ = 1,2, there exists a matrix ¥, € C**¢ such that
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W,x, is sparse (or approximately sparse). The problem
of recovering x; and x, from y is formalized as [5]:

minimize || ¥1X [ + [[¥2x2y
(PA) X1,X2
subject to [y — A(X; +X2)[]2 < e.

Throughout the paper, we exclusively consider redundant dic-
tionaries as for Dy, £ = 1,2, square, the synthesis setting can
be recovered from the analysis setting by taking ¥, = DZl.
The problems (PS) and (PA) arise in numerous applications
including denoising [8], super-resolution [8], inpainting [9]-
[11], deblurring [11], and recovery of sparsely corrupted
signals [12]. Coherence-based recovery guarantees for (PS)
were reported in [7]. The problem (PA) was mentioned in [5].
In the noiseless case, recovery guarantees for (PA), expressed
in terms of a concentration inequality, are given in [13] for
A =1,; and ¥, and ¥, both Parseval frames [2].
Contributions: We consider the general problem

minimize ||‘I’1i1H1 + H‘I’QiQ”l
(P) X1,X2
subject to ||y — A1X1 — AgXall2 < ¢,

which encompasses (PS) and (PA). To recover (PS) from (P),
one sets Ay = AD; and ¥, = [I; 04,,_4]7, for £ = 1,2.
(PA) is obtained by choosing Ay = A, for £ = 1,2. Our
main contribution is a coherence-based recovery guarantee
for the general problem (P). This result recovers [7, Th. 4],
which deals with (PS), provides new recovery guarantees
for (PA), and constitutes a basis for comparing performance
in the analysis and synthesis settings. As an aside, it also
complements the D-RIP recovery guarantee in [5, Th. 1.2]
for the problem

(P*) minimize || ®¥X|; subject to ||y — AX|j2 <e
X

by delivering a corresponding coherence-based recovery guar-
antee. Moreover, the general formulation (P) encompasses
novel hybrid problems of the form

minimize  [|S1]]1 + ||¥2X2l)1
S1,X2
subject to |y — A(D181 — X2)||2 < e.
Notation: Lowercase boldface letters stand for column

vectors and uppercase boldface letters denote matrices. The
transpose, conjugate transpose, and Moore-Penrose inverse
of the matrix M are designated as M7T, M, and MT,
respectively. The jth column of M is written [M];, and



(a) Original cartoon image

(b) Corrupted image

(c) Restored cartoon image

Fig. 1: Image separation in the presence of Gaussian noise (SNR = 20 dB).

the entry in the ith row and jth column of M is [M]; ;.
We let omin(M) denote the smallest singular value of M,
use I, for the n x n identity matrix, and let Opy,, be
the k¥ x m all zeros matrix. For matrices M and N, we
let winin(M) = min; [[[M][l2, wmax (M) £ max; [[M];]|2,
Winin (M, N) 2 min{wmin(M), Wnin(N)}, and wiax (M, N) £
max{wmax (M), wmax(N)}. The kth entry of the vector x is
written [x]y, and x| £ >, |[x]x| stands for its ¢;-norm.
We take supp,(x) to be the set of indices corresponding
to the k largest (in magnitude) coefficients of x. Sets are
designated by uppercase calligraphic letters; the cardinality
of the set S is |S| and the complement of S (in some given
set) is denoted by S¢. For a set S of integers and n € Z, we
letn+S 2 {n+p:pec S} The n x n diagonal projection

matrix Pg for the set S C {1,...,n} is defined as follows:
|1, i=jandi e S
[Psli; = { 0, otherwise,

and we set Ms = PsM. We define o (x) to be the £;-norm
approximation error of the best k-sparse approximation of x,
ie., ox(x) £ |[x—xs|1 where S = supp,,(x) and xs = Psx.

