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ABSTRACT

In this paper, we investigate dictionary learning (DL) from
sparsely corrupted or compressed signals. We consider three
cases: I) the training signals are corrupted, and the locations
of the corruptions are known, II) the locations of the sparse
corruptions are unknown, and III) DL from compressed mea-
surements, as it occurs in blind compressive sensing. We de-
velop two efficient DL algorithms that are capable of learning
dictionaries from sparsely corrupted or compressed measure-
ments. Empirical phase transitions and an in-painting exam-
ple demonstrate the capabilities of our algorithms.

Index Terms— Dictionary learning, sparse approxima-
tion, compressive sensing, signal restoration, in-painting.

1. INTRODUCTION

1.1. Problem statements

We consider learning a dictionary A ∈ CM×Na (whose
columns have unit Euclidean norm) from a sequence of cor-
rupted M -dimensional measurement vectors

zi = Axi + Bei, i = 1, . . . , T. (1)

Here, xi ∈ CNa are sparse vectors, i.e., only a few entries
(nx � Na) are non-zero. The dictionary B ∈ CM×Nb to-
gether with the sparse interference vectors ei ∈ CNb are used
to represent sparse corruptions on the measurements zi.

The restoration of xi from the sparsely corrupted mea-
surements zi in (1), for different cases of knowledge about
the support sets of xi and ei, was investigated previously
in [1]. This framework has been shown to feature prominently
in numerous applications, such as the restoration of signals
from impulse noise, narrowband interference, and saturation,
as well as in-painting, super-resolution, or signal separation
(see [1] and the references therein).

In addition to learning A from (1), we are also interested
in identifying the dictionary A from a series of linear and
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non-adaptive measurements

z̃i = CiAxi, i = 1, . . . , T (2)

with z̃i ∈ Cmi×1 and Ci ∈ Cmi×M representing the mea-
surement (or sensing) matrices. If mi < M , the input-output
relation (2) corresponds to learning the dictionary A from a
sequence of compressed measurements, as it occurs, for ex-
ample, in blind compressive sensing (CS) [2, 3].

1.2. Application examples

1) Image in-painting: In-painting [4] amounts to restoring
the signal vector yi = Axi from a subset of its entries; this
is captured by (1) by setting B = IM and associating the
locations of the nonzero entries of ei to the missing pixels in
the corrupted image zi. In-painting can then be achieved by
recovering xi from zi = Axi+ei followed by computing the
(full-resolution) signal yi = Axi. The dictionary A used for
in-painting is typically obtained through DL algorithms from
a set of uncorrupted (training) images [5].

In [3], the authors proposed to learn the dictionary A di-
rectly from the corrupted image. To this end, a novel DL algo-
rithm was developed in [3], which relies on a one-block sparse
signal model for the vectors xi, ∀i and assumes the locations
of the sparse corruptions are known. The framework (1) al-
lows us to generalize [3] to arbitrary (i.e., unstructured) sparse
signals. In addition, we will develop a novel algorithm that is
agnostic to the support sets of ei, ∀i.

2) Blind CS: CS aims to acquire a signal y using fewer
measurements than the Nyquist rate suggests [6]. Specifi-
cally, CS considers the acquisition of y through linear and
non-adaptive measurements z̃ = Cy, where C is a m ×M -
dimensional sensing matrix with m < M .

In [2], the standard CS framework was extended to blind
CS, i.e., the simultaneous identification of the basis A and
the sparse vectors xi from a series of compressed measure-
ments z̃i, ∀i as captured by (2). To establish the uniqueness
of blind CS, [2] considered certain constraints on A. More re-
cently, the blind-CS framework was extended to arbitrary A
and to varying sensing matrices Ci, but where the signals fol-
low a one-block-sparse model. To overcome these limitations,
we develop an algorithm that is able to learn arbitrary dictio-
naries from general (i.e., unstructured) sparse signals.

1.3. Contributions

In this paper, we address the question of whether dictionaries
can be learned from sparsely corrupted or compressed mea-
surements. To this end, we investigate DL algorithms for (1)



and (2), and study the following cases: I) The locations of
the sparse corruptions are unknown, II) the locations of the
sparse corruptions are known, and III) the case of blind CS.
We develop two efficient DL algorithms: The first is designed
specifically for Case I (Sec. 3); the second is able to handle
Cases II and III (Sec. 4). Finally, we show empirical phase
transitions and an in-painting example to demonstrate the ca-
pabilities of the new DL algorithms (Sec. 5).

