
CS-MUVI: Video Compressive Sensing for Spatial-Multiplexing Cameras

Aswin C. Sankaranarayanan, Christoph Studer, and Richard G. Baraniuk
Rice University

Abstract

Compressive sensing (CS)-based spatial-multiplexing
cameras (SMCs) sample a scene through a series of coded
projections using a spatial light modulator and a few optical
sensor elements. SMC architectures are particularly useful
when imaging at wavelengths for which full-frame sensors
are too cumbersome or expensive. While existing recovery
algorithms for SMCs perform well for static images, they
typically fail for time-varying scenes (videos). In this pa-
per, we propose a novel CS multi-scale video (CS-MUVI)
sensing and recovery framework for SMCs. Our frame-
work features a co-designed video CS sensing matrix and
recovery algorithm that provide an efficiently computable
low-resolution video preview. We estimate the scene’s op-
tical flow from the video preview and feed it into a convex-
optimization algorithm to recover the high-resolution video.
We demonstrate the performance and capabilities of the CS-
MUVI framework for different scenes.

1. Introduction
Compressive sensing (CS) enables one to sample well-

below the Nyquist rate, while still enabling the recovery
of signals that admit a sparse representation in some ba-
sis [1, 2]. Since many natural and artificial signals exhibit
sparsity, CS has the potential to reduce the sampling rates
and costs of corresponding sampling devices in numerous
applications.

Spatial-multiplexing cameras: The single-pixel camera
(SPC) [3], the flexible voxels camera [4], and the P2C2
camera [5] are practical imaging architectures that rely
on the theory of CS. In this paper, we focus on such
spatial-multiplexing cameras (SMCs) that acquire random
(or coded) projections of a (typically static) scene using a
digital micro-mirror device (DMD) or liquid crystal on sili-
con (LCOS) in combination with a few optical sensing ele-
ments, such as photodetectors or bolometers. The use of
a small number of optical sensors—in contrast to a full-
frame sensor—turns out to be extremely useful when ac-
quiring scenes at non-visible wavelengths. In particular,

sensing beyond the visual spectrum often requires sensors
built from exotic materials, which renders corresponding
full-frame sensor devices cumbersome or too expensive.

Obviously, sampling with only a few sensors is, in gen-
eral, not sufficient for acquiring complex scenes. Hence,
SMCs acquire scenes by taking multiple consecutive mea-
surements over time. For still images and for a single-pixel
SMC architecture, this sensing strategy has been shown to
deliver good results [3], but it fails for time-variant scenes
(videos). The key challenge of video CS for SMCs is
the fact that the scene to be captured is ephemeral, i.e.,
each compressive measurement senses a (slightly) differ-
ent scene; the situation is further aggravated when we deal
with SMCs having a small number of sensors (e.g., only one
for the SPC). Virtually all proposed methods for CS-based
video recovery (e.g., [6–10]) seem to overlook this impor-
tant aspect. The approach described in [11] is a notable
exception, but is designed specifically for time-varying pe-
riodic scenes; however, all other approaches that are suit-
able for more general scenes, e.g., [6–10], treat scenes as
a sequence of static frames (i.e., videos) as opposed to a
continuously changing scene. This disconnection between
the real-world operation of SMCs and the assumptions com-
monly made for video CS motivates the continuing search
for effective new algorithms.

The “chicken-and-egg” problem of video CS: Success-
ful video CS recovery methods for camera architectures re-
lying on temporal multiplexing (in contrast to spatial multi-
plexing as for SMCs) are generally inspired by video com-
pression (i.e., exploit motion estimation) [5, 12, 13]. The
use of such techniques for SMC architectures, however, re-
sults in a fundamental problem: On the one hand, obtaining
motion estimates (e.g., optical flow) requires knowledge of
the individual video frames. On the other hand, recovering
the video frames in absence of motion estimates is difficult,
especially when using low sampling rates and a small num-
ber of sensor elements. Attempts to address this “chicken-
and-egg” problem either perform multi-scale sensing [6] or
sense separate patches of the individual frames [10]. Both
approaches ignore the time-varying nature of real-world
scenes and rely on a piecewise static model.
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Figure 1. CS-MUVI example for a synthetic scene: (a) Flowchart of CS-MUVI, (b) ground-truth scene consisting of a background (Lena)
and a single moving object (cross), (c) low-resolution preview video, and (d) high-resolution recovered video.

