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Abstract—Maximum (or `∞) norm minimization subject to an
underdetermined system of linear equations finds use in a large
number of practical applications, such as vector quantization,
peak-to-average power ratio (PAPR) (or “crest factor”) reduction
in wireless communication systems, approximate neighbor search,
robotics, and control. In this paper, we analyze the fundamental
properties of signal representations with minimum `∞-norm. In
particular, we develop bounds on the maximum magnitude of
such representations using the uncertainty principle (UP) intro-
duced by Lyubarskii and Vershynin, 2010, and we characterize
the limits of `∞-norm-based PAPR reduction. Our results show
that matrices satisfying the UP, such as randomly subsampled
Fourier or i.i.d. Gaussian matrices, enable the efficient compu-
tation of so-called democratic representations, which have both
provably small `∞-norm and low PAPR.

I. INTRODUCTION

In this paper, we analyze properties of the solution ẋ ∈ CN

to the following (convex) `∞-norm minimization problem:

(P ε
∞) minimize

x̃∈CN
‖x̃‖∞ subject to ‖y −Dx̃‖2 ≤ ε.

Here, the vector y ∈ CM denotes the signal to be repre-
sented, D ∈ CM×N corresponds to an overcomplete matrix
(dictionary) with M < N , and the real-valued parameter ε ≥ 0
controls the accuracy of the signal representation ẋ.

A. Application Examples

The `∞-norm minimization problem (P ε
∞) features promi-

nently in a variety of practical applications, including:
• Vector quantization: As shown in [1], certain matrices D

enable one to compute representations ẋ whose magni-
tudes are roughly of the order 1/

√
N . For such signal

representations, each entry is of approximately the same
importance. Hence, element-wise quantization affects all
entries of ẋ equally, which renders them less susceptible
to quantization noise compared to a direct quantization
of the signal vector y. Moreover, the corruption of a few
entries of ẋ results in only a small error and, hence,
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computing y = Dẋ after, e.g., unreliable transmission,
provides a robust estimate of the signal vector y [1].

• Peak-to-average power ratio (PAPR) reduction: Wireless
communication systems employing orthogonal frequency
division multiplexing (OFDM) require linear and power-
inefficient radio-frequency (RF) components (e.g., power
amplifiers), as OFDM signals typically exhibit a large
dynamic range [2]. By allocating certain unused OFDM
tones, known as tone reservation [3], or by exploiting
the excess of degrees-of-freedom in large-scale multi-
antenna wireless systems [4], one can transmit signal
representations with small `∞-norm to reduce the PAPR
(often also called “crest factor”). Transmitting such rep-
resentations in OFDM-based communication systems can
substantially alleviate the need for expensive and power-
inefficient RF components.

• Approximate nearest neighbor search: Signal represen-
tations obtained from (P ε

∞) also find use in identify-
ing approximate nearest neighbors in high-dimensional
spaces [5]. The underlying idea is to compute a represen-
tation ẋ for the query vector y, which resembles to an
antipodal signal with most coefficients corresponding to
{−α,+α}, for some α > 0. This property of the magni-
tudes of ẋ can then be used to efficiently find approximate
nearest vectors in a N -dimensional Hamming space.

• Robotics and control: Kinematically redundant robots or
manipulators admit an infinite number of inverse solu-
tions. Certain applications require a solution that mini-
mizes the maximum force, acceleration, torque, or joint
velocity, for example, rather than minimizing the energy
or power. In such situations, one is typically interested
in solving problems of the form (P ε

∞) rather than solv-
ing minimum-energy problems; corresponding applica-
tions have been described in, e.g., [6]–[8].

Note that the problem (P ε
∞) with ε = 0 can also be used

to recover antipodal solutions, i.e., vectors with coefficients
belonging to {−α,+α}, from an underdetermined system of
linear equations y = Dx provided that certain conditions on
the matrix D are met (see, e.g., [9], [10]). In this paper, how-
ever, we focus on the computation of signal representations
having minimal `∞-norm and small dynamic range, rather than
on the recovery a given vector x from y = Dx.

B. Relevant Prior Art

Initial results for minimizing the maximum amplitude of
continuos, real-valued signals subject to linear constraints



reach back to the 1960s where Neustadt [11] studied the
so-called minimum-effort control problem. In 1971, Cadzow
proposed a practicable algorithm for the minimum-effort prob-
lem [6], where he proposed to solve the following (convex)
`∞-norm minimization problem:

(P∞) minimize
x̃∈RN

‖x̃‖∞ subject to y = Dx̃,

which coincides with (P ε
∞) for ε = 0. Specifically, it was

shown in [6] that for most matrices D, a dominant portion of
the magnitudes of the solution ẋ to (P∞) correspond to ‖ẋ‖∞,
whereas only a small fraction of the entries have smaller
magnitude; this result has been rediscovered recently [12].