II. RECOVERY GUARANTEES

Coherence definitions in the sparse signal recovery litera-
ture [3] usually apply to dictionaries with normalized columns.
Here, we will need coherence notions valid for general (un-
normalized) dictionaries M and N, assumed, for simplicity of
exposition, to consist of nonzero columns only.

Definition 1 (Coherence): The coherence of the dictio-
nary M is defined as

X MM, ;|
M) = max ————2>. 1
Definition 2 (Mutual coherence): The mutual coherence of

the dictionaries M and N is defined as

) |[M*N]; ;

fln (M, N) = max W’l\;)

L) W

2

min

The main contribution of this paper is the following recov-
ery guarantee for (P).

Theorem 1: Lety = A1x; + Agxy + e with |je|lz < ¢ and
let ¥; € C™*P1 and ¥y € C™2*P2 be full-rank matrices.
Let x = [x] xT)7, jin = (A1 %)), fio = u(A2®Y), finy =
fim (A0 AoW), and fima = max{ji1, flo, fim }. Without
loss of generality, we assume that ji; < fio. Let k; and ko be
nonnegative integers such that

2(]— +ﬂ2) 1 +,&max
fio + 2fimax + /73 + i3, 2imar
(3)

Then, the solution (x7, x3) to the convex program (P) satisfies

||X>'< —X||2 S Co€+cl(0'kl(\]:/1xl)—|—0'k2(\I/2X2)), (4)

k1+k2<max{

where Cy,C7; > 0 are constants that do not depend on x;
and x5 and where x* = [x}7 x37]7.

Note that the quantities fi, fi2, and [i,, characterize the in-
terplay between the measurement matrix A and the sparsifying
transforms ¥, and W¥,.

As a corollary to our main result, we get the following
statement for the problem (P*) considered in [5].

Corollary 2: Lety = Ax + e with |le]|z < ¢ and let ¥ €
C"*P be a full-rank matrix. Let k be a nonnegative integer

such that

1 1
k<2 <1 + A> . Q)
2\ yAwh)
Then, the solution x* to the convex program (P*) satisfies
[x* —x[l2 < Coe + Crop(¥x), (6)

where Cy, C; > 0 are constants' that do not depend on x.
The proofs of Theorem 1 and Corollary 2 can be found in
the Appendix.
We conclude by noting that D-RIP recovery guarantees
for (P*) were provided in [5]. As is common in RIP-based

INote that the constants Cp and C; may take on different values at each
occurrence.



recovery guarantees the restricted isometry constants are,
in general, hard to compute. Moreover, the results in [5]
hinge on the assumption that ¥ forms a Parseval frame, i.e.,
vAw =1, a corresponding extension to general ¥ was
provided in [14]. We finally note that it does not seem possible
to infer the coherence-based threshold (5) from the D-RIP
recovery guarantees in [5], [14].

III. NUMERICAL RESULTS

We analyze an image-separation problem where we remove
a fingerprint from a cartoon image. We corrupt the 512 x 512
greyscale cartoon image depicted in Fig. 1(a) by adding a
fingerprint? and i.i.d. zero-mean Gaussian noise.

Cartoon images are constant apart from (a small number of)
discontinuities and are thus sparse under the finite difference
operator A defined in [15]. Fingerprints are sparse under the
application of a wave atom transform, W, such as the redun-
dancy 2 transform available in the WaveAtom toolbox> [16].
It is therefore sensible to perform separation by solving the
problem (PA) with ¥; = A, ¥5 =W, and A = 1,;. For our
simulation, we use a regularized version of A and we employ
the TFOCS solver* from [17].

Fig. 1(c) shows the corresponding recovered image. We can
see that the restoration procedure gives visually satisfactory
results.

APPENDIX A
PROOFS

For simplicity of exposition, we first present the proof of
Corollary 2 and then describe the proof of Theorem 1.

A. Proof of Corollary 2

We define the vector h = x* — x, where x* is the solution
o (P*) and x is the vector to be recovered. We furthermore
set S = supp, (¥x).

