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Abstract. Multiple-input multiple-output (MIMO) technology in com-
bination with orthogonal frequency-division multiplexing (OFDM) is the
key to meet the demands for data rate and link reliability of modern wide-
band wireless communication systems, such as IEEE 802.11n or 3GPP-
LTE. The full potential of such systems can, however, only be achieved by
high-performance data-detection algorithms, which typically exhibit pro-
hibitive computational complexity. Hard-output sphere decoding (SD)
and soft-output single tree-search (STS) SD are promising means for re-
alizing high-performance MIMO detection and have been demonstrated
to enable efficient implementations in practical systems. In this chapter,
we consider the design and optimization of register transfer-level imple-
mentations of hard-output SD and soft-output STS-SD with minimum
area-delay product, which are well-suited for wide-band MIMO systems.
We explain in detail the design, implementation, and optimization of
VLSI architectures and present corresponding implementation results for
130 nm CMOS technology. The reported implementations significantly
outperform the area-delay product of previously reported hard-output
SD and soft-output STS-SD implementations.

Key words: VLSI implementation, MIMO-OFDM communication sys-
tems, sphere decoding (SD), single tree-search (STS) SD algorithm.

1 Introduction

The evolution of data rate and quality-of-service in modern wide-band wireless
communication systems is fueled by novel physical-layer technologies providing
high spectral efficiency and excellent link reliability. Multiple-input multiple-
output (MIMO) technology [1, 2], which employs multiple antennas at both
ends of the wireless link, in combination with spatial multiplexing, orthogo-
nal frequency-division multiplexing (OFDM), and channel coding is believed to
be the key for reliable, high-speed, and bandwidth-efficient data transmission.
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Therefore, MIMO-OFDM technology is incorporated in many modern wide-band
wireless communication standards, such as IEEE 802.11n [3] or 3GPP-LTE [4].

In such systems, data detection, i.e., the separation of the multiplexed data
streams, is (besides channel decoding) typically among the main implementa-
tion challenges in terms of computational complexity and power consumption.
Therefore, corresponding efficient VLSI implementations are the key to enable
high-performance, low-power, and low-cost user equipment. The performance
of MIMO technology critically depends on the employed data-detection algo-
rithm and corresponding high-performance methods usually entail very high
complexity. In particular, a straightforward implementation of hard-output
maximum-likelihood (ML) detection and soft-output a-posteriori probability
(APP) detection—both providing excellent error-rate performance—requires to
exhaustively test all possible transmit symbols, which results in prohibitive com-
plexity, even for moderate data rates and in deep submicron technologies.

The sphere-decoding (SD) algorithm [5–11] is known to be a promising means
for efficient hard-output ML and soft-output APP detection. The key idea of SD
is to transform MIMO detection into a tree-search problem, which can then
be solved efficiently through a branch-and-bound procedure. The drawback of
this approach lies in the fact that the decoding effort—measured in terms of
the number of nodes to be examined during the tree search—depends on the
instantaneous channel and noise realization. In the worst-case, the number of
visited nodes, which typically corresponds to the number of clock cycles required
for detection in VLSI [11,12], is equivalent to that of an exhaustive search [13].
Since on-chip storage and higher-layer requirements limit the processing latency
that may be inferred to support the processing of received data, the worst-
case complexity of SD renders its application in real-world systems extremely
challenging. This challenge can be mastered by limiting the maximum decoding
effort by means of early termination of the decoding process [11, 14, 15]. This
approach, however, leads to a trade-off between the maximum decoding effort
and the performance of the MIMO detector. Therefore, a universally applicable
VLSI architecture for SD-based MIMO detection suitable for wide-band MIMO
wireless communication systems must provide a robust solution allowing for the
smooth adjustment of this trade-off while minimizing the required silicon area
for a given minimum performance requirement.

1.1 Contributions

In this chapter, we describe an SD-based detector architecture for wide-band
MIMO communication systems and detail corresponding design and implemen-
tation trade-offs of hard- and soft-output SD. To this end, we first review the
hard-output SD algorithm and the soft-output single tree-search (STS) SD al-
gorithm. Then, a VLSI architecture suitable for efficient data detection in wide-
band MIMO systems is presented and we argue that the optimization target
for the parallelly-operating SD cores corresponds to minimizing the area-delay
product, which differs fundamentally from minimizing the area or maximizing
the throughput, as it would be the case for narrow-band systems. To arrive at SD
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architectures that minimize the area-delay product, we start with the VLSI im-
plementations for hard-output SD [12] and soft-output STS-SD [11] and propose
a variety of optimizations, which improve (i.e., lower) the area-delay product of
the detectors. In particular, we propose a low-complexity approximation to the
Schnorr-Euchner (SE) enumeration scheme and employ pipeline interleaving,
which enables us to achieve the desired design goals. We finally present imple-
mentation results for 130 nm CMOS technology and perform a comparison to
previously reported implementations of SD.

1.2 Outline of the Chapter

The remainder of this chapter is organized as follows. In Section 2, the MIMO
system model is introduced and the employed hard-output and soft-output STS-
SD algorithms are reviewed. In Section 3, we develop a receiver architecture
suitable for wide-band MIMO systems and analyze the optimization goals for the
SD-core implementations. The VLSI architectures for hard-output SD and soft-
output STS-SD along with corresponding optimization techniques are detailed in
Section 4 and Section 5, respectively. VLSI-implementation results are presented
in Section 6 and we conclude in Section 7.

1.3 Notation

Matrices are set in boldface capital letters, column-vectors in boldface lowercase
letters. The superscripts T and H stand for transposition and conjugate trans-
position, respectively. The real and imaginary part of a complex-valued number
x are denoted by <(x) and =(x), respectively. The `2-norm (or Euclidean norm)
of a vector x is designated by ‖x‖, the `∞-norm of x is ‖x‖∞ = maxi |xi|, and
the `∞̃-norm is defined as ‖x‖∞̃ = max{‖<(x)‖∞, ‖=(x)‖∞}. The binary com-
plement of x ∈ {0, 1} is denoted by x. Probability and expectation are referred
to as Pr[·] and E[·], respectively.