Another line of results that characterize signal representa-
tions ẋ with small (but not necessarily minimal) `∞-norm
subject to y = Dẋ have been developed in 2010 by Lyubarskii
and Vershynin [1]. In particular, [1] proves the existence
of matrices D with arbitrarily small redundancy parameter
λ = N/M > 1 for which every signal vector y has a
representation ẋ satisfying

‖ẋ‖∞ ≤
K√
N
‖y‖2 . (1)

Here, K is a (preferably small) constant that only depends
on the redundancy parameter λ. The existence of such signal
representations and matrices can either be shown via results
obtained by Kashin [13], Garnaev and Gluskin [14], or by
analyzing the outcome of the iterative algorithm proposed
in [1], which computes signal representations with small `∞-
norm. The latter (constructive) approach relies on an uncer-
tainty principle (UP) for the matrix D, which establishes a
fundamental connection between sensing matrices commonly
used in the field of compressive sensing (CS) and sparse signal
recovery [15]–[18] and the constant K in (1).

C. Contributions

In this paper, we analyze the fundamental properties of sig-
nal representations ẋ obtained from the `∞-norm minimization
problem (P ε

∞). In particular, we analyze its Lagrange dual
problem to derive an improved and more general version of
the bound on the `∞-norm of ẋ proposed in [1]. We fur-
thermore analyze the fundamental PAPR properties of signal
representations obtained through (P ε

∞), which is of particular
interest in OFDM-based wireless communication systems.
As a byproduct of our analysis, we present the Lagrange
duals to a variety of optimization problems, such as `1-norm
minimization frequently used for sparse signal recovery. In
addition, we summarize classes of matrices that enable the
efficient computation of so-called democratic representations,
which have both small `∞-norm and low PAPR. Finally, we
show numerical results to support our analysis.

D. Notation

Lowercase boldface letters stand for column vectors and up-
percase boldface letters designate matrices. For a matrix A, we
denote its conjugate transpose and spectral norm by AH and
‖A‖2,2 =

√
λmax(AHA), respectively, where λmax(AHA)

denotes the maximum eigenvalue of AHA. The kth entry of a
vector a is designated by [a]k, and <{a} and ={a} represent
its real and imaginary part. We define the `p-norm of the
vector a ∈ CN as

‖a‖p =


(∑N

k=1|[a]k|p
)1/p

if 1 ≤ p <∞

maxk∈{1,...,N}|[a]k| if p =∞.

Sets are designated by uppercase Greek letters; the cardinality
of the set Ω is |Ω|. For x ∈ R, the operation dxe rounds x to
the nearest integer towards infinity.

E. Organization of the Paper

The remainder of the paper is organized as follows. Sec-
tion II introduces the necessary definitions and our main results
are detailed in Section III. Section IV summarizes suitable
classes of matrices that satisfy the UP and simulation results
are provided in Section V. We conclude in Section VI.

II. SIGNAL REPRESENTATIONS WITH MINIMUM `∞-NORM

We next introduce the necessary prerequisites and formulate
the Lagrange dual problem to (P ε

∞) which is key in the
analysis shown in Section III.

A. Frames

In the remainder of the paper, we often require the over-
complete matrix D to satisfy the following definition [19].

Definition 1 (Frame): A matrix D ∈ CM×N with M ≤ N
is called a frame if

A‖w‖22 ≤
∥∥DHw

∥∥2

2
≤ B‖w‖22

holds for any vector w ∈ CM with A ∈ R, B ∈ R, and
0 < A ≤ B <∞. The tightest possible constants A and B
are called lower and upper frame bound, respectively.

In what follows, we refer to D as a tight frame if A = B;
furthermore, if A = B = 1, then D is called a Parseval frame.

B. Democratic Representations

For certain frames, all signal representations ẋ are guaran-
teed to exhibit certain properties. The class of representations
studied in the remainder of the paper is defined next.

Definition 2 (Democratic Representation): Let D∈CM×N

be a given frame. If there exists for each signal vector y ∈ CM

a representation ẋ ∈ CN satisfying i) ‖y −Dẋ‖2 ≤ ε for a
given ε ≥ 0, and ii) the following inequalities:

Kl√
N

(
‖y‖2 − ε

)
≤ ‖ẋ‖∞ ≤

Ku√
N

(
‖y‖2 − ε

)
, (2)

with 0 < Kl ≤ Ku < ∞, then the frame D enables the
computation of democratic representations ẋ. The constants
Kl, Ku ∈ R+ are called the lower and upper Kashin bounds,
which depend only on D but not on the signal vector y or the
democratic representation ẋ.

Definition 2 states that for certain frames, one can always
(i.e., for each signal vector y) find representations ẋ for which
the maximum absolute entry is bounded from below and above
by the Kashin bounds, the `2-norm of the signal vector y, and



the accuracy parameter ε. Note that in the case ε = 0, the
upper Kashin bound Ku in (2) corresponds K in (1). Hence,
the Definition 2 enables us to analyze a generalized setting of
the special case studied in [1].