1) Prerequisites: Our proof relies partly on two important
results developed earlier in [5], [6] and summarized, for
completeness, next.

Lemma 3 (Cone constraint [5], [6]): The vector ¥h obeys

[Wsehl)y < [[®shlly + 2| Wsex]]1, @)

where S = supp,, (¥x).

Proof: Since x* is the minimizer of (P*), the inequality
| Tx|; > ||¥x*|; holds. Using ¥ = ¥s 4+ ¥se and x* =
x + h, we obtain

[Wsx1 + [[¥sex|[y = [[®x]
> [ = [ Wox + Tshy + [sex + Ty
> [[®sx[ly — [[¥shify + [[¥schlly — [[Tsex]:.
We retrieve (7) by simple rearrangement of terms. ]

Lemma 4 (Tube constraint [5], [6]): The vector Ah satis-
fies [|Ahljs < 2e.

2The fingerprint image is taken from http://commons.wikimedia.org/
3We used the WaveAtom toolbox from http://www.waveatom.org/
4We used TFOCS from http://tfocs.stanford.edu/

Proof: Since both x* and x are feasible (we recall that
y = Ax + e with |le]|2 <€), we have the following

[Ah[lz = [A(x" = x)]l2
<AXT —yll2 + [ly — Ax]l2 < 2,

thus establishing the lemma. ]

2) Bounding the recovery error: We want to bound |/h|2
from above. Since opin (¥) > 0 by assumption (¥ is assumed
to be full-rank), it follows from the Rayleigh-Ritz theorem [18,
Th. 4.2.2] that

1
h|; < ————||Ph|5. )
]2 — [%h2
We now set Q = supp, (¥h). Clearly, we have for i € Q°,
Toh
rwn)| < [Fobl

Using the same argument as in [19, Th. 3.1], we obtain

voh
(o= 3 (@l < 3 jrwn) 1Yol
i€Qec i€Q°
¥orh
:Ilwgchlll—” obli o)

Since Q is the set of indices of the k& largest (in magnitude)
coefficients of Wh and since Q and S both contain k elements,
we have ||[¥shll; < |[Poh|; and || Poch|; < ||¥seh|;
which, combined with the cone constraint in Lemma 3, yields

[Pochl1 < [Toh( + 2| ¥sex]:. (11)
The inequality in (10) then becomes
| ohl? H‘I’thh
w3 < FORI 4o,
v

< 1w ohl3 +2||‘I’SCX||1|\kaH2 (122)

e x||?
< o won|3 + ¥, (12b)

where (12a) follows from |lul|; < vk|lul|2 for k-sparse® u
and (12b) is a consequence of 2zy < 2% + y2, for 2,y € R.
It now follows that

|hll = /| ohl} + [ ¥o-h|3

[%sx3
< \[3lwonyg + [Pl

[Wsex]|y
\/E )

where (13a) is a consequence of (12b) and (13b) results from

Vaz+y2 <ax+y, for z,y > 0.

Combining (9) and (13b) leads to

(Valwenl +

(13a)

< V3| ®ohl|, + (13b)

]2 <

LZET P

Umm( ) \/E

SA vector is k-sparse if it has at most & nonzero entries.



3) Bounding the term ||¥ghl|2 in (14): In the last step of
the proof, we bound the term || ¥ ohl|| in (14). To this end, we
first bound |A®T®oh|3, with ¥ = (B7 @)~ 1@ using
GerSgorin’s disc theorem [18, Th. 6.2.2]:

Ounin| | QD[ < [ AT ®oh3 < O [Toh[3  (15)

where Opin 2 W2, — p(k — 1) and Opay = w2y + p(k — 1)
with

[ = max H(A\IIT)HA\IIT] 5 (16)

1,5,4#]

and wp, = wmin(A\IlT) and Wiy 2 wmaX(A\IIT).

