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ABSTRACT

In this paper, we investigate dictionary learning (DL) from
sparsely corrupted or compressed signals. We consider three
cases: I) the training signals are corrupted, and the locations
of the corruptions are known, II) the locations of the sparse
corruptions are unknown, and III) DL from compressed mea-
surements, as it occurs in blind compressive sensing. We de-
velop two efficient DL algorithms that are capable of learning
dictionaries from sparsely corrupted or compressed measure-
ments. Empirical phase transitions and an in-painting exam-
ple demonstrate the capabilities of our algorithms.

Index Terms— Dictionary learning, sparse approxima-
tion, compressive sensing, signal restoration, in-painting.

1. INTRODUCTION

1.1. Problem statements

We consider learning a dictionary A € CM>*Ne (whose
columns have unit Euclidean norm) from a sequence of cor-
rupted M -dimensional measurement vectors

zi:Axi—i-Bei, ’L:L,T (1)
Here, x; € CNe are sparse vectors, i.e., only a few entries
(ny < N,) are non-zero. The dictionary B € CM*Nv to-
gether with the sparse interference vectors e; € C™* are used
to represent sparse corruptions on the measurements z;.

The restoration of x; from the sparsely corrupted mea-
surements z; in (1), for different cases of knowledge about
the support sets of x; and e;, was investigated previously
in [1]. This framework has been shown to feature prominently
in numerous applications, such as the restoration of signals
from impulse noise, narrowband interference, and saturation,
as well as in-painting, super-resolution, or signal separation
(see [1] and the references therein).

In addition to learning A from (1), we are also interested
in identifying the dictionary A from a series of linear and
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non-adaptive measurements

iZ:CZAX“ Z:L,T (2)
with z; € C™*! and C; € C™:*M representing the mea-
surement (or sensing) matrices. If m; < M, the input-output
relation (2) corresponds to learning the dictionary A from a
sequence of compressed measurements, as it occurs, for ex-
ample, in blind compressive sensing (CS) [2, 3].

1.2. Application examples

1) Image in-painting: In-painting [4] amounts to restoring
the signal vector y; = Ax; from a subset of its entries; this
is captured by (1) by setting B = I,; and associating the
locations of the nonzero entries of e; to the missing pixels in
the corrupted image z;. In-painting can then be achieved by
recovering x; from z; = Ax; +e; followed by computing the
(full-resolution) signal y; = Ax;. The dictionary A used for
in-painting is typically obtained through DL algorithms from
a set of uncorrupted (training) images [5].

In [3], the authors proposed to learn the dictionary A di-
rectly from the corrupted image. To this end, a novel DL algo-
rithm was developed in [3], which relies on a one-block sparse
signal model for the vectors x;, V¢ and assumes the locations
of the sparse corruptions are known. The framework (1) al-
lows us to generalize [3] to arbitrary (i.e., unstructured) sparse
signals. In addition, we will develop a novel algorithm that is
agnostic to the support sets of e;, Vi.

2) Blind CS: CS aims to acquire a signal y using fewer
measurements than the Nyquist rate suggests [6]. Specifi-
cally, CS considers the acquisition of y through linear and
non-adaptive measurements Z = Cy, where C is am x M-
dimensional sensing matrix with m < M.

In [2], the standard CS framework was extended to blind
CS, i.e., the simultaneous identification of the basis A and
the sparse vectors x; from a series of compressed measure-
ments z;, Vi as captured by (2). To establish the uniqueness
of blind CS, [2] considered certain constraints on A. More re-
cently, the blind-CS framework was extended to arbitrary A
and to varying sensing matrices C;, but where the signals fol-
low a one-block-sparse model. To overcome these limitations,
we develop an algorithm that is able to learn arbitrary dictio-
naries from general (i.e., unstructured) sparse signals.

1.3. Contributions

In this paper, we address the question of whether dictionaries
can be learned from sparsely corrupted or compressed mea-
surements. To this end, we investigate DL algorithms for (1)



and (2), and study the following cases: I) The locations of
the sparse corruptions are unknown, II) the locations of the
sparse corruptions are known, and III) the case of blind CS.
We develop two efficient DL algorithms: The first is designed
specifically for Case I (Sec. 3); the second is able to handle
Cases II and IIT (Sec. 4). Finally, we show empirical phase
transitions and an in-painting example to demonstrate the ca-
pabilities of the new DL algorithms (Sec. 5).