From a practical viewpoint, frames that enable the com-
putation of democratic representations, have, for example,
bounded maximum force in kinematically redundant systems.
In addition, as it will be shown in Section III-C, the upper
Kashin bound Ku can also be used to characterize the PAPR of
democratic representations; this property finds use in OFDM-
based wireless communication systems, for example.

The key goal in applications relying on `∞-norm mini-
mization is to find algorithms and frames D for which one
can efficiently compute democratic representations. As it was
shown in [1] and is summarized in Section IV, there exist
(properly normalized) frames for which Kl and Ku are close,
and where the upper Kashin bound Ku only depends on the
redundancy parameter λ = N/M .

C. Computing Representations with Minimum `∞-Norm

In order to compute representations ẋ having small (but
necessarily minimal) `∞-norm subject to y = Dẋ, one can use
the iterative algorithm proposed in [1]; this method efficiently
computes such representations for real-valued and approximate
Parseval frames, i.e., frames D ∈ RM×N satisfying the UP
in [1] with bounds satisfying A = 1 − ξ and B = 1 + ξ for
some small ξ > 0. The algorithm in [1], however, i) does
not solve (P ε

∞) and is, in general, not guaranteed to find rep-
resentations having the smallest `∞-norm, ii) was introduced
for real-valued systems only, and iii) is only guaranteed to
converge for approximate Parseval frames. Moreover, if one
is interested in representations ẋ for which ‖y −Dẋ‖2 > 0
rather than in perfect representations satisfying y = Dẋ, the
algorithm in [1] must be modified accordingly.

In order to overcome the limitations of the iterative al-
gorithm in [1], we propose to directly solve the convex
optimization problem (P ε

∞) instead. Solving this problem
enables one to efficiently compute democratic representations
with minimum `∞-norm for general (i.e., not necessarily tight
or Parseval) frames satisfying the UP in [1].1 Concretely,
to efficiently compute the solution to (P ε

∞), general-purpose
solvers for convex optimization problems can be used (see,
e.g., [20], [21]). For large-dimensional problems, an efficient
first-order method, referred to as fast iterative truncation
algorithm (FITRA), was proposed in [4].

D. Lagrange Dual Problem

In order to analyze the properties of signal representations
with minimum `∞-norm obtained from (P ε

∞), i.e., to derive
bounds on the lower and upper Kashin bounds Kl and Ku, as
well as to study the associated PAPR properties, our results
presented in Section III make use of the following lemma.

1Note in the case ε ≥ ‖y‖2, the problem (P ε
∞) returns the all-zeros vector

and, hence, practically relevant choices of ε are in the range 0 ≤ ε < ‖y‖2.

Lemma 1 (Lagrange Dual Problem): Let the `p-norm pri-
mal problem (with 1 ≤ p ≤ ∞) be

(P ε
p ) minimize

x̃∈CN
‖x̃‖p subject to ‖y −Dx̃‖2 ≤ ε.

Then, the corresponding Lagrange dual problem is given by

(D ε
p )

{
maximize

z̃∈CM
<
(
yH z̃

)
− ε‖z̃‖2

subject to ‖DH z̃‖d ≤ 1

with 1/p+1/d = 1; for p = 1 we have q =∞ and vice versa.
The norm ‖ · ‖d corresponds to the dual norm of ‖ · ‖p.

Proof: The proof can be found in Appendix A.
Lemma 1 covers not only the Lagrange dual to (P ε

∞),
but also other frequently studied optimization problems. In
particular, the Lagrangian dual to (P ε

1 ), which is frequently
used for CS and sparse signal recovery [15]–[18], is contained
in Lemma 1 as a special case. We finally note that the dual
problem to (P ε

∞) with ε = 0 and for real-valued y and D was
used previously in [6] to characterize the solution ẋ to (P∞).

III. MAIN RESULTS

We next analyze the fundamental properties of signal rep-
resentations ẋ obtained from (P ε

∞). In particular, we start by
developing lower and upper Kashin bounds Kl and Ku, and
then, we study the associated PAPR behavior.

A. Lower Kashin Bound Kl

We start by the following result, which provides a lower
Kashin bound for general (i.e., not necessarily tight) frames.

Lemma 2 (Lower Kashin Bound): Let D ∈ CM×N be a
frame with upper frame bound B. Then, any vector y ∈ CM

admits a signal representation ẋ with lower Kashin bound

Kl = 1/
√
B. (3)

Proof: The proof can be found in Appendix B.
We emphasize that representations obtained from (P ε

∞) are
guaranteed to satisfy (3), as the proof for Lemma 2 exploits
properties of its solution ẋ. It is furthermore interesting to see
that the lower Kashin bound in (3) only depends on the upper
frame bound B (and on the condition that frames satisfy A >
0); this is in stark contrast to the upper Kashin bound derived
in Section III-B. We finally note that in the case ε = 0 and
for Parseval frames, solving (P ε

∞) ensures that any vector y
admits a signal representation satisfying

‖y‖2√
N
≤ ‖ẋ‖∞ .

This special case of (3) was shown previously in [1, Obs. 2.1b].