Using Lemma 4 and (15) and following the same steps as
in [20, Th. 2.1] and [7, Th. 1], we arrive at the following chain
of inequalities:

Omin|[ @ oh3 < AP Woh|3 = (A¥TWoh) T A¥TWoh

= (Ah)ZATTOoh — (AT Oo.h)TATTToh  (17a)
< |(AR)T AW Woh| + |(¥o-h)" (AT AT (@ oh)|
< ||Abs AT @b,
Y AR AW |[@h]| (17b)
i€Qe,jeQ
< 26\ Omax|[ W b2 + p[[ ¥ oh]1 [ ¥ oeh]y (17¢)
< 2/l L ohlz + 1ol (¥ ohls + 2] o)

(17d)
26/ Omax| [ ¥ oh||2 + pk| ¥ oh)3
+ 2uVE|| W sex||1 | T oh| 2, (17e)

where (17a) follows from Woh = Wh — ¥och and VAR
I, (17b) is a consequence of the Cauchy-Schwarz inequality,
(17c¢) is obtained from (15), Lemma 4, and the definition of p
in (16), (17d) results from (11), and (17¢) comes from |Ju||; <
\/E||u||2, for k-sparse u.

If h # 0, then |[¥oh|s # 0, since ¥ is assumed to
be full-rank and Q is the set of indices of the k largest (in
magnitude) coefficients of ¥h, and therefore, the inequality
between Opin|| ¥ ohl|3 and (17¢) simplifies to

(wiin — #(2k — 1)) [ ¥ ohl|2 < 2ev/Bnax + 20V K[| L 5] 1.
This finally yields

25\/9mdx + 2/1[“\115@)(”1
w2 — u(2k —1)

min

[@ohllz < (18)

provided that
Wi — 2k —1) > 0.

min

4) Recovery guarantee: Using Definition 1, we get i =
,&(A\I!T) = p/w?2. . Combining (14) and (18), we therefore

conclude that for ) .
k<=-(1+=
- 2( * ﬂ)

[x* —x|[2 = |[hll2 < Coe + C1[| ¥ sex]2

19)

we have

with
o B ROy
Gmin (¥)Winin (2k - 1)
1 2/1\/37c 1
G = (@) (1 k-1 " \/E) '

B. Proof of Theorem 1
We start by transforming (P) into the equivalent problem

(P*) minimize ||¥X|; subject to |y —AX|s<e
X

by amalgamating W, ¥, and A, A, into the matrices ¥ and
A as follows:

A=[A; Ay]eCm (20)
_ | ¥1 Opxd 2nx2d
¥ = {Onm o, eC , (21)
where p = 2d in the analysis setting, p = 2n in the

synthesis setting, and p = d + n in hybrid settings. The
corresponding measurement vector is y = Ax + e, where
we set x = [x7 x3]7T.

A recovery condition for (P) could now be obtained by
simply inserting A and ¥ in (20), (21) above into (5).
In certain cases, we can, however, get a better (i.e., less
restrictive) threshold following ideas similar to those reported
in [7] and detailed next.

We define the vectors h; = x7 — x;, hy = x5 — x9, the
sets Q1 £ supp, (¥1hy), Q; = n + supp,, (¥2hy), and
h = [h¥ h|T, Q= Q1 U Qy, and set k = k; + ko.