2 MIMO System Model and Sphere Decoding

In this section, we introduce the wide-band MIMO system model and summarize
the hard-output and soft-output SD algorithms investigated in the remainder of
the chapter.

2.1 Wide-Band MIMO System Model

We consider a coded wide-band MIMO system employing spatial multiplexing
with MT transmit and MR ≥ MT receive antennas (see Fig. 1) and orthogonal
frequency-division multiplexing (OFDM). The information bits b are encoded
(e.g., using a convolutional code) and interleaved (denoted by

∏
in Fig. 1). The

resulting coded bit-stream x is mapped (using Gray labeling) to a sequence
of transmit vectors s[k] ∈ OMT , where O corresponds to the scalar complex
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Fig. 1. Coded wide-band MIMO communication system.

constellation of size 2Q and k = 1, . . . , T designates the OFDM-tone index; the
maximum number of OFDM carriers corresponds to T . Each transmit vector s[k]
is associated with MTQ binary values xi,b,k ∈ {0, 1}, i = 1, . . . ,MT, b = 1, . . . , Q
corresponding to the bth bit of the ith entry (i.e., spatial stream) of s[k]. The
baseband input-output relation of the wireless MIMO channel for each OFDM
tone is given by

y[k] = H[k]s[k] + n[k] (1)

where H[k] stands for the MR ×MT complex-valued channel matrix on OFDM
tone k, y[k] is the MR-dimensional received vector, and n[k] is MR-dimensional
i.i.d. zero-mean complex Gaussian distributed noise with variance N0 per entry.
We assume E[s[k]s[k]H ] = 1

MT
IMT in the following.

In the receiver, a hard-output MIMO detector computes estimates ŝ[k] for
the transmit vector, which are then used to generate binary-valued estimates x̂
for the coded bit-stream x. If a soft-output MIMO detector is used, reliability
information in the form of log-likelihood ratios (LLRs) Li,b,k for each coded
bit xi,b,k is generated instead. For both detection schemes we assume coherent
detection, i.e., the channel matrices H[k], k = 1, . . . , T , and the noise variance
N0 are perfectly known by the receiver. Finally, the MIMO receiver generates
estimates for the information bits b̂ using the channel decoder, which operates
either on the basis of the de-interleaved (denoted by

∏−1 in Fig. 1) bit stream
x̂ for hard-output MIMO detectors or on the de-interleaved sequence of LLRs
Li,b,k generated by the soft-output MIMO detector. Since the MIMO detector
can treat the OFDM tones independently of each other, the tone index k is
omitted in the remainder of the chapter.
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Fig. 2. MIMO detection reformulated as a tree-search problem for MT = 3 spatial
streams and QPSK modulation.

2.2 ML Detection using the Sphere-Decoding Algorithm

Hard-output MIMO detection using the ML-detection rule maximizes the prob-
ability of detecting the correct transmitted vector s. The ML rule for the input-
output relation (1) corresponds to [1, 2]

ŝ = arg min
s∈OMT

‖y −Hs‖2 (2)

and a straightforward evaluation of (2) requires an exhaustive search over all
transmit-vectors s ∈ OMT . Since |OMT | = 2MTQ, this approach leads—even for
a small number of transmit-antennas—to a prohibitive computational complex-
ity. To alleviate this complexity issue, a variety of low-complexity algorithms
have been proposed in the literature (see, e.g., [1,2] and the references therein).
Unfortunately, most of the existing low-complexity MIMO detection schemes
sacrifice error-rate performance for complexity, which is not desirable for high-
performance transceiver implementations. We next summarize the hard-output
SD algorithm, which is able to provide ML performance at low (average) com-
putational complexity.

Sphere-Decoding Algorithm The SD algorithm [5–9] starts with the QR
decomposition (QRD) of the channel matrix H = QR, where the MR ×MT

matrix Q satisfies QHQ = IMT
, and the MT×MT matrix R is upper-triangular.

The QRD enables us to rewrite the ML-detection problem (2) as follows:

ŝ = arg min
s∈OMT

‖ŷ −Rs‖2 (3)
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with ŷ = QHy. Thanks to the upper-triangular structure of R, the minimization
in (3) can be transformed into a tree-search problem where the nodes of the tree

on level i are associated with a partial symbol vector s(i) = [ si · · · sMT
]
T

and
with a corresponding partial Euclidean distance (PED) di

(
s(i)
)
. Fig. 2 illustrates

the corresponding tree for a MIMO system with MT = MR = 3 using QPSK
modulation. It is important to realize that when starting from the root of the
tree (at level i = MT+1 with dMT+1 = 0), the PEDs can efficiently be computed
in a recursive manner as follows:

di
(
s(i)
)

= di+1

(
s(i+1)

)
+ |bi+1 −Ri,isi|2 (4)

with the definition

bi+1 = ŷi −
MT∑

k=i+1

Ri,ksk (5)

when proceeding from a parent node on level i + 1 to one of its children on
level i. Each path from the root down to a leaf corresponds to a symbol vector
s ∈ OMT . Since the dependence of the PED di on the symbol vector s is only
through s(i), we have transformed ML detection into a tree-search problem. The
ML solution (3) corresponds to the path through the tree starting by the root
and leading to the leaf associated with the smallest PED.

The basic ideas underlying the SD algorithm, as described in [9, 12], are
briefly summarized as follows: The search in the tree is constrained to nodes
which lie within a radius r around ỹ (and hence, nodes from the tree are pruned
for which di

(
s(i)
)

is larger than r) and tree traversal is performed depth-first,
visiting the children of a given node in ascending order of their PEDs. The
method using this enumeration scheme is also known as the Schnorr-Euchner
(SE) SD algorithm [6]. In the following, we refer to the condition di

(
s(i)
)
< r

as the sphere constraint (SC). We additionally employ radius reduction, which
amounts to starting the algorithm with r =∞ and updating the radius according
to r ← d1

(
s(1)
)

whenever a leaf s = s(1) has been reached. This technique avoids
the problem of choosing a suitable initial radius and still leads to efficient pruning
of the tree. At the same time, it guarantees that the algorithm terminates only
when the ML solution has been found.

In the remainder of the chapter, the computational complexity of SD is char-
acterized by the number of visited nodes (including the root node but excluding
the leaves), which was shown in [11, 12] to be closely related to the throughput
of corresponding VLSI implementations.