B. Upper Kashin Bound Ku

1) Uncertainty principle: In order to analytically character-
ize the upper Kashin bound Ku, we build our results on the
uncertainty principle (UP) for frames proposed in [1, Def. 3.4].

Definition 3 (Uncertainty Principle for Frames): A frame
D ∈ CM×N satisfies the UP with parameters η, δ if

‖Dx‖2 ≤ η‖x‖2



holds for η ∈ R+, δ ∈ (0, 1), and for all (sparse) vectors
x ∈ CN satisfying |supp(x)| ≤ δN .

Verifying the UP for a given frame D requires, in general, a
combinatorial search over all δN -sparse vectors [22]. Hence,
in [1] it was shown that certain randomly constructed frames
satisfy the UP with high probability. Note that such frames
are strongly related to sensing matrices with small restricted
isometry constants, which play a central role in CS (see,
e.g., [15]–[17]). In Section IV, we briefly summarize suitable
classes of frames which satisfy the UP with high probability.

2) Upper Kashin bound: The following theorem estab-
lishes an upper Kashin bound Ku, which provides sufficient
conditions for which a frame D enables the computation of
democratic representations ẋ for any signal vector y.

Theorem 3 (Upper Kashin Bound): Let D ∈ CM×N be a
frame with frame bounds A, B that satisfies the uncertainty
principle (UP) with parameters η, δ. Then, any signal vector y
admits a democratic representation ẋ with upper Kashin bound

Ku =
η

(A− η
√
B)
√
δ
, (4)

provided A > η
√
B. Moreover, democratic representations

satisfying both (3) and (4) can be computed using (P ε
∞).

Proof: The proof can be found in Appendix C.
This result shows that if a frame D satisfies i) A > η

√
B

and ii) δ > 0, then one can compute democratic representa-
tions for any signal vector y by solving (P ε

∞). In addition, the
condition A > η

√
B indicates that the use of Parseval frames

is beneficial in practice, i.e., leads to representations with
smaller `∞-norm—an observation that was made empirically
by Fuchs [23]. Corresponding simulation results are shown
in Section V. In order to achieve representations having
small `∞-norm, one is therefore interested in finding frames
satisfying the UP with small η and large δ. Both properties
can be achieved simultaneously for certain classes of frames
(see Section IV for examples).

We emphasize that Theorem 3 improves upon the results
in [1], i.e., Ku in (4) is strictly smaller than the Kashin constant
obtained in [1, Thms. 3.5 and 3.9]. To see this, consider the
case of D being a Parseval frame and ε = 0, which enables us
to establish the following relation between the upper Kashin
bound Ku in (4) and the bound K from [1, Thm. 3.5]:

Ku =
η

(1− η)
√
δ
<

1

(1− η)
√
δ

= K,

The strict inequality follows from the fact that η is required
to be smaller than one, which is a consequence of A > η

√
B.

Hence, by solving (P ε
∞) rather than using the iterative algo-

rithm proposed in [1], we arrive at an upper bound on the `∞-
norm of the signal representation ẋ that is more tight (i.e., by
a factor of η). For frames satisfying A = 1− ξ and B = 1 + ξ
with 0 ≤ ξ < 1 (so-called approximate Parseval frames),
the upper Kashin bound in (4) continues to be superior than
that in [1, Thm. 3.9]. Moreover, Theorem 3 also encompasses
approximate representations, i.e., for which ‖y −Dẋ‖2 > 0,
and the case of complex-valued vectors and frames, which is

in contrast to the results developed in [1].

C. Peak-to-Average Power Ratio (PAPR)
The transmission of signals over frequency-selective chan-

nels typically requires sophisticated equalization schemes at
the receive side. Orthogonal frequency-division multiplexing
(OFDM) [2] is a well-established way of reducing the compu-
tational complexity of equalization (compared to conventional
schemes). Unfortuntaely, OFDM signals are known to suffer
from a high PAPR, which requires linear RF components (e.g.,
mixers, power amplifiers, etc.) to avoid signal distortions and
out-of-band radiation. Since linear RF components are, in gen-
eral, more costly and less power efficient compared than their
non-linear counterparts, practical implementations of OFDM
usually employ sophisticated PAPR-reduction schemes [24].

1) Limits of `∞-norm-based PAPR reduction: Prominent
approaches for reducing the PAPR exploit either certain re-
served OFDM tones [3] or the massive amount of degrees-
of-freedom in large-scale multi-antenna wireless systems [4].
For both methods, one can compute signal representations
with small PAPR via (P ε

∞). To this end, we next analyze the
fundamental PAPR reduction capabilities of (Pε

∞).
Definition 4 (Peak-to-Average Power Ratio): Let x ∈ CN

be any nonzero vector. Then, the peak-to-average power ra-
tio (PAPR) or “crest factor” of x is defined as

PAPR(x) =
‖x‖2∞
‖x‖22/N

. (5)

Note that for arbitrary vectors x ∈ CN the PAPR satisfies
the following (trivial) inequalities:

1 ≤ PAPR(x) ≤ N, (6)

which are a consequence of standard norm bounds. The
lower bound is achieved for signals having constant modulus,
whereas the upper bound is achieved by vectors which have a
single nonzero entry. It is, however, important to realize that
the PAPR of signal representations obtained through (Pε

∞) is
typically much smaller than the upper bound in (6) suggests.
Concretely, the following result bounds the PAPR of signal
representations obtained through (Pε

∞) with the aid of the
upper Kashin bound in (4).