The CS-MUVI framework: In this paper, we propose
a novel sensing and recovery method for videos acquired
by SMC architectures such as the SPC [3]. We start (in
Sec. 3) by studying the recovery performance of time-
varying scenes and demonstrate that the performance degra-
dation caused by violating the static-scene assumption is
severe, even at moderate levels of motion. We then detail a
novel CS strategy for SMC architectures that overcomes the
static-scene assumption. Our approach, illustrated in Fig. 1,
is a co-design of acquisition and recovery. We propose a
novel class of CS that enables us to obtain a low-resolution
“preview” of the scene with very low computational com-
plexity. This preview video is then used to extract robust
motion estimates (i.e., the optical flow) of the scene at full-
resolution (see Sec. 4). We exploit these motion estimates
to recover the full-resolution video by using off-the-shelf
convex-optimization algorithms typically used for CS (de-
tailed in Sec. 5). We demonstrate the performance and capa-
bilities of our SMC video-recovery algorithm for a different
scenes in Sec. 6 and discuss our findings in Sec. 7. Given
the multiscale nature of our framework, we refer to it as CS
multiscale video recovery (CS-MUVI).

2. Background
We next summarize the basics of compressive sensing

and review existing CS-based camera architectures.

2.1. Compressive sensing

CS deals with the recovery of a signal vector x ∈ RN

from M < N non-adaptive linear measurements [1, 2]

y = Φx + z, (1)

where Φ ∈ RM×N is the sensing matrix and z represents
measurement noise. Estimating the signal x from the com-
pressive measurements y is ill-posed, in general, since the
(noiseless) system of equations y = Φx is underdeter-
mined. Nevertheless, a fundamental result from CS theory
states that the signal vector x can be recovered stably from

M ∼ K log(N/K) (2)

measurements if: i) the signal x admits a K-sparse repre-
sentation s = ΨTx in an orthonormal basis Ψ, and ii) the
matrix ΦΨ satisfies the restricted isometry property (RIP).
For example, if the entries of the matrix Φ are i.i.d. zero-
mean (sub-)Gaussian distributed, then ΦΨ is known to sat-
isfy the RIP with overwhelming probability. Furthermore,
any K-sparse signal x satisfying (2) can be recovered sta-
bly from the noisy measurement y by solving a convex-
optimization problem such as [1]

(P1) minimize ‖ΨTx‖1 subject to ‖y −Φx‖2 ≤ ε



where (·)T denotes matrix transposition and ε controls the
accuracy of the estimate.

2.2. Spatial-multiplexing camera architectures

Spatial-multiplexing cameras (SMCs) are practical
imaging architectures that build on the ideas of CS. Such
cameras employ a spatial light modulator, e.g., a digital
micro-mirror device (DMD) or liquid crystal on silicon
(LCOS), to optically calculate a series linear projections
of a scene x by implementing the sensing process (1) us-
ing pseudo-random patterns that ultimately determine the
sensing matrix Φ. A prominent example of an SMC archi-
tecture is the single-pixel camera (SPC) [3]; its main fea-
ture is the ability of acquiring images using only a single
sensor element (i.e., a single pixel) and by taking signifi-
cantly fewer measurements than the number of pixels of the
scene to be recovered (cf. (2)). Since SMCs rely on only a
few sensor elements, they can operate at wavelengths where
corresponding full-frame sensors are too expensive. In the
recovery stage, the image x is recovered from the compres-
sive measurements collected in y. In practice, recovery is
performed either by using (P1) or a greedy algorithm.

2.3. Related work on video CS

Multi-scale video CS: One approach to video CS for
SMC architectures relies on the observation that the per-
ception of motion is heavily dependent on the spatial res-
olution of the video. Specifically, for a given scene, re-
ducing its spatial resolution lowers the error caused by the
static-scene assumption [14]. Simultaneously, decreasing
the spatial resolution reduces the dimensionality of the in-
dividual video frames. Both observations build the founda-
tion of the multi-scale recovery approach proposed in [6],
where several compressive measurements are acquired at
multiple scales for each video frame. The recovered video
at coarse scales (low spatial resolution) is used to estimate
motion, which is then used to boost the recovery at finer
scales (high spatial resolution). The key drawback of this
approach is the fact that it relies on the assumption that each
frame of the video remains static during the acquisition of
the CS measurements at various scales. For scenes violating
this assumption—as is the case in virtually all real-world
situations—this approach results in a poor recovery quality.

Optical-flow-based video CS: Another recovery method
was developed in [5] for the P2C2 camera, which differs
considerably from SMC architectures. The P2C2 camera
performs temporal multiplexing (instead of spatial multi-
plexing) with the aid of a full-frame sensor and a per-pixel
shutter. The recovery of videos from the P2C2 camera is
achieved by using the optical flow between pairs of con-
secutive frames of the scene. The implementation of the
recovery procedure described in [5] is tightly coupled to the
imaging architecture and inhibits its use for SMC architec-

tures. Nevertheless, the use of optical-flow estimates for
video CS recovery inspired the recovery stage of CS-MUVI
as detailed in Sec. 5.