Channel-Matrix Preprocessing A common approach to reduce the complex-
ity of SD without compromising performance is to adapt the detection order of
the spatial streams to the instantaneous channel realization by performing a QR-
decomposition on HP (rather than H), where P is a suitably chosen MT ×MT

permutation matrix. More efficient pruning of the tree is obtained if sorting is
performed such that “stronger streams” (in terms of effective SNR) correspond
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to levels closer to the root, i.e., if P is chosen such that the main diagonal entries
of R in HP = QR are sorted in ascending order. An effective way to accomplish
this goal was proposed in [16] and will be referred to as sorted QRD (SQRD) in
the following.

An additional preprocessing method which further lowers the computational
complexity, while slightly reducing the error-rate performance of SD is known
as regularization, e.g., [11]. The main idea of regularization is to realize that
poorly conditioned channel realizations H typically lead to high search com-
plexity due to the low effective SNR on one or more of the effective spatial
streams. An efficient way to counter ill-conditioned channel matrices is to op-
erate on a regularized version of the channel matrix by computing the (sorted)
QR-decomposition of [

H
αIMT

]
P = QR (6)

where α is a suitably chosen regularization parameter, Q is a (MR +MT)×MT

matrix satisfying QQH = IMT
, and R is of dimension MT ×MT. By partitioning

Q according to Q = [QT
1 QT

2 ]T , where Q1 is of dimension MR ×MT and Q2 is
of dimension MT ×MT, the ML rule in (3) can be approximated as

ŝ ≈ arg min
s̃∈OMT

‖ỹ −Rs̃‖2 (7)

where ỹ = QH
1 y and s̃ = Ps. Setting the regularization parameter α =

√
NoMT

corresponds to MMSE regularization [17], which was shown in [11] to result in a
good performance/complexity trade-off for hard- and soft-output SD algorithms.

2.3 Soft-Output Single Tree-Search Sphere Decoding

In coded MIMO systems, the computation of reliability information (i.e., soft-
outputs) in the form of LLRs Li,b for each transmitted bit xi,b improves (often
significantly) the error-rate performance compared to hard-output detection,
which only computes binary-valued estimates for xi,b.

Computation of the Max-Log LLRs Soft-output MIMO detection amounts
to computing LLR-values Li,b for each transmitted bit xi,b according to [10,11]

Li,b = log

(
Pr[xi,b = 1 | y]

Pr[xi,b = 0 | y]

)
. (8)

Straightforward computation of (8) results in prohibitive computational com-
plexity. In order to reduce the complexity of LLR computation, we employ the
max-log approximation [10, 11]

Li,b ≈ min
s∈X (0)

i,b

‖ŷ −Rs‖2 − min
s∈X (1)

i,b

‖ŷ −Rs‖2 (9)
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where X (0)
i,b and X (1)

i,b are the sets of symbol vectors that have the bth bit in the
label of the jth scalar symbol equal to 0 and 1, respectively. We emphasize that
the LLRs in (9) are normalized with respect to the noise variance No in order to
get rid of the factor 1/N0 on the right hand side (RHS) of (9). This normalization
simplifies the exposition and does not degrade the error rate performance with
max-log-based channel decoders (see [11] for the details).

For each transmitted bit xi,b, one of the two minima in (9) is given by the
metric λML = ‖ŷ −RsML‖2 associated with the ML solution sML = ŝ of the
MIMO detection problem in (3). The other minimum in (9) can be written as

λML
i,b = min

s∈XML
i,b

‖ŷ −Rs‖2 (10)

where XML
i,b corresponds to the subset of OMT for which the (i, b)th bit is equal

to the counter-hypothesis xML
i,b , denoting the binary complement of the bth bit

in the label of the ith entry of sML. With (3) and (10) the max-log LLRs (9) can
be re-written as

Li,b ≈

{
λML − λML

i,b , xML
i,b = 0

λML
i,b − λML , xML

i,b = 1 .
(11)

From (11), it is obvious that soft-output MIMO detection breaks down to effi-

ciently identifying sML, λML, and λML
i,b for i = 1, . . . ,MT and b = 1, . . . , Q.

Single Tree-Search Sphere Decoding Computation of the max-log LLRs

in (11) requires the metrics λML
i,b , which, for given i, b, is accomplished by travers-

ing only those parts of the tree that have leaves in XML
i,b . Since this computation

has to be carried out for every bit, it is immediately obvious that soft-output
MIMO detection results in significantly higher computational complexity com-
pared to hard-output ML detection using the SD algorithm. The soft-output
STS-SD algorithm proposed in [11] is key in keeping the complexity increase
(compared to hard-output SD) at a minimum and is summarized next.

The main idea of the soft-output STS-SD algorithm is to ensure that every
node in the tree is visited at most once, which can be accomplished by searching
for the ML solution and all counter-hypotheses concurrently. To this end, the
algorithm searches the subtree originating from a given node only if the result

can lead to an update of at least λML or one of the λML
i,b . In the ensuing discussion,

the bit-label vector of the current ML hypothesis and the corresponding metric
are denoted by xML and λML, respectively. The soft-output STS-SD algorithm
consists of two main tasks, namely list administration and tree pruning :

List administration: The algorithm is initialized with λML = λML
i,b =∞, ∀i, b.

Whenever a leaf with corresponding bit-label x has been reached, the algorithm
distinguishes between two cases:
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1) If a new ML hypothesis is found, i.e., if d(x) < λML, then all λML
i,b for

which xi,b = xML
i,b are set to λML followed by the updates λML ← d(x)

and xML ← x; this ensures that for each bit in the ML hypothesis that is
changed in the process of the update, the metric of the former ML hypothe-
sis becomes the metric of the new counter-hypothesis, followed by an update
of the ML hypothesis.

2) In the case d(x) ≥ λML, only the counter-hypotheses need to be checked.

Here, the decoder updates λML
i,b ← d(x) for all i and b satisfying xi,b = xML

i,b

and d(x) < λML
i,b .