Theorem 4 (PAPR Bound): Let D ∈ CM×N be a frame
with the upper Kashin bound Ku as defined in (4). Then,
the PAPR of any signal representation ẋ for ‖y‖2 6= 0 and
ε < ‖y‖2 obtained by solving (P ε

∞) satisfies

PAPR(ẋ) ≤ K2
uB. (7)

Proof: The proof can be found in Appendix D.
This theorem has immediate implications for practical sys-

tems solving (P ε
∞). In particular, it shows that frames which

satisfy the UP and have a small upper Kashin bound Ku are
very effective in terms of reducing the PAPR. A practically
relevant example of frames satisfying these properties are
randomly subsampled discrete Fourier transform (DFT) matri-
ces, which naturally appear in OFDM-based tone-reservation
schemes for PAPR reduction (see, e.g., [3] for the details).



We note that a similar (but, in some cases, less tight) PAPR
bound as the one in (7) was shown previously in [3] for
randomly subsampled DFT matrices. The bound presented in
Theorem 4, however, is valid for general frames D and also
encompasses the case of approximate signal representations
satisfying ‖y −Dẋ‖2 < ε with ε ≥ 0.

IV. FRAMES FOR DEMOCRATIC REPRESENTATIONS

In [1] it was shown that random orthogonal matrices, ran-
dom partial DFT matrices, and random sub-Gaussian matrices
satisfy the UP in Definition 3 with high probability. Hence,
matrices drawn from such classes are particularly suitable for
the computation of democratic representations and for PAPR
reduction. As an example, we briefly restate the result obtained
in [1] for matrices whose entries are i.i.d. sub-Gaussian.

Definition 5 ([1, Def. 4.5]: Sub-Gaussian RV): A random
variable X is called sub-Gaussian with parameter β if

Pr{|X| > u} ≤ exp
(
1− u2/β2

)
for all u > 0.

For matrices having i.i.d. sub-Gaussian entries, the follow-
ing result has been established in [1].

Theorem 5 ([1, Thm. 4.6]: UP for sub-Gaussian Matrices):
Let A be a M ×N matrix whose entries are i.i.d. zero-mean
sub-Gaussian RVs with parameter β. Assume that λ = N/M
for some λ ≥ 2. Then, with probability at least 1− λ−M , the
random matrix D = 1√

N
A satisfies the UP with parameters

η = C0β

√
log(λ)

λ
and δ =

C1

λ
,

where C0, C1 > 0 are absolute constants.
Theorem 5 implies that for random sub-Gaussian matrices

the UP with parameters η and δ is satisfied with high proba-
bility. Moreover, the UP parameters η, δ only depend on the
redundancy λ = N/M of D. Since D = 1√

N
A is, in general,

not a tight frame, it was furthermore shown in [1, Cor. 4.9]
that D is an approximate Parseval frame with high probability,
i.e., D has frame bounds A = 1− ξ and B = 1 + ξ for some
small ξ > 0. Hence, random sub-Gaussian matrices can be
used to efficiently compute democratic representations with
Kashin bounds Kl and Ku in (3) and (4) by solving (P ε

∞).
We emphasize that results similar to that of Theorem 5 have
been established for random orthogonal and random partial
DFT matrices. These classes of frames have the key advantage
(over sub-Gaussian matrices) of being Parseval frames, which
typically yield better Kashin bounds (see (4) and the next
section for corresponding simulation results).

V. NUMERICAL RESULTS

To support our analytical results, we next simulate a lower
bound on Ku in (4) and evaluate the PAPR behavior of
solutions to (P ε

∞) for i.i.d. Gaussian and randomly subsampled
discrete cosine transform (DCT) bases.

A. Behavior of the Upper Kashin Bound
In Fig. 1, we show empirical phase diagrams that char-

acterize the upper Kashin bound Ku for i.i.d. Gaussian and
randomly subsampled DCT matrices.

Fig. 1. Empirical phase diagram depending on the undersampling λ = M/N
for the upper Kashin bound Ku using (P ε

∞) with ε = 0 and for i.i.d. Gaussian
and randomly subsampled DCT matrices (the lines highlight the individual
50% phase-transition boundaries).

Fig. 2. Empirical phase diagram depending on the undersampling λ = M/N
for the PAPR using (P ε

∞) with ε = 0 and for i.i.d. Gaussian and randomly
subsampled DCT matrices (the lines overlap for both cases and highlight the
sharp 50% phase-transition boundary).