3. Spatio-temporal trade-off
We now study the recovery error that results from the

static-scene assumption while sensing a time-varying scene
(video) with an SMC. We also identify a fundamental trade-
off underlying a multi-scale recovery procedure, which is
used in Sec. 4 to identify novel sensing matrices that min-
imize the spatio-temporal recovery errors. Since the SPC
is the most challenging SMC architecture (i.e., it only pro-
vides a single pixel sensor), we solely focus on the SPC in
the following. Generalizing our results to other SMC archi-
tectures with more than one sensor is straightforward.

3.1. SMC acquisition model

The compressive measurements yt ∈ R taken by a
single-sensor SMC at the sample instants t = 1, . . . , T can
be written as yt = 〈φt,xt〉 + zt, where T is the total num-
ber of acquired samples, φt ∈ RN×1 is the sensing vector,
zt ∈ R is the measurement noise, and xt ∈ RN×1 is the
scene (or frame) at sample instant t; here, 〈·,·〉 denotes the
inner product. In the remainder of the paper, we assume
that the 2-dimensional scene consists of n×n spatial pixels,
which, when vectorized, results in the vector xt of dimen-
sion N = n2. We also use the notation y1:W to represent
the vector consisting of a window of W ≤ T successive
compressive measurements (samples), i.e,

y1:W =


y1
y2
...
yW

 =


〈φ1,x1〉+ z1
〈φ2,x2〉+ z2

...
〈φW ,xW 〉+ zW

 . (3)

3.2. Static-scene and down-sampling errors

Suppose that we rewrite our (time-varying) scene xt for a
window of W consecutive sample instants as follows:

xt = b + ∆xt, t = 1, . . . ,W.

Here, b is a static component (assumed to be invariant for
W samples), and ∆xt = xt − b is the error at sample
instant t caused by assuming a static scene. By defining
et = 〈φt,∆xt〉, we can rewrite (3) as

y1:W = Φb + e1:W + z1:W , (4)

where Φ ∈ RW×N is a sensing matrix whose tth row cor-
responds to the transposed vector φt.

We now consider the error caused by spatial downsam-
pling of the static component b in (4). To this end, let
bL ∈ RNL be the down-sampled static component, and as-



sume NL = nL × nL with NL < N . By defining a linear
up-sampling and down-sampling operator as U ∈ RN×NL

and D ∈ RNL×N , respectively, we can rewrite (4) as

y1:W = Φ(UbL + b−UbL) + e1:W + z1:W

= ΦUbL + Φ(b−UbL) + e1:W + z1:W

= ΦUbL + Φ(I−UD)b + e1:W + z1:W (5)

since bL = Db. Inspection of (5) reveals three sources
of error in the CS measurements of the low-resolution
static scene ΦUbL: i) The spatial-approximation error
Φ(I−UD)b caused by down-sampling, ii) the temporal-
approximation error e1:W caused by assuming the scene
remains static for W samples, and iii) the measurement er-
ror z1:W .

3.3. Estimating a low-resolution image
In order to analyze the trade-off that arises from the

static-scene assumption and the down-sampling procedure,
consider the scenario where the effective matrix ΦU is of
dimension W × NL with W ≥ NL; that is, we aggregate
at least as many compressive samples as the down-sampled
spatial resolution. If ΦU has full (column) rank, then we
can obtain a least-squares (LS) estimate b̂L of the low-
resolution static scene bL from (5) as

b̂L = (ΦU)
†
y1:W

= bL + (ΦU)
†(

Φ(I−UD)b + e1:W + z1:W
)

(6)

where (·)† denotes the (pseudo) inverse. From (6) we can
observe the following facts: i) The window length W con-
trols a trade-off between the spatial-approximation error
Φ(I−UD)b and the error e1:W induced by assuming a
static scene b, and ii) the least squares (LS) estimator ma-
trix (ΦU)

† (potentially) amplifies all three error sources.

3.4. Characterizing the trade-off
As developed in Sec. 3.3, the spatial-approximation er-

ror and the temporal-approximation error are both a func-
tion of the window length W . We now show that care-
fully selecting W minimizes the combined spatial and tem-
poral error in the low-resolution estimate b̂L. Inspection
of (6) shows that for W = 1, the temporal-approximation
error is zero, since the static component b is able to per-
fectly represent the scene at each sample instant t. As
W increases, the temporal-approximation error increases
for time-varying scenes; simultaneously, increasing W re-
duces the error caused by down-sampling Φ(I−UD)b (see
Fig. 2(a)). For W ≥ N there is no spatial approximation
error (if ΦU is invertible). Note that characterizing both
errors analytically is difficult, in general, as they depend on
the scene under consideration.