2. DICTIONARY LEARNING
2.1. The DL problem

For the case e; = 07«1 and C; = I, Vi we can rewrite (1)
and (2) in the more compact form Z = AX, with Z =
[21 -+ zr]|and X = [x1 - -+ x7]. Recovery of the dictio-
nary A = [a; --- ay, | (along with X) can be achieved by
means of the following DL problem [5]:

minimize  ||Z — AX||5,
subjectto  [|X;|lp < ng,i=1,...,T
laell, =1, £=1,..., Ng.

(DL)

Here, [|x;||, designates the number of non-zeros in x; and

||-|| » the Frobenius norm. Solving the DL problem requires

combinatorial complexity, in general, and, hence, a vari-

ety of computationally efficient approximations have been

proposed. Prominent candidate algorithms are maximum-

likelihood-based methods, maximum a posteriori (or Bayesian)
methods, the method of optimal directions, and the K-SVD

algorithm (see [5] and the references therein).

2.2. The K-SVD algorithm

Since the DL algorithms developed in the remainder of the
paper build upon on ideas of the K-SVD algorithm [5], we
briefly review its main steps. The K-SVD algorithm is ini-
tialized by a (random or well-defined) dictionary A and then
repeats the following two steps to reduce the objective of the
DL problem. The iterative procedure is terminated if either
the objective function is below a certain threshold or a maxi-
mum number of iterations has been reached.

1) Sparse representations: In this step, A is held constant
and sparse representations X; for each observation vector z;
are computed. One is typically interested in an approximate
solution X; to the primal sparse approximation problem [7]

(PSAP) minimize ||z; — Ax;[[5 st [[xi]l, < na,

which can, for example, be achieved by means of orthogonal
matching pursuit (OMP) [7] (or other greedy pursuits).

2) Updating atoms and coefficients: In this step, the
atoms ag, £ = 1,..., N, along with the non-zero entries in
X, are updated sequentially. To this end, the ¢th atom ay is
isolated as

12— AX[} = [[S¢ — axf [} ®

where the row-vector X4 corresponds to the (th row of the
matrix X and Sy = Z — Zj# ajin. To minimize (3), the

algorithm now simultaneously updates the atom a, and the
non-zero entries in X . This can be achieved by defining €,
as the index set of the non-zero entries in if and by mini-
mizing ||[S¢lo, — a¢[X}']a, Hi where [S¢]q, € CM*I%land
[x]q, € C'*I€ consist of those columns of S, and entries
of 1! belonging to Q. Finding a, and [%}!]q,, that minimize
the Frobenius norm amounts to computing the best rank-1 ap-
proximation to [S¢]q,; this is commonly achieved by using
the singular value decomposition (SVD) of [S/]q, [5].

3. DL FOR UNKNOWN INTERFERENCE SUPPORT

In this section, we develop a DL algorithm for Case 1, i.e.,
we are interested in retrieving A and the sparse vectors x;,
Vi from (1), where no knowledge about the support of e;, Vi,
apart from its cardinality n., is available; the dictionary B is
assumed to be known.

3.1. The partial DL problem

Analogously to the DL problem in Sec. 2.1, we define the
partial DL problem (P-DL) for Case I as follows:

minimize |Z—- AX — BEHQF

bjectto ||xilly < nuyi=1,...,T

P-DL su J 11l = "Pay 9 )

(P-DL) ledlg <nevi=1,....T
laell, =1,£=1,...,N,

with E = [e; - - er]. Solving P-DL requires combinatorial

complexity, which necessitates efficient approximations. The
algorithm described next extends the K-SVD algorithm [5]
and delivers an approximation to the P-DL problem.

3.2. The partial K-SVD (PK-SVD) algorithm

The dictionary A is initialized as for the K-SVD algorithm.
The following two steps are repeated either until the objective
function of the P-DL problem is below a certain threshold or
a maximum number of iterations has been reached.