1) Simulation procedure: We fix N = 512 and vary M
from 1 to 512. For each pair N , M , we perform 100 Monte-
Carlo trials, and for each trial, we generate a frame D, either
with i.i.d. Gaussian entries or by randomly selecting rows from
a DCT basis, and an i.i.d. Gaussian vector y, followed by
normalization to ‖y‖2 = 1. We use CVX [21] to compute
signal representations ẋ from (P ε

∞) with ε = 0 for each
instance of D and y. Finally, we compute a lower bound K̃u
on the upper Kashin constant for each trial as

K̃u =

√
N‖ẋ‖∞
‖y‖2 − ε

≤ Ku. (8)



We finally generate phase diagrams, which show the empirical
probability for which K̃u is larger or smaller than a given value
(i.e., the so-called empirical upper Kashin bound).

2) Discussion: The empirical phase diagram shown in
Fig. 1 shows a sharp transition between the values of K̃u
that have been realized (for a given undersampling ratio
λ = M/N ) and the values that were not achieved. Moreover,
we see that the subsampled DCT has a smaller (empirical)
upper Kashin bound than that of i.i.d. Gaussian matrices. This
behavior was predicted by (4) and can mainly be addressed to
the fact that subsampled DCT matrices are Parseval frames,
whereas i.i.d. Gaussian matrices are, in general, not tight
frames (see also Section IV). Hence, the use of Parseval
frames for computing democratic representations turns out to
be beneficial in practical applications.

B. Behavior of the PAPR
Fig. 2 illustrates the PAPR behavior of signal representations

obtained by solving (P ε
∞).

1) Simulation procedure: We carry out a similar simulation
procedure as detailed in Section V-A1, where we compute the
PAPR(ẋ) for each instance of D and y instead of K̃u in (8).

2) Discussion: The phase diagram shown in Fig. 2 ex-
hibits a sharp transition between the (empirical) PAPR values
achieved in this simulation and the values that were not
achieved. It is interesting to see that both 50% phase transitions
overlap, which is in stark contrast to the transition behavior of
the upper Kashin bound. We, hence, conclude that the choice
of the frame has only a small impact for PAPR-reduction (as
long as it satisfies the UP).

VI. CONCLUSIONS

In this paper, we have analyzed the fundamental properties
of signal representations with minimum `∞ (or maximum)
norm. Specifically, we have developed bounds on such repre-
sentations using the uncertainty principle (UP) proposed in [1],
and we characterized their peak-to-average power (PAPR)
properties, which is of particular interest for OFDM-based
wireless communication systems. We furthermore demon-
strated the existence of matrices for which so-called demo-
cratic representations with small `∞-norm and small PAPR
exist. To support our analysis, we showed numerical simula-
tion results, which highlight our finding that the use of Parseval
frames leads to democratic representations with smaller `∞-
norm compared to general frames.

There are many avenues for follow-on research. An analyti-
cal characterization of sharp phase transitions for (P ε

∞), e.g., as
in [9], is interesting open research problem. The development
of corresponding computationally efficient algorithms is part
of on-going work.

APPENDIX A
PROOF OF LEMMA 1

Let ‖w‖p and ‖v‖d denote the primal and dual norm of the
vectors w and x satisfying

‖w‖p = max
v

{
<
(
vHw

)
: ‖v‖p ≤ 1

}

with 1/p + 1/q = 1. Then, for primal and dual norms, we
have the following result [20]:

min
x

{
‖x‖p−<

(
zHDx

)}
=

{
0, ‖DHz‖d ≤ 1

−∞, otherwise.
(9)

We are now ready to derive the Lagrange dual problem (D ε
p )

to the primal problem (P ε
p ). To this end, we introduce an

auxiliary vector r ∈ CM to rewrite (P ε
p ) as

min
x
{‖x‖p : ‖Dx− y‖2 ≤ ε}

= min
x,r
{‖x‖p : Dx + r = y, ‖r‖2 ≤ ε} .

By introducing the Lagrange dual variable z ∈ CM , we obtain

min
x,r
{‖x‖p : Dx + r = y, ‖r‖2 ≤ ε}

= min
x,r

max
z

{
‖x‖p−<

(
zH(Dx+r−y)

)
: ‖r‖2 ≤ ε

}
= max

z
min
x,r

{
‖x‖p−<

(
zH(Dx+r− y)

)
: ‖r‖2 ≤ ε

}
. (10)

For a given z, the inner minimization problem of (10) is
separable in the unknown vectors x and r. The optimal
auxiliary vector r is given by

r =

{
εz/‖z‖2 , z 6= 0M×1

0M×1, otherwise,

and in either case, we have <
(
zHr

)
= ε‖z‖2. Together

with (9), we find that (10) is equal to

max
z

{
<
(
yHz

)
− ε‖z‖2 : ‖DHz‖d ≤ 1

}
,

which corresponds to the Lagrange dual problem (D ε
p ). Note

that since in the derivation of (D ε
p ) all intermediate steps hold

with equality, there is no duality gap.