Figure 2 illustrates the trade-off controlled by W and
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Figure 2. Trade-off between spatial and temporal approximation
errors (measured in terms of the CS recovery SNR) for the scene
in Fig. 1. (a) The SNRs caused by spatial and temporal approxima-
tion errors for different window lengths W . (b) The dependence
of the total approximation error on the speed of the cross.

the individual spatial and temporal approximation errors,
characterized in terms of the recovery signal-to-noise-ratio
(SNR), for the synthetic scene shown in Fig. 1. The figure
highlights the important fact that there is an optimal window
length W for which the total recovery SNR is maximized.
In particular, we see from Fig. 2(b) that the optimum win-
dow length increases (i.e., towards higher spatial resolution)
when the scene changes slowly; in contrary, when the scene
changes rapidly, the window length (and consequently, the
spatial resolution) should be low. Since NL ≤ W , the op-
timal window length W dictates the resolution for which
accurate low-resolution motion estimates can be obtained.

4. Design of sensing matrix
In order to bootstrap CS-MUVI, a low-resolution esti-

mate of the scene is required. We next now that carefully
designing the CS sensing matrix Φ enables us to compute
high-quality low-resolution scene estimates at low com-
plexity, which improves the performance of video recovery.

4.1. Dual-scale sensing matrices

The choice of the sensing matrix Φ and the upsampling
operator U are critical to arrive at a high-quality estimate
of the low-resolution image bL. Indeed, if the compound
matrix ΦU is ill-conditioned, then application of (ΦU)†

amplifies all three sources of errors in (6), resulting in a
poor estimate. For a large class of conventional CS ma-
trices Φ, such as i.i.d. (sub-)Gaussian matrices, as well as
sub-sampled Fourier or Hadamard matrices, right multiply-
ing them with an upsampling operator U typically results in
an ill-conditioned matrix. Hence, using well-established CS
matrices for obtaining a low-resolution preview turns out to
be a poor choice. Figures 3(a) and 3(b) show recovery re-
sults for naı̈ve recovery using (P1) and LS, respectively, us-
ing a subsampled noiselet CS matrix. One can immediately
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(b) random+LS                      (c) DSS+LS 

Figure 3. Comparison between (a) `1-norm recovery, (b) LS re-
covery using a subsampled noiselet matrix, and (c) LS recovery
using a dual-scale sensing (DSS) matrix of the scene in Fig. 1 for
various relative speeds (of the cross) and window lengths W .

see that both recovery methods fail spectacularly for large
values of W or for a small amount of motion.

In order to achieve good CS recovery performance and
have minimum noise enhancement when computing low-
resolution estimates b̂L according to (6), we propose a
novel class of sensing matrices, referred to as dual-scale
sensing (DSS) matrices. In particular, we wish to use ma-
trices that i) satisfy the RIP and ii) remain well-conditioned
when right-multiplied by a given up-sampling operator U.
The second condition requires mutual orthogonality among
the columns of ΦU to minimize the noise enhancement in
(6). Random matrices are known to satisfy the RIP with
overwhelming probability.However, they typically fail to
meet the second constraint, because they have decaying sin-
gular values. The power of DSS matrices is demonstrated in
Fig. 3(c), even for small window lengths W or fast motion.

(a) Lena + cross 

(b) card + monster 

(c) cars 

Figure 4. Preview frames for three different scenes. All previews
consist of 64 × 64 pixels. Preview frames are obtained simply
using an inverse Hadamard transform, which opens up a variety of
new (real-time) applications for video CS.

4.2. Preview mode

If we additionally impose the constraint that a down-
sampled DSS matrix ΦU has a fast inverse transform,
then it will significantly speed up the recovery of the low-
resolution scene. Such a “fast” DSS matrix has the key ca-
pability of generating a high-quality preview of the scene
(see Fig. 4) with very low computational complexity; this is
beneficial for video CS as it allows us to easily extract an
estimate of the scene motion. The motion estimate can then
be used to recover the video at its full resolution (see Sec-
tion Sec. 5). In addition to this, the use of fast DSS matrices
can be beneficial in various other ways, including (but not
limited to):

Real-time preview: Conventional SMC architectures do
not enable the observation of the scene until CS recovery
is performed. Due to the high computational complexity of
most existing CS recovery algorithms, there is typically a
large latency between the acquisition of a scene and its ob-
servation. Fast DSS matrices offer an instantaneous visual-
ization of the scene, i.e., they can provide us with a real-time
digital viewfinder. This capability substantially simplifies
the setup of an SMC in practice.

Adaptive sensing: The immediate knowledge of the
scene—even at a low resolution—can potentially be used to
design adaptive sensing strategies. For example, one may
seek to extract the changes that occur in a scene from one
frame to the next or track moving objects, while avoiding
the latency caused by `1-norm recovery algorithms.



4.3. Sensing matrix design

There are many ways to construct fast DSS matrices. In
this section, we detail one design that is particularly suited
for SMC architectures.