Tree pruning: The second key aspect of STS-SD is the following tree-pruning
criterion: Consider a given node s(j) (on level j) and the corresponding label
x(j) consisting of the bits xi,b (i = j, . . . ,MT, b = 1, . . . , Q). Assume that the
subtree originating from the node under consideration and corresponding to the
bits xi,b (i = 1, . . . , j − 1, b = 1, . . . , Q) has not been expanded yet. The pruning
criterion for s(j) along with its subtree is compiled from two conditions. First,
the bits in the partial bit-label x(j) associated to s(j) are compared with the
corresponding bits in the label of the current ML hypothesis xML. All metrics

λML
i,b with xi,b = xML

i,b found in this comparison may be affected when searching

the subtree of s(j). Second, the metrics λML
i,b (i = 1, . . . , j − 1, b = 1, . . . , Q) cor-

responding to the counter-hypotheses in the subtree of s(j) may be affected as
well. In summary, the metrics which may be affected during the search in the
subtree emanating from the node s(j) are given by the set

A
(
x(j)

)
=
{
λML
i,b

∣∣ (i ≥ j, b = 1, . . . , Q
)
∧ (xi,b = xML

i,b )
}

∪
{
λML
i,b

∣∣ i < j, b = 1, . . . , Q
}
.

The node x(j) along with its subtree is pruned if its PED satisfies

d
(
x(j)

)
> max

a∈A(x(j))
a . (12)

The STS-SD pruning criterion ensures that a given node and the entire subtree
originating from that node are explored only if this could lead to an update

of either λML or of at least one of the λML
i,b , which enables significant complex-

ity savings compared to other tree-search based soft-output MIMO detection
algorithms, e.g., [10, 18].

LLR Clipping In practical systems, it is often desirable to tune the perfor-
mance and complexity of the detection algorithm at run-time. LLR clipping [19]
offers a convenient way to adjust this trade-off with the STS-SD algorithm. The
key idea is to bound the dynamic range of the max-log LLRs so that∣∣Li,b

∣∣ ≤ Lmax ∀i, b (13)
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and to incorporate the clipping constraint (13) into the STS-SD algorithm. In
particular, LLR clipping can be built into the algorithm by simply applying the
update [11]

λML
i,b ← min

{
λML
i,b , λ

ML + Lmax

}
(14)

to all counter-hypotheses, after carrying out the steps in Case 1) of the list
administration procedure described above. The remaining steps of the STS-SD
algorithm are not affected. For Lmax =∞, STS-SD obviously delivers the exact
max-log LLRs, whereas for Lmax = 0, we obtain hard-output SD performance as
the decoder’s output is xML, λML, and Li,b = 0 for all i and b. As shown in [11],
the LLR-clipping parameter Lmax can indeed be used to gracefully adjust the
performance and complexity of the soft-output STS-SD algorithm.

3 Wide-band MIMO Receiver Architecture

We next show that for wide-band MIMO wireless communication systems, such
as IEEE 802.11n or 3GPP-LTE, a single SD core turns out to be insufficient
to simultaneously support the high bandwidth and the (error-rate) performance
requirements, even when implementing the receiver in deep submicron CMOS
technologies. We therefore present an architecture consisting of multiple SD-
cores, which is able to meet the throughput and performance requirements of
modern wide-band MIMO systems.

3.1 Run-Time Constraints

The computational complexity (required to find the ML solution or the LLR
values) of the algorithms discussed above depends on the transmitted signals s,
the instantaneous realizations of the (random) channel matrix H, and the noise
vector n. Consequently, the throughput of SD-based algorithms is variable and,
in particular, random, which constitutes a significant problem in many practical
application scenarios. Furthermore, the worst-case complexity of SD-based algo-
rithms is equivalent to that of an exhaustive search [13]. Consequently, to meet
the practically important requirement of a fixed throughput, the algorithm’s
run-time must be constrained. This, in turn, leads to a constraint on the maxi-
mum detection effort or, equivalently, to a constraint on the maximum number of
nodes that the SD is allowed to visit, which will clearly prevent the detector from
achieving ML performance or to be able to deliver the exact max-log LLRs in
(9). It is therefore of paramount importance to find a way of imposing run-time
constraints while keeping the resulting performance degradation at a minimum.
Moreover, it is highly desirable in practice to have a smooth performance degra-
dation as the run-time constraint becomes more stringent. Early-termination
methods allowing for a smooth performance degradation suitable for narrow-
band systems have been proposed in [11, 14]. The approach and architecture
described next enables an efficient way to incorporate run-time constraints for
wide-band MIMO wireless communication systems.



VLSI Implementation of Sphere Decoding for Wide-Band MIMO Systems 11

Channel
estimation,

QR decomp.

Sphere
decoder

Re-order
buffer

Sphere
decoder

FIFO

FIFO

MIMO detection

MIMO pre-processing

OFDM
demodulation

Training

D
a

ta

Runtime
limit

Scheduler

RAM

Fig. 3. High-level system architecture of a SD-based MIMO-OFDM receiver.

3.2 Receiver Architecture for Wide-band MIMO Systems

The high-level architecture of a wide-band MIMO receiver based on SD is illus-
trated in Fig. 3. The data flow starts with the OFDM demodulation. During a
training phase, received training symbols are delivered to a MIMO preprocess-
ing unit, which estimates the channel matrices H[k] for all OFDM tones and
performs necessary pre-computations on H[k] (i.e., the sorted and regularized
QRD). During the data phase, the demodulation unit and the MIMO prepro-
cessing unit forward the received vectors y[k] and the results of the preprocessing
unit to the MIMO detector at a constant arrival rate, which is essentially given
by the communication bandwidth of the system. In the MIMO-detection block,
the information required to decode a symbol is first queued in a FIFO buffer.
A scheduler reads the entries of the FIFO buffer and forwards them to the next
available SD core together with a runtime constraint (i.e., an upper limit on
the number of nodes that are allowed to be examined by the SD). When the
FIFO fills up, the runtime constraints are reduced to ensure that no data is
lost. Note that this reduction of the maximum runtime degrades the quality
of the detection.1 The outputs from the N instantiated SD cores are collected
and re-ordered since the variable runtime may cause decoded symbols to arrive
out-of-order. The reordered symbol estimates (either hard- or soft-outputs) are
finally forwarded to the interleaver and the channel decoder.