1) Sparse representations: Since we assume knowledge
of both n, and n. in the P-DL problem, we intend to find Vi
the solutions x; and €; of the separation PSAP:

minimize ||z; — Ax; — Bei”g

(S-PSAP) { subject to  [|x;[|, < ny and |le; |, < ne.

To efficiently obtain an approximate solution for S-PSAP, we
propose to use a modified version of OMP. Specifically, we
limit the maximum number of atoms allowed to be chosen
from A and B by n, and n., respectively, which ensures that
the so-obtained vectors satisfy ||x;||, < ny and ||e;||, < ne.
2) Updating atoms and coefficients: In this step, we only
update the atoms in A using the same procedure as for the
K-SVD; both the matrices B and E are held constant.

4. DL FOR KNOWN INTERFERENCE SUPPORT
OR COMPRESSED MEASUREMENTS

In this section, we develop a DL algorithm for both Cases II
and III. For Case II, the support sets &; of each interference



vector e; is assumed to be known; this allows us to project z;
onto the orthogonal complement of the range space spanned
by Bg,, which leads to the following input-output relation [1]:

Zi :REIZI :RS,LAX,“ 7/: 1,...7T. (4)

Here, Rg, = I — B&'BL ,and we used Rg, Beg, = 0p/x1.
The DL algorithm presented next will be formulated for the
more general Case III, i.e., for the input-output relation (2),
as opposed to the special case in (4), for which C; = Rg,.

4.1. The subspace DL problem

The DL problem for (2), referred to as subspace DL (S-DL) in
the remainder of the paper, aims to identify A (together with
the coefficients x;, Vi) as

minimize Z?:]”il - CiAxiH;
subjectto  [|x4|y < npyi=1,...,T
llaglla =1, =1,..., N,.

(S-DL)

It is important to realize that for C; # C;, for some ¢ # j,
or for non-orthogonal C;, one cannot rewrite the objective of
S-DL as in (3); this property inhibits the use of the K-SVD
algorithm. A suitable DL algorithm is described next.

4.2. The subspace-DL algorithm

The algorithm developed next is inspired by the K-SVD al-
gorithm and referred to as subspace DL-algorithm (SDLA)
in the following. The dictionary A is initialized as for the
K-SVD algorithm. Then, we iteratively reduce the objective
of the S-DL problem, by performing the following two steps
until either the objective is below a certain threshold or a max-
imum number of iterations has been reached.

1) Sparse representations: The first step computes sparse
representations X; for each measurement z; as the solution of
the following subspace PSAP:

(S-PSAP) minimize ||z; — CZ'AXZ'Hg st || %6y < ng.

The solution of this problem can be approximated using OMP.
2) Updating atoms and coefficients: We start by rewriting
the objective of the S-DL problem as

Y
)

z; — Cay [XiM
where 2; ' = 2z; — >, Cia;[x];. It is important to realize
that (5) cannot be optimized using rank-1 approximations. A
common approach is to employ alternating optimization, i.e.,
to alternate between atom and coefficient updates. Following
this approach, updating the /-th atom a, amounts to solving

2
. 5)

2 — Calxlel;  ©

« . T
a;= argmin ) .
ag,llaell,=1

for which iterative optimization techniques exist. To avoid
the computation of (6) and alternate optimization altogether,
let py = a, and consider the relaxation of (6) to

70 — Cipxildl2. D)

R . T
pe= argmin ) .,
peECMxNa

Onmitting the unit-norm constraint in (7) enables us to obtain
p¢ in closed form. To this end, we set the partial derivative
0/(0pH) of the objective in (7) to zero, leading to

S (Ibilel® € Cipe = [xiJ;CHEY ) = Oarar,

which leads to the following closed-form solution:
. f .
b = (XLl € C) S bilicl 2.