In SMC architectures, we are constrained in the choice
of the sensing matrix Φ. Practically, the DMD limits us
to matrices having entries of constant modulus (e.g., ±1).
Since we are interested in a fast DSS matrix, we propose
the matrix Φ to satisfy H = ΦU, where H is a W ×W
Hadamard matrix1 and U is a predefined up-sampling op-
erator. For SMC architectures, Hadamard matrices have the
following advantages: i) They have orthogonal columns,
ii) they exhibit optimal SNR properties over matrices re-
stricted to {−1,+1} entries [15, 16], and iii) applying the
(inverse) Hadamard transform requires very low computa-
tional complexity (i.e., as a fast Fourier transform).

We now show the construction of a suitable fast DSS
matrix Φ (see Fig. 5(a)). A simple way is to start with a
W ×W Hadamard matrix H and to write the CS matrix as

Φ = HD + F, (7)

where D is a down-sampling matrix satisfying DU = I,
and F ∈ RW×N is an auxiliary matrix that obeys the fol-
lowing constraints: i) The entries of Φ are ±1,2 ii) the ma-
trix Φ has good CS recovery properties (e.g., satisfies the
RIP), and iii) F should be chosen such that FU = 0. Note
that an easy way to ensure that Φ be ±1 is to interpret F as
sign flips of the Hadamard matrix H. Note that one could
chose F to be an all-zeros matrix; this choice, however, re-
sults in a sensing matrix Φ having poor CS recovery proper-
ties. In particular, such a matrix would inhibit the recovery
of high spatial frequencies. Choosing random entries in F
such that FU = 0 (i.e., by using random patterns of high
spatial frequency) provides excellent performance.

To arrive at an efficient implementation of CS-MUVI, we
additionally want to avoid the storage of an entire W × N
matrix. To this end, we generate each row fi ∈ RN of F
as follows: Associate each row vector fi to an n × n im-
age of the scene, partition the scene into blocks of size
(n/nL) × (n/nL), and associate an (n/nL)2-dimensional
vector f̂i with each block. We can now use the same vec-
tor f̂i for each block and choose f̂i such that the full matrix
satisfies FU = 0. We also permute the columns of the
Hadamard matrix H to achieve better incoherence with the
sparsifying bases used in Sec. 5 (see Fig. 5(b) for the de-
tails).

1In the ensuing discussion, we assume that W is chosen such that a
Hadamard matrix of size W ×W exists.

2Practical implementation of ±1 matrices is done by an appropriate
shift and scaling to convert each element to {0, 1}.

(a) process of generating rows of DSS matrices 

(b) example rows of the DSS matrix 

row of the 
Hadamard matrix 

upsampling 
(nearest-neighbor) 

high-freq 
sparse pattern 

row of the 
DSS matrix 

Figure 5. Generating DSS patterns. (a) Outline of the process in
(7). (b) In practice, we permute the low-resolution Hadamard for
better incoherence with the sparsifying wavelet basis. Fast gener-
ation of the DSS matrix requires us to impose additional structure
on the high-frequency patterns. In particular, each sub-block of
the high-frequency pattern is forced to be the same, which enables
fast computation via convolutions.

5. Optical-flow-based video recovery

We next detail the second part of CS-MUVI. Fig. 6 illus-
trates the algorithm used to recover the full-resolution video
frames (see also the flowchart in Fig. 1).

5.1. Optical-flow estimation

Thanks to the preview mode, we can estimate the op-
tical flow between any two (low-resolution) frames b̂i

L

and b̂j
L. For CS-MUVI, we compute optical-flow estimates

at full spatial resolution between pairs of upsampled pre-
view frames; this approach turns out to result in more ac-
curate optical-flow estimates compared to an approach that
first estimates the optical flow at low resolution followed by
upsampling of the optical flow. Hence, we start by upsam-
pling the preview frames according to b̂i = Ub̂i

L, and then
extract the optical flow at full resolution. The optical flow
at full resolution can be written as

b̂i(x, y) = b̂j(x+ ux,y, y + vx,y),

where b̂i(x, y) denotes the pixel (x, y) in the n × n plane
of b̂i, and ux,y and vx,y correspond to the translation of the
pixel (x, y) between frame i and j (see [17, 18]).

In practice, the estimated optical flow may contain sub-
pixel translations, i.e., ux,y and vx,y are not necessarily in-
tegers. In this case, we approximate b̂j(x+ ux,y, y + vx,y)
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Figure 6. Outline of CS-MUVI recovery (see also Fig. 1(a)): Given a total number of T measurements, we group them into windows of size
∆W resulting in a total of F = T/∆W frames. For each frame, we first compute a preview (see Sec. 4.2) using a window of W ≥ ∆W
neighboring measurements. Then, we compute the optical flow between successive preview frames (the optical flow is color-coded as
in [17]). Finally, we use the preview frames together with the optical-flow estimates in (PV) to obtain F high-resolution video frames.

as a linear combination of its four closest neighboring pixels

b̂j(x+ ux,y, y + vx,y) ≈∑
k,`∈{0,1}

wk,`b̂
j(bx+ ux,yc+ k, by + vx,yc+ `),

where b·c denotes rounding towards −∞ and the weights
wk,` are chosen according to the location within the four
neighboring pixels.3 In order to obtain robustness against
occlusions, we enforce consistency between the forward
and backward optical flows; specifically, we discard opti-
cal flow constraints at pixels where the sum of the forward
and backward flow causes a displacement greater than one
pixel.