We furthermore let, for ¢/ = 1,2,

pe = max [[(Ag®))" AWl |
1,5,4#]

Hm = max | [(Al‘I'T)HA2\I’T]1 ]‘

With the deﬁmtlons of Q1 and 9,, we have from (15)
|A®'woh| = AT W o, | + AT o, |3
+2(A0 W, N)FAT W, . (22)
The application of GerSgorin’s disc theorem [18] gives
Onin 1@, b3 < AL ¥ b5 < Oax1 [ ¥, bl (23)
Onin2 | 0,03 < AL ¥ 0, b3 < fnax | Lo, hII3 (24)
With Ominge 2 w2 (Ar®)) — pe(ke — 1) and Opee 2

W2 (Ag®]) + pig(kg — 1), for £ = 1,2,
In addition, the last term in (22) can be bounded as

(AT W h)T AT W, b

< Y [(AEHTART] || [Wh,||[Ph;|
1€Q1,j€EQs

< || W o, h]l1 | o, by (25a)
< /K2 | @ o, hl|2 [ ¥ o, bl (25b)
< B2l (%o, b3 + 1% 0,h]3) 250)
< %Vklkzll%hllg, (25d)



where (25a) follows from the definition of ,,, (25b) results

from ||ulj; < v/k|u|l, for k-sparse u, and (25c) is a conse-

quence of the arithmetic-mean geometric-mean inequality.
Combining (23), (24), and (25d) gives

omin”‘I'Qh”g < HA\PT‘I’thg < gmaXH‘I'Qh”ga

where Opin = w2, —f(k1,k2), Omax = w2 +f (K1, k2), Wnin =

min

Winin (A1 2T, Ao B, Wnax 2 Wi (A1 8], A1), and
f(ky, ko) & max{p (ky — 1), pa (k2 — 1)} + v/ Er k.
Using the same steps as in (17a)-(17e), we get
g(kr, k2) | T Qhllz < 26/ Onax + 20k T sox| 1,

where g(kl, k’g) £ wiin — f(kl, ]{12) — ,Ltk
Next, we bound g(k1, k2) from below by a function of k =
k1+ko. This can be done, e.g., by looking for the minimum [7]

N é . _

g(k) = kl:glglglgkg(kl,k k1) (26)
or equivalently

A A . o

g(k) = kzzgnglgzgkg(k ko, ka). (27)

To find g(k) in (26) or in (27), we need to distinguish between
two cases:

e Case 1: Nl(kl — ].) S HQ(kQ - ].)
In this case, we get

gk — ko, ko) = wiyiy — pa(ky — 1) — pm/ka(k — ko) — pk.

A straightforward calculation reveals that the minimum of g
is achieved at

k
fop = 14 12

2 V3 + g,

resulting in

X 1
g(k) = w2, — 2(Mz(k —2) 4 km) k.

If g(k) > 0, then we have

[x* —x|[2 = |lhlls < Coe + Cuf|®sex|L  (28)
where
2V3
CO = T I~
Tmin(W)g (k)
and
1 2uv 3k 1
Ci = lf + —
Omin(¥) g(k) \/E
Setting g(k) > 0 amounts to imposing
21+ 4

< )

ﬂQ + 2ﬂmax + v ﬂ% + .[‘En
where we used Definitions 1 and 2 to get a threshold depending
on the coherence parameters only.

e Case 2: Mz(kg — ].) S Ml(kl - ].)
Similarly to Case 1, we get

. 1
g(k) :w?nin - 2<Ml(k—2) +k\/m> — uk.

If g(k) > 0, we must have
_ 2(1+ fu)
ﬂl + 2/1max + V ﬂ% + ﬂ%z
Since i1 < fi2, by assumption, the inequality in (30)
is tighter than the one in (29). We complete the proof by
combining the thresholds in (19) and (29) to get (3).

REFERENCES

k (30)

[1] R. Rubinstein, A. M. Bruckstein, and M. Elad, “Dictionaries for sparse
representation modeling,” Proc. IEEE, vol. 98, no. 6, pp. 1045-1057,
Apr. 2010.

[2] O. Christensen, An Introduction to Frames and Riesz Bases, ser. Applied
and Numerical Harmonic Analysis, J. J. Benedetto, Ed. Boston, MA,
USA: Birkhiuser, 2002.

[3] M. Elad, Sparse and Redundant Representations — From Theory to
Applications in Signal and Image Processing. New York, NY, USA:
Springer, 2010.