2. DICTIONARY LEARNING
2.1. The DL problem

For the case ei = 0M×1 and Ci = IM ,∀i we can rewrite (1)
and (2) in the more compact form Z = AX, with Z =
[ z1 · · · zT ] and X = [ x1 · · · xT ]. Recovery of the dictio-
nary A = [ a1 · · · aNa

] (along with X) can be achieved by
means of the following DL problem [5]:

(DL)

 minimize ‖Z−AX‖2F
subject to ‖xi‖0 ≤ nx, i = 1, . . . , T

‖a`‖2 = 1, ` = 1, . . . , Na.

Here, ‖xi‖0 designates the number of non-zeros in xi and
‖·‖F the Frobenius norm. Solving the DL problem requires
combinatorial complexity, in general, and, hence, a vari-
ety of computationally efficient approximations have been
proposed. Prominent candidate algorithms are maximum-
likelihood-based methods, maximum a posteriori (or Bayesian)
methods, the method of optimal directions, and the K-SVD
algorithm (see [5] and the references therein).

2.2. The K-SVD algorithm

Since the DL algorithms developed in the remainder of the
paper build upon on ideas of the K-SVD algorithm [5], we
briefly review its main steps. The K-SVD algorithm is ini-
tialized by a (random or well-defined) dictionary A and then
repeats the following two steps to reduce the objective of the
DL problem. The iterative procedure is terminated if either
the objective function is below a certain threshold or a maxi-
mum number of iterations has been reached.

1) Sparse representations: In this step, A is held constant
and sparse representations x̂i for each observation vector zi
are computed. One is typically interested in an approximate
solution x̂i to the primal sparse approximation problem [7]

(PSAP) minimize ‖zi −Axi‖22 s.t. ‖xi‖0 ≤ nx,

which can, for example, be achieved by means of orthogonal
matching pursuit (OMP) [7] (or other greedy pursuits).

2) Updating atoms and coefficients: In this step, the
atoms a`, ` = 1, . . . , Na along with the non-zero entries in
X, are updated sequentially. To this end, the `th atom a` is
isolated as

‖Z−AX‖2F =
∥∥S` − a`x

H
`

∥∥2

F
(3)

where the row-vector xH
` corresponds to the `th row of the

matrix X and S` = Z −
∑

j 6=` ajx
H
j . To minimize (3), the

algorithm now simultaneously updates the atom a` and the
non-zero entries in xH

` . This can be achieved by defining Ω`

as the index set of the non-zero entries in xH
j and by mini-

mizing
∥∥[S`]Ω`

− a`[x
H
` ]Ω`

∥∥2

F
, where [S`]Ω`

∈ CM×|Ω`| and
[xH

` ]Ω`
∈ C1×|Ω`| consist of those columns of S` and entries

of xH
` belonging to Ω`. Finding a` and [xH

` ]Ω`
that minimize

the Frobenius norm amounts to computing the best rank-1 ap-
proximation to [S`]Ω`

; this is commonly achieved by using
the singular value decomposition (SVD) of [S`]Ω`

[5].

3. DL FOR UNKNOWN INTERFERENCE SUPPORT

In this section, we develop a DL algorithm for Case I, i.e.,
we are interested in retrieving A and the sparse vectors xi,
∀i from (1), where no knowledge about the support of ei, ∀i,
apart from its cardinality ne, is available; the dictionary B is
assumed to be known.

3.1. The partial DL problem

Analogously to the DL problem in Sec. 2.1, we define the
partial DL problem (P-DL) for Case I as follows:

(P-DL)


minimize ‖Z−AX−BE‖2F
subject to ‖xi‖0 ≤ nx, i = 1, . . . , T

‖ei‖0 ≤ ne, i = 1, . . . , T
‖a`‖2 = 1, ` = 1, . . . , Na

with E = [ e1 · · · eT ]. Solving P-DL requires combinatorial
complexity, which necessitates efficient approximations. The
algorithm described next extends the K-SVD algorithm [5]
and delivers an approximation to the P-DL problem.

3.2. The partial K-SVD (PK-SVD) algorithm

The dictionary A is initialized as for the K-SVD algorithm.
The following two steps are repeated either until the objective
function of the P-DL problem is below a certain threshold or
a maximum number of iterations has been reached.