5.2. Choosing the recovery frame rate

Before we detail the individual steps of the CS-MUVI
video-recovery procedure, it is important to specify the rate
of the frames to be recovered. When sensing scenes with
SMC architectures, there is no obvious notion of frame rate.
Our sole criterion is that we want each “frame” to contain
only a small amount of motion. In other words, we wish
to find the largest window size ∆W ≤ W such that there
is virtually no motion at full resolution (n × n). In prac-
tice, an estimate of ∆W can be obtained by analyzing the
preview frames. Hence, given a total number of T com-
pressive measurements, we ultimately recover F = T/∆W
full-resolution frames (see Fig. 6). Note that a smaller value
of ∆W would decrease the amount of motion associated
with each recovered frame; this would, however, increase
the computational complexity (and memory requirements)

3More sophisticated interpolation schemes could be used but result in
higher computational complexity.

substantially as the number of full-resolution frames to be
recovered increases.

5.3. Recovery of full-resolution frames

We are now ready to detail the final steps of CS-MUVI.
Assume that ∆W is chosen such that there is little to no
motion associated with each preview frame. Next, asso-
ciate a preview frame with a high-resolution frame x̂k,
k ∈ {1, . . . , T} by grouping W = NL compressive mea-
surements in the immediate vicinity of the frame (since
∆W ≤ W ). Then, compute the optical-flow between suc-
cessive (up-scaled) preview frames.

We can now recover the individual high-resolution video
frames as follows. Each frame x̂t is assumed to have a
sparse representation in a 2-dimensional orthogonal wavelet
basis Ψ; hence, our objective is to minimize the overall `1-
norm

∑F
k=1 ‖ΨT x̂k‖1. We furthermore consider the fol-

lowing two constraints: i) Consistency with the acquired CS
measurements, i.e, yt =

〈
φt, x̂I(t)

〉
, where I(t) maps the

sample index t to the associated frame index k, and ii) esti-
mated optical-flow constraints between consecutive frames.
Together, we arrive at the following convex optimization
problem:

(PV)


min.

∑F
k=1 ‖ΨT x̂k‖1

s. t. ‖
〈
φt, x̂I(t)

〉
− yt‖2 ≤ ε1,∀t

‖x̂i(x, y)−x̂j(x+ ux, y + vy)‖2 ≤ ε2,∀i, j,

which can be solved using off-the-shelf algorithms tuned to
solve `1-recovery problems [19]. The parameters ε1 ≥ 0
and ε2 ≥ 0 can be used to “tweak” the recovery perfor-
mance.
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Figure 7. CS-MUVI recovery results of a video obtained from a high-speed camera. Shown are frames of (a) the ground truth and (b) the
recovered video (PSNR = 25.0 dB). The xt and yt slices shown in (c) and (d) correspond to the color-coded lines of the first frame in (a).
Preview frames for this video are shown in Fig. 4. (The xt and yt slices are rotated clockwise by 90 degrees.)
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(a) ground-truth frames 

(b) frames from the recovered video (d) yt slice 

(c) xt slice 

Figure 8. CS-MUVI recovery results of a video obtained from a high-speed camera. Shown are frames of (a) the ground truth and (b) the
recovered video (PSNR = 20.4 dB). The xt and yt slices shown in (c) and (d) correspond to the color-coded lines of the first frame in (a).
Preview frames for this video are shown in Fig. 4. (The xt and yt slices are rotated clockwise by 90 degrees.)

6. Experiments

We validate the performance and capabilities of the CS-
MUVI framework for several scenes. All simulation re-
sults were generated from video sequences having a spa-
tial resolution of n × n = 256 × 256 pixels. The preview
videos have a spatial resolution of 64× 64 pixels with (i.e.,
W = 4096). We assume an SPC architecture as described
in [3]. Noise was added to the compressive measurements
using an i.i.d. Gaussian noise model such that the result-
ing SNR was 60 dB. Optical-flow estimates were extracted
using [17] and (PV) is solved using SPGL1 [19]. The com-
putation time of CS-MUVI is dominated by solving (PV),

which requires 2–3 hours using an off-the-shelf quad-core
CPU. The low-resolution preview is, of course, extremely
fast.