[4] P. Milanfar and R. Rubinstein, “Analysis versus synthesis in signal
priors,” Inverse Problems, vol. 23, pp. 947-968, Jan. 2007.

[5]1 E.J. Candes, Y. C. Eldar, D. Needell, and P. Randall, “Compressed sens-
ing with coherent and redundant dictionaries,” Appl. Comput. Harmon.
Anal., vol. 31, no. 1, pp. 59-73, Sep. 2011.

[6] E. J. Candes, J. Romberg, and T. Tao, “Stable signal recovery from
incomplete and inaccurate measurements,” Comm. Pure Appl. Math.,
vol. 59, no. 2, pp. 1207-1223, Mar. 2005.

[71 C. Studer and R. Baraniuk, “Stable restoration and separation of
approximately sparse signals,” Appl. Comput. Harmon. Anal., submitted.
[Online]. Available: http://arxiv.org/pdf/1107.0420v1.pdf

[8] S. G. Mallat, A Wavelet Tour of Signal Processing: The Sparse Way.
Burlington, MA, USA: Academic Press, 2009.

[9] M. Elad, J.-L. Starck, P. Querre, and D. L. Donoho, “Simultaneous
cartoon and texture image inpainting using morphological component
analysis (MCA),” Appl. Comput. Harmon. Anal., vol. 19, no. 3, pp.
340-358, Jan. 2005.

[10] J. Fadili, J.-L. Starck, M. Elad, and D. L. Donoho, “MCALab: Repro-
ducible research in signal and image decomposition and inpainting,”
Computing in Science & Engineering, vol. 12, no. 1, pp. 44-63,
Feb. 2010.

[11] J.-F. Cai, S. Osher, and Z. Shen, “Split Bregman methods and frame
based image restoration,” Multiscale Modeling & Simulation, vol. 8,
no. 2, pp. 337-369, Jan. 2010.

[12] C. Studer, P. Kuppinger, G. Pope, and H. Bolcskei, “Recovery of sparsely
corrupted signals,” IEEE Trans. Inf. Theory, vol. 58, no. 5, pp. 3115-
3130, May 2012.

[13] G. Kutyniok, “Data separation by sparse representations,” in Compressed
Sensing: Theory and Applications, Y. C. Eldar and G. Kutyniok, Eds.,
New York, NY, USA: Cambridge University Press, 2012.

[14] Y. Liu, T. Mi, and S. Li, “Compressed sensing with general frames via
optimal-dual-based ¢1-analysis,” IEEE Trans. Inf. Theory, submitted.
[Online]. Available: http://arxiv.org/pdf/1111.4345.pdf

[15] S. Nam, M. Davies, M. Elad, and R. Gribonval, “The cosparse analysis
model and algorithms,” INRIA, Tech. Rep., Jun. 2011. [Online].
Available: http://arxiv.org/pdf/1106.4987v1.pdf

[16] L. Demanet and L. Ying, “Wave atoms and sparsity of oscillatory
patterns,” Appl. Comput. Harmon. Anal., vol. 23, no. 3, pp. 368-387,
Jan. 2007.

[17] S. Becker, E. J. Candes, and M. Grant, “Templates for convex cone
problems with applications to sparse signal recovery,” in Mathematical
Programming Computation, W. J. Cook, Ed., 2012, vol. 3, no. 3, pp.
165-218.

[18] R. A. Horn and C. R. Johnson, Matrix Analysis.
Cambridge University Press, 1991.

[19] T. T. Cai, L. Wang, and G. Xu, “New bounds for restricted isometry
constants,” IEEE Trans. Inf. Theory, vol. 56, no. 9, pp. 1-7, Aug. 2010.

, “Stable recovery of sparse signals and an oracle inequality,” IEEE

Trans. Inf. Theory, vol. 56, no. 7, pp. 3516-3522, Jul. 2010.

New York, NY, USA:

[20]