1) Sparse representations: Since we assume knowledge
of both nx and ne in the P-DL problem, we intend to find ∀i
the solutions x̂i and êi of the separation PSAP:

(S-PSAP)
{

minimize ‖zi −Axi −Bei‖22
subject to ‖xi‖0 ≤ nx and ‖ei‖0 ≤ ne.

To efficiently obtain an approximate solution for S-PSAP, we
propose to use a modified version of OMP. Specifically, we
limit the maximum number of atoms allowed to be chosen
from A and B by nx and ne, respectively, which ensures that
the so-obtained vectors satisfy ‖xi‖0 ≤ nx and ‖ei‖0 ≤ ne.

2) Updating atoms and coefficients: In this step, we only
update the atoms in A using the same procedure as for the
K-SVD; both the matrices B and E are held constant.

4. DL FOR KNOWN INTERFERENCE SUPPORT
OR COMPRESSED MEASUREMENTS

In this section, we develop a DL algorithm for both Cases II
and III. For Case II, the support sets Ei of each interference



vector ei is assumed to be known; this allows us to project zi
onto the orthogonal complement of the range space spanned
by BEi , which leads to the following input-output relation [1]:

z̃i = REizi = REiAxi, i = 1, . . . , T. (4)

Here, REi = IM −BEiB
†
Ei , and we used REiBeEi = 0M×1.

The DL algorithm presented next will be formulated for the
more general Case III, i.e., for the input-output relation (2),
as opposed to the special case in (4), for which Ci = REi .

4.1. The subspace DL problem

The DL problem for (2), referred to as subspace DL (S-DL) in
the remainder of the paper, aims to identify A (together with
the coefficients xi, ∀i) as

(S-DL)

 minimize
∑T

i=1‖z̃i −CiAxi‖22
subject to ‖xi‖0 ≤ nx, i = 1, . . . , T

‖a`‖2 = 1, ` = 1, . . . , Na.

It is important to realize that for Ci 6= Cj , for some i 6= j,
or for non-orthogonal Ci, one cannot rewrite the objective of
S-DL as in (3); this property inhibits the use of the K-SVD
algorithm. A suitable DL algorithm is described next.

4.2. The subspace-DL algorithm

The algorithm developed next is inspired by the K-SVD al-
gorithm and referred to as subspace DL-algorithm (SDLA)
in the following. The dictionary A is initialized as for the
K-SVD algorithm. Then, we iteratively reduce the objective
of the S-DL problem, by performing the following two steps
until either the objective is below a certain threshold or a max-
imum number of iterations has been reached.

1) Sparse representations: The first step computes sparse
representations x̂i for each measurement zi as the solution of
the following subspace PSAP:

(S-PSAP) minimize ‖z̃i −CiAxi‖22 s.t. ‖xi‖0 ≤ nx.

The solution of this problem can be approximated using OMP.
2) Updating atoms and coefficients: We start by rewriting

the objective of the S-DL problem as∑T
i=1

∥∥ẑ(`)
i −Cia`[xi]`

∥∥2

2
, (5)

where ẑ
(`)
i = z̃i −

∑
j 6=` Ciaj [xi]j . It is important to realize

that (5) cannot be optimized using rank-1 approximations. A
common approach is to employ alternating optimization, i.e.,
to alternate between atom and coefficient updates. Following
this approach, updating the `-th atom a` amounts to solving

â` = arg min
a`,‖a`‖2=1

∑T
i=1

∥∥ẑ(`)
i −Cia`[xi]`

∥∥2

2
(6)

for which iterative optimization techniques exist. To avoid
the computation of (6) and alternate optimization altogether,
let p` = a` and consider the relaxation of (6) to

p̂` = arg min
p`∈CM×Na

∑T
i=1

∥∥ẑ(`)
i −Cip`[xi]`‖22. (7)

Omitting the unit-norm constraint in (7) enables us to obtain
p̂` in closed form. To this end, we set the partial derivative
∂/(∂pH

` ) of the objective in (7) to zero, leading to∑T
i=1

(
|[xi]`|2 CH

i Cip` − [xi]
∗
`C

H
i ẑ

(`)
i

)
= 0M×1,

which leads to the following closed-form solution:

p̂` =
(∑T

i=1|[xi]`|2 CH
i Ci

)†∑T
i=1[xi]

∗
`C

H
i ẑ

(`)
i .