Synthetic scene with sub-pixel motion: In Fig. 1 we
simulate a fast-moving object that traverses the entire field-
of-view of the camera within the considered number of sam-
ples T . The goal of this synthetic experiment is to emu-
late a scene that changes for every compressive measure-
ment. To this end, we simulated sub-pixel movement of
the foreground object, i.e., there is a small movement of the
cross for every compressive measurement. We acquired a
total of T = 2562 compressive measurements and gener-



(a) naïve l1-norm reconstruction (d) preview for DSS matrix 

(b) optical flow (e) optical flow 
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Figure 9. Comparison of the algorithm used for the P2C2 camera applied to SMC architectures with CS-MUVI recovery. Shown are
frames of (a) naı̈ve `1-norm reconstruction, (b) the resulting optical-flow estimates, and (c) the P2C2 recovered video. The frames in (d)
correspond to preview frames when using DSS matrices, (e) are the optical-flow estimates, and (f) is the scene recovered by CS-MUVI.

ated F = 31 preview frames (∆W = 2048) from which
we estimated the respective optical flows. Figure 1 shows
both the efficacy of the proposed DSS measurement matrix
for providing robust LS estimates for the preview video (see
also Fig. 4), as well as the quality of the recovered scene.

Video sequences from a high-speed camera: The results
shown in Figs. 7 and 8 correspond to scenes acquired by a
high-speed (HS) video camera operating at 250 frames per
second. Both videos show complex (and fast) movement
of large objects as well as severe occlusions. For both se-
quences, we emulate an SPC operating at 8192 compressive
measurements per second. For each video, we used 2048
frames of the HS camera to obtain a total of T = 32× 2048
compressive measurements. The final recovered video se-
quences consist of F = 61 frames (∆W = 1024). Both re-
covered videos demonstrate the effectiveness of CS-MUVI.

Comparison with the P2C2 algorithm: Figure 9 com-
pares CS-MUVI to the recovery algorithm for the P2C2
camera [5]. Note that the P2C2 camera algorithm was
developed for temporal multiplexing cameras and not for
SMC architectures. Nevertheless, we observe from Figs. 9
(a) and (d) that naı̈ve `1-norm recovery delivers signifi-
cantly worse initial estimates than the preview mode of CS-
MUVI. The advantage of CS-MUVI for SMC architectures
is also visible in the corresponding optical-flow estimates
(see Figs. 9 (b) and (e). The P2C2 recovery algorithm has

substantial artifacts, whereas CS-MUVI recovery is visually
pleasing.

7. Discussion
Summary: In this paper, we have proposed CS-MUVI,
a novel compressive-sensing (CS)-based multi-scale video
recovery framework for scenes acquired by spatial-
multiplexing cameras (SMCs). Our main contribution is the
design of a novel class of sensing matrices and an optical-
flow based video reconstruction algorithm. In particular, we
have proposed dual-scale sensing (DSS) matrices that i) ex-
hibit no noise enhancement when performing least-squares
estimation at low spatial resolution and ii) preserve infor-
mation about high spatial frequencies. We have developed
a DSS matrix having a fast transform, which enables us
to compute instantaneous preview images of the scene at
low cost. The preview computation supports a large num-
ber of novel applications for SMC-based devices, such as
providing a digital viewfinder, enabling human-camera in-
teraction, or triggering adaptive sensing strategies. Finally,
CS-MUVI is the first video CS algorithm for the SPC that
works well for scenes with fast and complex motion.

Reconstruction artifacts: There are some artifacts vis-
ible in Figs. 1(d), 7, and 8. The major portion stems from
inaccurate optical-flow estimates—a result of residual noise
in the preview images. It is worth noting, however, that we
are using an off-the-shelf optical-flow estimation algorithm;



such an approach ignores the continuity of motion across
multiple frames. We envision significant performance im-
provements if we use multi-frame optical-flow estimation.
A smaller portion of the recovery artifacts is caused by us-
ing dense measurement matrices, which spread local errors
(such as those from the inaccurate optical-flow estimates)
across the entire image. This problem is inherent to imaging
with SMCs that involve a high degree of spatial multiplex-
ing; imaging architectures that perform only local spatial
multiplexing (such as the P2C2 camera) do not suffer from
this problem.

Compression: The videos in Figs. 7 and 8 have 256 ×
256 × 61 pixels and were obtained from 2562 compres-
sive measurements; hence, a naı̈ve estimate would suggest
a compression of 61×. However, the blur in the recov-
ered videos suggest that the finest spatial frequencies are not
present. A formal study of the true compression ratio would
require the use of resolution charts and a characterization of
the finest spatial and temporal frequencies resolved; this is
an important direction for future work.

Limitations: Since CS-MUVI relies on optical-flow es-
timates obtained from low-resolution images, it can fail to
recover small objects with rapid motion. More specifically,
moving objects that are of sub-pixel size in the preview
mode are lost. Figure 7 shows an example of this limitation:
The cars are moved using fine strings, which are visible in
Fig. 7(a) but not in Fig. 7(b). Increasing the spatial reso-
lution of the preview images eliminates this problem at the
cost of more motion blur. To avoid these limitations alto-
gether, one must increase the sampling rate of the SMC.