The pseudo-inverse M is defined through the SVD of M =
UXVH as Mt = VE~1UH with the diagonal matrix X!
defined as [S~ !y, =[], 1, if [S]rx >0and [S7 1, = 0
otherwise; this ensures that p, can be computed in any case.
Even though the vectors p, do not necessarily have unit
£5-norm, we can absorb this constraint into [X;]¢, Vi, as

ay=p¢/||pell, and [X;]e=[xi]¢|Delly, i =1,...,T,

which does not affect the objective in (7) and ensures that
lae]|, = 1, VL. We emphasize that this atom and coefficient
update procedure results in significantly smaller complexity
compared to an alternate-optimization-based approach.

5. NUMERICAL RESULTS

5.1. Empirical phase transitions

We next illustrate the impact of support-set knowledge on the
DL algorithms detailed above and provide a comparison to the
K-SVD algorithm [5], for which no corruptions are assumed.

1) Simulation procedure: For each pair (x;, €;) of (ng,
ne)-sparse vectors, 10 Monte-Carlo trials are performed. The
support sets are generated uniformly at random and the non-
zero entries are i.i.d. zero-mean Gaussian and 7" = 2000. The
dictionary A to be retrieved corresponds to a 32 x 48 over-
complete DCT dictionary; the interference is assumed to be
sparse in the identity, i.e., B = I35. Figure 1 show the av-
erage (over all IV, atoms) success rate; success is declared if
‘af 5g| > 0.95 with a, denoting the recovered atom.

2) Discussion: Figure 1 shows that the K-SVD is able to
retrieve A for up to n, = 9. For the SDLA, we see that
corrupted measurements degrade the probability of success
roughly linear in n.. For a given number n., the difference of
SDLA Fig. 1(b) to the PK-SVD algorithm Fig. 1(c) is that
knowing the interference support allows for approximately
twice the number of corruptions in the measurements. We
emphasize that this factor-of-two penalty can be observed in
the analytical recovery guarantees of sparsely corrupted sig-
nals (see [1] for the details).

5.2. Image in-painting

We now show an in-painting example, where we learn the
dictionary A directly from the corrupted image. We fur-
thermore provide a comparison to the blind-DL algorithm
(BDLA) in [3] specifically designed for one-block sparse
signals. Our goal here is not to benchmark our performance
vs. well-established in-painting methods (e.g., [4]), but rather
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Fig. 1. Empirical phase transitions of K-SVD, the SDLA, and PK-SVD (white corresponds to 100% success of recovery).
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(a) Original (b) Corrupted (3.01 dB RSNR)

(c) SDLA (18.8dB RSNR)

(d) BDLA [3] (14.0dB RSNR)

Fig. 2. In-painting results using SDLA and BDLA [3] for an image with 50% missing entries.

to demonstrate that in-painting can be performed with dictio-
naries learned from the corrupted image itself using SDLA.

1) Corruption and in-painting procedure: We corrupt
50% of the entries of a 512 x 512 image by setting the cor-
rupted entries to zero (the pixel intensities are within [—1, 1]).
DL is performed as follows: We learn a 64 x 128 dictionary A
by the SDLA and the BDLA [3] from 20000 randomly se-
lected 8 x 8 patches. 20 (outer) iterations are performed
and we recover signals having 8 non-zero entries. Finally,
in-painting is performed by a simple weighted averaging of
y: = Ax; over all training patches. We use the reconstruction
signal-to-noise-ratio (RSNR) as performance measure.

2) Discussion: Figure 2 shows the results of the in-
painting procedure. The image recovered by the SDLA has
an RSNR of 18.8 dB and only required 27 min. on a 2.3 GHz
mobile quad-core CPU. For the BDLA [3], we obtain 14.0dB
RSNR while requiring 658 min. We conclude the following:
The SDLA 1) achieves better RSNR than BDLA [3] as it is
not restricted to a one-block-sparse signal model, ii) exhibits
significantly lower computational complexity, and iii) has a
simple structure, whereas BDLA [3] is a combination of sev-
eral (computationally and structurally complex) techniques.

6. CONCLUSION

We have developed two DL algorithms for signals that are
corrupted by sparse interference or obtained through com-
pressed measurements. Our DL algorithms are applicable to
a variety of signal-restoration applications [1] and to blind
CS [2,3]. The presented numerical experiments have shown

that DL from corrupted or compressed measurements is fea-
sible with computationally efficient algorithms.
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