APPENDIX B
PROOF OF LEMMA 2

The proof follows from a lower bound on the value of the
dual problem (D ε

∞). Specifically, we have

‖ẋ‖∞ = max
z

{
<
(
yHz

)
− ε‖z‖2 :

∥∥DHz
∥∥

1
≤ 1
}
, (11)

which we bound from below by replacing the optimal solu-
tion ż by the estimate

ẑ =
y

‖DHy‖1
, (12)

which satisfies the constraint
∥∥DH ẑ

∥∥
1
≤ 1. Hence, insert-

ing (12) in the right-hand side (RHS) of (11) leads to the
following lower bound:

‖ẋ‖∞ ≥
‖y‖22 − ε‖y‖2
‖DHy‖1

. (13)

To further bound the RHS of (13) from below, we use standard
norm bounds and the upper frame bound B of D to compute
an upper bound to

∥∥DHy
∥∥

1
as follows:∥∥DHy

∥∥
1
≤
√
N
∥∥DHy

∥∥
2
≤
√
NB‖y‖2 . (14)



Combining (14) with (13) finally yields

‖ẋ‖∞ ≥
‖y‖2 − ε√

NB
. (15)

Note that in (12) we assumed that
∥∥DHy

∥∥
1
> 0. Since D

is a frame with lower frame bound A > 0, we have∥∥DHy
∥∥

1
≥
∥∥DHy

∥∥
2
≥
√
A‖y‖2 > 0,

which is satisfied whenever ‖y‖2 > 0. In the case ‖y‖2 = 0
the bound (15) continues to hold, which concludes the proof.

APPENDIX C
PROOF OF THEOREM 3

The proof proceeds in two stages. First, we separate the
objective function of the Lagrange dual problem (D ε

∞) into
two independent terms and then, we derive an upper bound
on the `2-norm of the solution ż to (D ε

∞).

A. Separating the Result of the Lagrange Dual Problem

From the Lagrange dual problem (D ε
∞), we have

‖ẋ‖∞ = <
(
yH ż

)
− ε‖ż‖2 ≤

∣∣yH ż
∣∣− ε‖ż‖2

≤ ‖ż‖2(‖y‖2 − ε) , (16)

as an immediate consequence of the Cauchy-Schwarz inequal-
ity.2 In the remaining steps of the proof, we derive an upper
bound on ‖ż‖2 in (16). To this end, we expand

‖ż‖2 =
∥∥(DDH)−1DDH ż

∥∥
2

(17)

where DDH is invertible since D is a frame with lower frame
bound satisfying A > 0. Application of the Rayleigh-Ritz
theorem [25, Thm. 4.2.2] to the right-hand side (RHS) of (17)
leads to the following upper bound:

‖ż‖2 ≤
∥∥(DDH)−1

∥∥
2,2

∥∥DDH ż
∥∥

2
≤ 1

A

∥∥DDH ż
∥∥

2
, (18)

where the second inequality is a result of∥∥(DDH)−1
∥∥

2,2
=

1

‖(DDH)−1‖2,2
≤ 1

A

and the assumption that D is a frame with lower frame
bound A > 0. We next derive an upper bound on

∥∥DDHz
∥∥

2
using (18).

Note that one can straightforwardly arrive at an upper bound
on ‖ẋ‖∞ as follows:∥∥DDH ż

∥∥
2
≤ ‖D‖2,2

∥∥DH ż
∥∥

1
≤ ‖D‖2,2 (19)

using
∥∥DH ż

∥∥
2
≤
∥∥DH ż

∥∥
1

and the constraint
∥∥DH ż

∥∥
1
≤ 1

of the dual problem (D ε
∞). Hence, by combining (16), (18),

and (19) one would arrive at the following result:

‖ẋ‖∞ ≤
‖D‖2,2
A

(
‖y‖2 − ε

)
. (20)

2Note that the bound (16) appears to be tight for ε = 0, i.e., we were able to
construct signal and frame instances for which we have ‖ẋ‖∞ = ‖y‖2 ‖ż‖2
up to machine precision. A systematic characterization of such signal and
frame instances is, however, left for future work.

This bound is, however, overly pessimistic and does not exploit
additional properties of the frame D. Note that for a Parseval
frame, the result (20) leads to the bound ‖ẋ‖∞ ≤ ‖y‖2 − ε.

B. Refined Upper Bound

In order to arrive at a refined bound on
∥∥DDH ż

∥∥
2
, we

define an N -dimensional vector v = DH ż and divide its
coefficients into S = d1/δe disjoint support sets, each3 of
cardinality δN such that

Ω1 ∪ · · · ∪ Ω` ∈ {1, . . . , N}.

Moreover, the magnitudes of the entries in v associated to
set Ω` are no smaller than the magnitudes associated with the
sets Ωk, k > `. In other words, Ω1 contains the indices asso-
ciated to the largest δN entries in v, Ω2 the δN coefficients
associated to the second largest entries, etc. This partitioning
scheme now allows us to rewrite

∥∥DDH ż
∥∥

2
as

∥∥DDH ż
∥∥

2
=

∥∥∥∥∥D
S∑

i=1

PΩiD
H ż

∥∥∥∥∥
2

,

where the matrix PΩi
realizes a projection onto the set Ωi.