Future work: A drawback of our approach is the need to
specify the resolution at which preview frames are recov-
ered; this requires prior knowledge of object speed. An im-
portant direction for future work is to relax this requirement
via the construction of multi-scale sensing matrices that go
beyond the DSS matrices proposed here. In addition, reduc-
ing the complexity of solving (PV) is of paramount impor-
tance for practical implementations of CS-MUVI.

Acknowledgments
Thanks to K. Kelly, L. Xu, and A. Veeraraghavan for

inspiring discussions. The work of C. Studer was sup-
ported by the Swiss National Science Foundation (SNSF)
under Grant PA00P2-134155. The work of A. C. Sankara-
narayanan and R. G. Baraniuk was supported by the
Grants NSF CCF-1117939, CCF-0431150, CCF-0728867,
CCF-0926127; DARPA N66001-11-1-4090, N66001-11-
C-4092; ONR N00014-08-1-1112, N00014-10-1-0989;
AFOSR FA9550-09-1-0432; ARO MURIs W911NF-07-1-
0185 and W911NF-09-1-0383.

References
[1] E. J. Candès, J. Romberg, and T. Tao, “Robust uncer-

tainty principles: Exact signal reconstruction from highly in-
complete frequency information,” IEEE Trans. Inf. Theory,
vol. 52, pp. 489–509, Feb. 2006.

[2] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. The-
ory, vol. 52, pp. 1289–1306, Apr. 2006.

[3] M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska,
T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imag-
ing via compressive sampling,” IEEE Signal Process. Mag.,
vol. 25, pp. 83–91, Mar. 2008.

[4] M. Gupta, A. Agrawal, A. Veeraraghavan, and
S. Narasimhan, “Flexible voxels for motion-aware videog-
raphy,” in Euro. Conf. Comp. Vision, (Crete, Greece), Sep.
2010.

[5] D. Reddy, A. Veeraraghavan, and R. Chellappa, “P2C2: Pro-
grammable pixel compressive camera for high speed imag-
ing,” in IEEE Conf. Comp. Vision and Pattern Recog, (Col-
orado Springs, CO, USA), June 2011.

[6] J. Y. Park and M. B. Wakin, “A multiscale framework
for compressive sensing of video,” in Pict. Coding Symp.,
(Chicago, IL, USA), May 2009.

[7] A. C. Sankaranarayanan, P. Turaga, R. Baraniuk, and
R. Chellappa, “Compressive acquisition of dynamic scenes,”
in Euro. Conf. Comp. Vision, (Crete, Greece), Sep. 2010.

[8] N. Vaswani, “Kalman filtered compressed sensing,” in IEEE
Conf. Image Process., (San Diego, CA, USA), Oct. 2008.

[9] M. B. Wakin, J. N. Laska, M. F. Duarte, D. Baron, S. Sar-
votham, D. Takhar, K. F. Kelly, and R. G. Baraniuk, “Com-
pressive imaging for video representation and coding,” in
Pict. Coding Symp., (Beijing, China), Apr. 2006.

[10] S. Mun and J. E. Fowler, “Residual reconstruction for block-
based compressed sensing of video,” in Data Comp. Conf.,
(Snowbird, UT, USA), Apr. 2011.

[11] A. Veeraraghavan, D. Reddy, and R. Raskar, “Coded strobing
photography: Compressive sensing of high speed periodic
events,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 33,
pp. 671–686, Apr. 2011.

[12] Y. Hitomi, J. Gu, M. Gupta, T. Mitsunaga, and S. K. Na-
yar, “Video from a single coded exposure photograph using a
learned over-complete dictionary,” in IEEE Intl. Conf. Comp.
Vision, (Barcelona, Spain), Nov. 2011.

[13] D. Mahajan, F. C. Huang, W. Matusik, R. Ramamoorthi, and
P. Belhumeur, “Moving gradients: A path-based method for
plausible image interpolation,” ACM Trans. Graph., vol. 28,
pp. 1–42, Aug. 2009.

[14] M. B. Wakin. Personal communication, 2010.
[15] M. Harwit and N. Sloane, Hadamard transform optics. New

York: Academic Press, 1979.
[16] Y. Y. Schechner, S. K. Nayar, and P. N. Belhumeur, “Mul-

tiplexing for optimal lighting,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 29, pp. 1339–1354, Aug. 2007.

[17] C. Liu, Beyond Pixels: Exploring New Representations and
Applications for Motion Analysis. PhD thesis, Mass. Inst.
Tech., 2009.

[18] B. Horn and B. Schunck, “Determining optical flow,” Artif.
Intel., vol. 17, pp. 185–203, Apr. 1981.

[19] E. van den Berg and M. P. Friedlander, “Probing the
Pareto frontier for basis pursuit solutions,” SIAM J. Scientific
Comp., vol. 31, pp. 890–912, Nov. 2008.