3.3 Implications on SD-Core Optimization

With the above described architecture, the average decoding effort, i.e., the
number of visited nodes that can be allocated for decoding of each symbol is

1 The particularities of the employed scheduling mechanism and the associated per-
formance trade-offs can be found in [11].
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determined by

Φ ∝ N

TcB
[nodes]

whereB denotes the bandwidth of the system (i.e., the arrival-rate of the symbols
to be decoded), Tc is the clock period of each SD core (assuming that one node
in the tree is checked in each clock cycle), and N denotes the number of SD
instances. At the system-level, the performance/complexity trade-off can now
be adjusted by the choice of N , i.e., instantiating more SD cores improves the
error-rate performance but clearly comes at the cost of increased silicon area.
In particular, the resulting area of the presented architecture corresponds to
Atot = NASD, where ASD denotes the silicon area of a single SD core.2 For a
large number of SD cores, the overall silicon area for a guaranteed number of
visited nodes Φ̄ that can be used for decoding received symbols, is given by

Atot ∝ Φ̄BρSD with ρSD = TcASD. (15)

Consequently, it follows from (15) that whenever multiple SD cores are necessary
to meet the performance and throughput requirements of a wide-band MIMO
system, the focus for the optimization of the SD core shifts from minimizing the
area or maximizing the throughput (as it is typically the case for narrow-band
systems) to minimizing the corresponding area-delay (AT-)product ρSD. In the
next two sections, we describe architectures for hard-output SD and soft-output
STS-SD, which are optimized for minimum AT-product.

4 VLSI Architecture of Hard-Output SD

The hard-output SD architecture described next is based on the architecture
template presented in [12]. We first summarize this architecture and then de-
scribe additional techniques that substantially improve (i.e., reduce) the associ-
ated AT-product.

4.1 High-Level Architecture

Fig. 4 shows the high-level block diagram of the proposed SD architecture. The
design is comprised of a metric computation unit (MCU), a metric enumeration
unit (MEU), an SC check unit, a level-select multiplexer, and a cache.

Metric computation unit: The MCU is responsible for the forward-iteration of
the depth-first tree-traversal. In the implementation [12], this forward iteration
includes the sequential evaluation of (5) and the computation of the PED in (4).
In the present circuit (cf. Fig. 5) a slicer-unit performs a decision on the nearest
constellation point and the MCU computes bi (instead of bi+1) in parallel to the
PED of level i + 1. The result bi is then used in the next iteration (provided
that the SC is met); this approach was shown to reduce the critical path of the
SD-core without increasing the circuit area [20,21].

2 We neglect the area overhead in the FIFOs and re-order buffers.
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Fig. 4. High-level architecture of the hard-output SD unit. The shaded registers and
the ring buffer (in the cache) are only required in when pipeline interleaving is used.

Metric enumeration unit: The MEU operates in parallel to the MCU. While the
MCU processes a node on layer i, the MEU selects the next-best constellation
point on layer i+ 1 according to the used enumeration scheme and computes its
PED. Hence, once the SD algorithm needs to move upward in the tree (i.e., is
performing backtracking), the MCU can directly start the next forward iteration
as all required intermediate results have already been computed beforehand by
the MEU. The register transfer-level (RTL) architecture of the MEU (cf. Fig. 5)
is similar to the one of the MCU. However, the slicer-unit that determines the
closest CP is replaced by an enumeration unit, which is used to determine the
CP that is considered next on layer i+ 1.

Remaining units: The cache is used to store intermediate results for each level
computed by the MEU and the MCU. The SC check is carried out immediately
after the computation of the new PEDs. MEU, MCU, level cache, and the result
of the SC check decide on which layer the SD algorithm proceeds next. If a valid
leaf is found, i.e., whose metric fulfills the SC, the radius r is updated. In this
case, an additional clock cycle is necessary, as the PEDs in the level cache need
to be checked against the new radius.
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Fig. 5. RTL block diagram of the MCU and MEU. The shaded registers are only
required when pipeline interleaving is applied.

4.2 Schnorr-Euchner Enumeration

The enumeration strategy (which is implemented by the enumeration unit in the
MEU) defines the order in which the children of a node are examined. Radius
reduction (cf. Section 2.2) is most efficient in combination with the SE enumer-
ation [6,9], which visits the children of a node in ascending order of their PEDs.
An important advantage of this enumeration strategy is that leaves that are
more likely to lead to the ML solution (or corresponding counter-hypotheses for
the STS-SD) are found early, which expedites the pruning of the tree. Moreover,
enumeration of the children of a node can terminate as soon as a child violates
the SC or, in the case of the STS-SD fulfills the corresponding pruning criterion.

For each visited node, SE enumeration comprises two types of operations:
The first operation is to initialize the enumeration of the children by identifying
the child associated with the smallest PED. This task can easily be accomplished
by comparing bi+1 in (5) to a number of decision boundaries, i.e., by performing
a slicing operation in the MCU shown in Fig. 4. The second type of operation is
to enumerate the remaining children in ascending order of their PEDs, which is a
non-trivial task for complex-valued constellations.3 Unfortunately, the enumera-
tion process has a significant impact on the complexity and on the critical path
of SD implementations. Hence, reducing the complexity and critical path of the

3 Note that for real-valued CPs, SE enumeration of the remaining child-nodes is im-
mediately given by a zig-zag enumeration around the closest CP [9].
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(b) PAM subsets.

Fig. 6. The 16-QAM alphabet divided into one-dimensional subsets.

enumeration unit is essential to minimize the AT-product ρSD of corresponding
efficient SD implementations.

Exhaustive Enumeration This method is a straightforward (but rather inef-
ficient) solution to perform SE enumeration [12]. The idea is to first compute the
PEDs of all children of a given node. During enumeration, a min-search (limited
to the subset of children that have not yet been visited) identifies the next child.
The main drawbacks of this solution are i) the area requirement to compute the
PEDs of all children of a node, ii) the memory needed to store all PEDs in the
cache, and iii) the fact that a min-search is costly in terms of area and timing,
especially for higher order constellations. Hence, this approach is not suited for
the efficient implementation of SD in hardware.