Application of the triangle inequality, followed by applying
the UP with parameters η, δ leads to the following bounds:

∥∥DDH ż
∥∥

2
≤

S∑
i=1

∥∥DPΩi
DH ż

∥∥
2
≤

S∑
i=1

η
∥∥PΩi

DH ż
∥∥

2

= η
∥∥PΩ1D

H ż
∥∥

2
+

S∑
i=2

η
∥∥PΩiD

H ż
∥∥

2
. (21)

Since the sets Ωi order the entries of v = DH ż according to
their magnitudes, we can use a technique developed in [26],
which states that for i ∈ {2, . . . , S} we have

‖PΩi
v‖2 ≤

√
δN‖PΩi

v‖∞ ≤
1√
δN

∥∥PΩi−1
v
∥∥

1
.

This result in combination with the RHS of (21) leads to∥∥DDH ż
∥∥

2
≤ η

∥∥PΩ1D
H ż
∥∥

2
+

S∑
i=1

η√
δN

∥∥PΩiD
H ż
∥∥

1

= η
∥∥PΩ1D

H ż
∥∥

2
+

η√
δN

∥∥DH ż
∥∥

1

= η
∥∥PΩ1D

H ż
∥∥

2
+

η√
δN

, (22)

where the first equality follows from the fact that
∥∥DH ż

∥∥
1
≤ 1

for any solution ż to the dual problem (Dε
∞).

We can now bound the first RHS term in (22) as∥∥PΩ1
DH ż

∥∥
2
≤
∥∥DH ż

∥∥
2
≤
√
B‖ż‖2 (23)

using the facts that i) PΩ1
is a projector and ii) D is a

frame with (upper) frame bound B. By combining (18), (22),

3Note that the last support set Ω` can have a cardinality that is smaller
than δN ; such cases, however, leave the proof unaffected.



and (23) we arrive at

‖ż‖2 ≤
1

A

(
η
√
B‖ż‖2 +

η√
δN

)
,

which can be rewritten as

‖ż‖2 ≤
η

(A− η
√
B)
√
δN

(24)

provided that A > η
√
B holds. Combining (16) with (24)

finally yields

‖ẋ‖∞ ≤
η

(A− η
√
B)
√
δN

(
‖y‖2 − ε

)
, (25)

which concludes the proof. We finally note that (25) is able
to scale in 1/

√
N‖y‖2 for certain frames (see Section IV).

APPENDIX D
PROOF OF THEOREM 4

The proof follows from separately bounding the numerator
and denominator of the PAPR defined in (5). We first bound
N‖ẋ‖2∞ using (4) to arrive at

N‖ẋ‖2∞ ≤ K
2
u (‖y‖2 − ε)

2. (26)

The second part of the proof bounds ‖ẋ‖22 from below. To
this end, it is important to realize that

‖ẋ‖2 ≥ min
x
{‖x‖2 : ‖y −Dx‖2 ≤ ε} (27)

because ẋ satisfies ‖y −Dẋ‖2 ≤ ε and the RHS is the
minimizer for all vectors x ∈ CN satisfying ‖y −Dx‖2 ≤ ε.
We next compute a lower bound on the RHS of (27). From
Lemma 1 with p = 2 and q = 2, we have

min
x
{‖x‖2 : ‖y −Dx‖2 ≤ ε}

= max
z

{
<
(
yHz

)
− ε‖z‖2 :

∥∥DHz
∥∥

2
≤ 1
}
. (28)

Using a similar strategy as in Appendix B, we replace the
optimal solution ż of the dual problem in (28) by the estimate

ż =
y

‖DHy‖2
, (29)

which satisfies the constraint
∥∥DHy

∥∥
2
≤ 1. Hence, inserting

the estimate (29) into the RHS of (28) leads to the following
lower bound:

max
z

{
<
(
yHz

)
− ε‖z‖2 :

∥∥DHz
∥∥

2
≤ 1
}

≥
‖y‖22 − ε‖y‖2
‖DHy‖2

. (30)

The upper frame bound
∥∥DHy

∥∥
2
≤
√
B‖y‖2 enables us to

further bound the RHS of (30) from below as

‖y‖22 − ε‖y‖2
‖DHy‖2

≥
‖y‖2 − ε√

B
. (31)

By combining (27), (28), (30), and (31), we finally obtain

‖ẋ‖22 ≥
(
‖y‖2 − ε

)2
B

. (32)

Consequently, if ε < ‖y‖2, then we can bound the PAPR
of the democratic representation ẋ obtained from (P ε

∞) us-
ing (26) and (32) as PAPR(ẋ) ≤ K2

uB. Note that in (29) we
assumed that ẋ 6= 0, i.e., we require A > 0 and ‖y‖2 6= 0,
which concludes the proof.
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