The pseudo-inverse M† is defined through the SVD of M =
UΣVH as M† = VΣ−1UH with the diagonal matrix Σ−1

defined as [Σ−1]k,k = [Σ]−1
k,k if [Σ]k,k > 0 and [Σ−1]k,k = 0

otherwise; this ensures that p̂` can be computed in any case.
Even though the vectors p̂` do not necessarily have unit

`2-norm, we can absorb this constraint into [xi]`, ∀i, as

â` = p̂`/‖p̂`‖2 and [x̂i]` =[xi]`‖p̂`‖2 , i = 1, . . . , T,

which does not affect the objective in (7) and ensures that
‖â`‖2 = 1, ∀`. We emphasize that this atom and coefficient
update procedure results in significantly smaller complexity
compared to an alternate-optimization-based approach.

5. NUMERICAL RESULTS
5.1. Empirical phase transitions

We next illustrate the impact of support-set knowledge on the
DL algorithms detailed above and provide a comparison to the
K-SVD algorithm [5], for which no corruptions are assumed.

1) Simulation procedure: For each pair (xi, ei) of (nx,
ne)-sparse vectors, 10 Monte-Carlo trials are performed. The
support sets are generated uniformly at random and the non-
zero entries are i.i.d. zero-mean Gaussian and T = 2000. The
dictionary A to be retrieved corresponds to a 32 × 48 over-
complete DCT dictionary; the interference is assumed to be
sparse in the identity, i.e., B = I32. Figure 1 show the av-
erage (over all Na atoms) success rate; success is declared if∣∣aH

` ã`

∣∣ ≥ 0.95 with ã` denoting the recovered atom.
2) Discussion: Figure 1 shows that the K-SVD is able to

retrieve A for up to nx = 9. For the SDLA, we see that
corrupted measurements degrade the probability of success
roughly linear in ne. For a given number ne, the difference of
SDLA Fig. 1(b) to the PK-SVD algorithm Fig. 1(c) is that
knowing the interference support allows for approximately
twice the number of corruptions in the measurements. We
emphasize that this factor-of-two penalty can be observed in
the analytical recovery guarantees of sparsely corrupted sig-
nals (see [1] for the details).

5.2. Image in-painting

We now show an in-painting example, where we learn the
dictionary A directly from the corrupted image. We fur-
thermore provide a comparison to the blind-DL algorithm
(BDLA) in [3] specifically designed for one-block sparse
signals. Our goal here is not to benchmark our performance
vs. well-established in-painting methods (e.g., [4]), but rather



(a) K-SVD algorithm (b) Subspace DL algorithm (SDLA) (c) Partial K-SVD (PK-SVD) algorithm

Fig. 1. Empirical phase transitions of K-SVD, the SDLA, and PK-SVD (white corresponds to 100% success of recovery).

(a) Original (b) Corrupted (3.01 dB RSNR) (c) SDLA (18.8 dB RSNR) (d) BDLA [3] (14.0 dB RSNR)

Fig. 2. In-painting results using SDLA and BDLA [3] for an image with 50% missing entries.

to demonstrate that in-painting can be performed with dictio-
naries learned from the corrupted image itself using SDLA.

1) Corruption and in-painting procedure: We corrupt
50% of the entries of a 512 × 512 image by setting the cor-
rupted entries to zero (the pixel intensities are within [−1, 1]).
DL is performed as follows: We learn a 64×128 dictionary A
by the SDLA and the BDLA [3] from 20 000 randomly se-
lected 8 × 8 patches. 20 (outer) iterations are performed
and we recover signals having 8 non-zero entries. Finally,
in-painting is performed by a simple weighted averaging of
yi = Axi over all training patches. We use the reconstruction
signal-to-noise-ratio (RSNR) as performance measure.

2) Discussion: Figure 2 shows the results of the in-
painting procedure. The image recovered by the SDLA has
an RSNR of 18.8 dB and only required 27 min. on a 2.3 GHz
mobile quad-core CPU. For the BDLA [3], we obtain 14.0 dB
RSNR while requiring 658 min. We conclude the following:
The SDLA i) achieves better RSNR than BDLA [3] as it is
not restricted to a one-block-sparse signal model, ii) exhibits
significantly lower computational complexity, and iii) has a
simple structure, whereas BDLA [3] is a combination of sev-
eral (computationally and structurally complex) techniques.

6. CONCLUSION

We have developed two DL algorithms for signals that are
corrupted by sparse interference or obtained through com-
pressed measurements. Our DL algorithms are applicable to
a variety of signal-restoration applications [1] and to blind
CS [2, 3]. The presented numerical experiments have shown

that DL from corrupted or compressed measurements is fea-
sible with computationally efficient algorithms.
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