Subset Enumeration More elaborate solutions for SE enumeration were pre-
sented in [10,12,22]. The main idea of these approaches is to divide the complex-
valued (i.e., two-dimensional) constellation into one-dimensional subsets, which
only require to compute and store one PED per subset. The SE enumeration
then chooses the child with the smallest PED among the preferred children in
these subsets, which leads to a complexity reduction in the min-search stage and
reduces the memory requirements in the cache.

Fig. 6 illustrates two subset enumeration schemes. For phase-shift keying
(PSK) subsets proposed in [10] and [12], the constellation is decomposed into
several concentric circles (see Fig. 6(a)). The second method shown in Fig. 6(b)
was proposed in [22] and employs pulse-amplitude modulation (PAM) subsets
(i.e., stripes). Both methods suffer from the fact that the number of required
subsets becomes large when targeting higher modulation orders (e.g., 64-QAM
requires eight PAM subsets), which contributes considerably to the resulting
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circuit area and timing of the entire architecture (as sorting across all subsets is
required). In order to further reduce the complexity of SE enumeration, one needs
to resort to approximate SE enumeration schemes such as the ones described
next.

4.3 Approximate Schnorr-Euchner Enumeration Schemes

The goal of considering approximations to SE enumeration is to perform the
candidate enumeration without the need for computing, caching, and compar-
ing PEDs of multiple children of the same node. Such methods yield significant
reduction in terms of circuit area and critical path delay at the cost of a (of-
ten negligible) reduction in terms of error-rate performance and are, therefore,
well-suited to reduce the AT-product of corresponding SD implementations. The
basic idea of most of these approaches [23, 24] is to store predefined enumera-
tion sequences in one or multiple look-up tables (LUTs). A fixed sequence is
chosen based upon several geometric rules that analyze the position of the re-
ceived point bi+1 in the complex plane relative to the closest CP. The accuracy
of these techniques (i.e., how closely they follow the Schnorr-Euchner enumera-
tion sequence) can be adjusted by the number and complexity of the associated
selection criteria together with the number of predefined LUTs.

Search-Sequence Determination This approach applies a few rules to the
distance between the received point bi+1 and the closest CP denoted as ai [23].
The number of rules applied to determine the position of bi+1 relative to the
closest CP defines for how many nodes the resulting search sequence corresponds
to the SE enumeration. For instance, the following first rule <(ai) ≥ =(ai) can
determine the order of the first three nodes to be equal to the first three nodes
of SE enumeration. Adding a second rule 1−<(ai) ≥ 2=(ai) allows to determine
the SE enumeration order for the first four nodes. Each additional rule brings
the search sequence closer to SE enumeration. However, in practice, a few rules
or even only the first rule combined with enumeration of the remaining siblings
according to a predefined order stored in look-up tables (LUTs) [24] often suffices
to keep the performance loss negligible compared to SE enumeration.

Ordered `∞̃-Norm Enumeration The approach implemented here is inspired
by the `∞̃-norm SD algorithm [12,25]. Here, however, the `∞̃-norm is only used
for enumeration purposes, whereas the SD algorithm in [12, 25] also uses it for
distance computations. The enumeration scheme initially proposed in [21] can
be implemented efficiently without requiring LUTs and therefore, scales well to
higher-order constellations (i.e., constellations including and beyond 64-QAM).
The starting point for the enumeration is trivially determined by the closest CP
(in terms of Euclidean distance). However, the subsequent CPs are enumerated
according to their distance from bi+1 in terms of the `∞̃-norm:

d∞̃ = |bi+1 −Ri,isi|∞̃ = max{|<(bi+1 −Ri,isi)| , |=(bi+1 −Ri,isi)|} .
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Fig. 7. Principle of ordered `∞̃-norm enumeration for 64-QAM modulation.

To this end, the area around the closest CP is first subdivided into eight sectors
as illustrated in the lower right corner of Fig. 7. The sector containing bi+1 is
identified with simple geometric rules to define the second CP in the enumeration
and the direction for the ordered `∞̃-norm enumeration. CPs with identical
`∞̃-norm form one-dimensional subsets. All nodes within the same subset are
processed before the algorithm selects the next subset. In the example provided
in Fig. 7, the processing order of the one-dimensional subsets is illustrated by the
leading number attached to each CP. Within each subset, zig-zag enumeration is
applied around the CP closest to bi+1, which is illustrated by the corresponding
trailing number in Fig. 7. The members of each subset are returned in SE order
and subsets are enumerated in order of increasing `∞̃-norm.

Implementation: The above-described enumeration scheme can be split into two
basic tasks: i) Tracking of the position, size, and orientation of the linear subsets
and ii) zig-zag enumeration within the subsets and checking for the boundaries
of the finite-size modulation alphabet. Both tasks can be implemented using
simple combinational logic, comparators, and only three counters. Hence, the
circuit complexity of ordered `∞̃-norm enumeration is very low.
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(a) Frame error-rate (FER) performance comparison.

(b) Computational complexity comparison.

Fig. 8. FER performance and computational complexity (in average number of visited
nodes) for ordered `∞̃-norm and SE enumeration (MT = MR = 4 using 64-QAM).
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Impact on performance and complexity: Besides a reduction in terms of hard-
ware complexity, the ordered `∞̃-norm enumeration has an impact on the com-
putational complexity (i.e., number of visited nodes) and on the (error-rate)
performance of hard- and soft-output SD. The reason for this impact lies in the
fact that the approximation does not guarantee that the children of a node are
always enumerated strictly in ascending order of their PEDs (i.e., only the first
three CPs always correspond to the first three CPs obtained by SE enumeration).
In order to characterize the impact on performance and complexity, numerical
simulations are carried out in order to verify that the loss in error-rate and
increase in computational complexity is negligible. Corresponding simulation re-
sults4 for hard- and soft-output SD are shown in Fig. 8. It can be observed that
the loss in terms of the coded frame-error rate (FER) performance is negligible
(see Fig. 8(a)) for both detection methods and the number of visited nodes with
`∞̃-norm enumeration is slightly smaller (i.e., approximately 5%) compared to
that achieved by exact SE enumeration (see Fig. 8(b)). Hence, ordered `∞̃-norm
enumeration is well-suited for high-performance implementations of hard-output
SD and soft-output STS-SD.

4.4 Pipeline Interleaving

Due to the first-order feedback path present in SD-architectures, pipelining can-
not be applied in a straightforward way. Nevertheless, symbol-wise pipeline in-
terleaving can be used to shorten the critical path and hence, to improve the
AT-product of the SD-core implementation. The main idea of this approach ap-
plied to SD is to detect multiple (and independent) symbol-vectors in parallel
within the same SD-unit [21,27,28].

Fig. 4 and Fig. 5 illustrate the location of the pipeline registers (in light
grey boxes) in the VLSI architecture for three pipeline stages. The locations
of the pipeline registers were chosen manually in order to balance the path
delays between each pipeline stage. Furthermore, automated retiming was used
during synthesis for further optimization. Besides adding the pipeline registers
in the data-path, the level cache in Fig. 4 required the implementation of a
ring-buffer, in which each set of entries is associated with one of the symbols
in the pipeline and corresponds to one instance of the original level cache. Note
that the number of pipeline stages affects the throughput and silicon area of
the detector. A corresponding investigation of the resulting area/throughput
trade-off is provided in Section 6.

4 We consider coded (rate 2/3 convolutional code, constraint length 7, generator poly-
nomials [133o 171o], and random interleaving across space and frequency) MIMO-
OFDM transmission with MR = MT = 4, 64-QAM (Gray mapping), 64 OFDM
tones. One frame consists of 1536 coded bits. A TGn type C [26] channel model
is used. We assume perfect channel state information at the receiver and employ
minimum mean-square error sorted QR decomposition (MMSE-SQRD) [17] for SD-
preprocessing. The SNR is per receive antenna.
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5 VLSI Architecture of Soft-Output STS-SD

The high-level block diagram of the soft-output STS-SD implementation is shown
in Fig. 9. Compared to the architecture for hard-output SD described in Sec-
tion 4, modifications are necessary in the MCU and two additional units are
required, one for list administration and one for the implementation of the STS-
SD pruning criterion [11]. We next describe the specifics of these changes.

5.1 Architectural Changes in the MCU

From a high-level perspective, there is one fundamental difference between tree-
traversal for hard-output SD and for the soft-output STS-SD algorithm: When
the node currently examined by the MCU is on the level just above the leaves
(i.e., on level i = 2), the hard-output SD algorithm considers only one child,
namely the one associated with the smallest PED. The STS-SD algorithm, how-
ever, has to compute the PEDs of all children that do not qualify for pruning
according to the criterion (12) since these children may lead to updates of the

metrics λML
i,b . To perform this leaf enumeration procedure, STS-SD must revisit

the current node at level i = 2, which requires additional clock cycles and a
leaf enumeration unit shown in Fig. 9. This unit does, however, not require an
additional arithmetic unit for the PED computation as it can reuse the PED
computation unit in the MCU (see Fig. 9).

The computational complexity involved in this leaf-enumeration approach
can be reduced significantly, by taking advantage of the Gray mapping of the
information bits for the constellation symbols [21]. The leaf nodes of interest to
the computation of max-log LLR values, are obtained by flipping every bit of
the leaf that is closest to b2. Furthermore, by considering the distance differences
between the constellation symbols, it can be shown that no costly squaring oper-
ations are necessary. The data path able to carry out these computations merely
encompasses a shifter, an adder and a multiplication.

5.2 List Administration and Tree Pruning

In addition to the modifications in the MCU described above, the soft-output
STS-ST algorithm requires two additional units [11]:

List-Administration Unit (LAU) The LAU is responsible for maintaining

and updating the list containing xML, λML, and the λML
i,b . The corresponding unit

is active during the leaf-enumeration process described above. Since the update
rules implemented by the LAU require only a small number of logic operations,
the silicon area of this unit is small and is dominated by the storage space

(λ cache) required for the metrics λML and λML
i,b . This cache needs to provide

storage for all the metrics of all symbols being processed in parallel by pipeline
interleaving.
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Fig. 9. Block diagram of the proposed VLSI architecture for the soft-output STS-SD.
Additional required units (compared to hard-output SD) are highlighted.
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Pruning Criterion Unit (PCU) The PCU is responsible for computing the
RHS of (12). From an implementation perspective, the reference metric on level
j depending on the partial label x(j) constitutes a major problem. More specifi-
cally, this dependence causes the criterion for pruning the child of a parent node
on level j+ 1 to depend on the partial label x(j) of that child. This, in turn, im-
plies that enumeration of the children on level j in ascending order of their PEDs
according to the SE criterion cannot be applied, which results in the need for
exhaustive-search enumeration (see Section 4.2). As mentioned above, exhaus-
tive enumeration is ill-suited for the efficient implementation in VLSI (cf. [12]). A
modification of the pruning criterion in (12) proposed in [11] solves this problem.
To this end, define

B
(
x(j+1)

)
=
{
λML
i,b

∣∣ (i > j, b = 1, . . . , Q
)
∧ (xi,b = xML

i,b )
}

∪
{
λML
i,b

∣∣ i ≤ j, b = 1, . . . , Q
}

and prune the node x(j) (corresponding to the partial symbol vector s(j)) along

with its subtree if d
(
x(j)

)
satisfies

d
(
x(j)

)
> max

b∈B(x(j+1))
b . (16)

Note that compared to (12), the RHS of the modified pruning criterion (16)
depends on the partial label x(j+1) rather than on x(j). Consequently, the enu-
meration of the children of a node on level j + 1 can be carried out using SE
enumeration or an approximation thereof (see Section 4.2 and Section 4.3).

The approach described above entails a slight increase in terms of complex-
ity compared to the original pruning criterion for the STS-SD algorithm in (12).
Nevertheless, the corresponding complexity increase is significantly smaller than
what would be incurred if (12) would be applied directly. A corresponding de-
tailed discussion can be found in [11].

6 Implementation Results and Comparison

In the following, we present implementation results for hard-output SD and
soft-output STS-SD in a 130 nm CMOS technology. Furthermore, a comparison
to existing hard- and soft-output SD implementations demonstrates the perfor-
mance advantage of the AT-product-optimized VLSI architectures detailed in
this chapter.

6.1 Implementation Results for Hard-Output SD

The AT-diagram in Fig. 10 shows the synthesis results of hard-output SD with
ordered `∞̃-norm enumeration and pipeline interleaving with different number of
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pipeline stages.5 The proposed architectures have been implemented with sup-
port for multiple modulation schemes (BPSK, QPSK, 16-QAM, and 64-QAM)
and for up to four spatial streams (configurable at runtime).

Fig. 10 shows that the architecture with three pipeline stages achieves the
best AT-product. Nevertheless, the architectures with more than three pipeline
stages come close to the one achieving the optimal AT product, whereas the
architectures with fewer pipeline stages are clearly outperformed in terms of the
AT-product. As a comparison, implementation results of previously reported
hard-output SD implementations are also included in Fig. 10 (the results are
also summarized in Tbl. 1). It can be seen that the proposed hard-output SD
implementation without pipelining already outperforms all existing designs with-
out pipelining by a least 23% in terms of area and by at least 28% in terms of
clock frequency6. Furthermore, the AT-product (in [kGE/MHz]) of the proposed
architecture with pipeline interleaving is more than 2× better than that of the
pipelined implementation in [27].

6.2 Implementation Results for Soft-Output STS-SD

Ordered `∞̃-norm enumeration and pipeline interleaving can also be applied
to the soft-output STS-SD architecture described in Section 4. Corresponding
implementation results for soft-output STS-SD are shown in Tbl. 2 and are
compared to existing soft-output SD implementations [11,24]. The AT-optimized
implementation is superior in terms of area and clock frequency compared to the
soft-output detector described in [24]. Note that the original implementation of
soft-output STS-SD in [11] only supports 16-QAM modulation, which is the
main reason for the smaller area in the unpipelined case. For hard-output SD,
pipeline interleaving with three pipeline stages appears to be optimal in terms of
the AT-product. As the additional units required for soft-output STS-SD do not
influence the critical path, STS-SD was also implemented with three pipeline
stages. Tbl. 2 shows that pipeline interleaving also improves the AT-product for
soft-output SD implementations and yields a gain of more than 30% compared
to the unpipelined design.

6.3 The Case for Multiple SD-Cores

In Section 2, we argued that a single SD core is insufficient to meet the band-
width and error-rate performance requirements of modern wireless communi-
cation standards such as IEEE 802.11n, where a throughput of 600 Mb/s is
required. From Tbl. 1, we observe that a single instance of hard-output SD
meets the throughput requirement when early-termination and block-processing
according to [11,14] are applied. For soft-output STS-SD, however, the number
of visited nodes is significantly increased: From seven for hard-output SD to a

5 The results were obtained by synthesizing the RTL description in VHDL with dif-
ferent timing constraints.

6 The clock frequencies of all designs are normalized to 130 nm CMOS technology.



24 Christoph Studer, Markus Wenk, and Andreas Burg

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

Clock Period in ns

A
re

a
 i
n

 k
G

E

6 pipeline stages

5 pipeline stages

4 pipeline stages

3 pipeline stages

2 pipeline stages

unpipelined

constant AT

1

2

3

4

5

6

Fig. 10. AT-diagram of hard-output SD with different number of pipeline stages. The
optimal synthesis results (in terms of the area/delay trade-off) are highlighted by circles
and implementation results of previous architectures are indicated by stars. All designs
are scaled to 130 nm CMOS technology.

least 100 for soft-output STS-SD [11]. To illustrate the necessity for multiple
soft-output STS-SD cores, we assume LLR clipping is used to adjust the average
complexity to Davg = 100 for 64-QAM modulation which typically results only
in a negligible error rate performance degradation. In this case, the throughput
of one STS-SD core is 92 Mb/s and therefore, in order to meet the throughput
requirement of IEEE 802.11n, seven AT-optimized soft-output STS-SD cores are
required.

7 Summary and Conclusion

In order to meet the throughput and latency requirements of modern wide-
band wireless communication systems, such as IEEE 802.11n or 3GPP-LTE,
using the sphere decoding (SD) algorithm, multiple parallel detection cores are
necessary. Therefore, the main optimization goal for each SD core is to minimize
the area-delay product, which represents the hardware-efficiency. Ordered `∞̃-
norm enumeration and pipeline interleaving are two key techniques that are both
suitable to achieve this goal. The approximate enumeration strategy significantly
reduces circuit area and the critical path-delay and corresponding simulations
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Table 1. Implementation results and comparison of hard-output SD.

[12] [11] [27] This work

CMOS tech. 250 nm 250 nm 130 nm 130 nm
Antennas 4×4 4×4 4×4 1×1 to 4×4
Modulation 16-QAM 16-QAM 16-QAM BPSK to 64-QAM
Norm `∞̃ `2 `∞̃ `2
Enumeration SE SE SE ordered `∞̃-norm
Pipeline
stages

no no 3× no 3× 5×

Areaa [kGE] 50 34.4 70 27.1 38.4 55.3
Freq. [MHz] 137b 140b 333 196 455 625

[kGE/MHz] 0.37 0.25 0.21 0.14 0.08 0.09

Throughput for Davg = 7c [Mb/s]
470 480 1141 672 1560 2143

Table 2. Implementation results and comparison of soft-output algorithms.

[24] [11] This work

CMOS Technology 130 nm 250 nm 130 nm
Modulation 64-QAM 16-QAM BPSK to 64-QAM
Algorithm MBF-FD STS-SD STS-SD
Enumeration tabular SE ordered `∞̃-norm
Pipeline stages no no no 3×

Areaa [kGE] 350 56.8 70.4 97.1
Max. frequency [MHz] 198 137b 183 383
AT-product [kGE/MHz] 1.77 0.41 0.38 0.25

aOne GE corresponds to the area of a two-input drive-one NAND gate.

bScaled from 250 nm to a 130 nm CMOS technology by multiplying with 250/130.

cDavg denotes the average number of nodes used for block processing [11,14].

show, that the performance loss is negligible. With pipeline interleaving, the
critical path of each SD core can significantly be reduced, which additionally
improves the AT-product. A design-space exploration with different number of
pipeline stages reveals that an architecture with three pipeline stages (for hard-
output and soft-output SD) is the most efficient in terms of the AT-product and
should, therefore, be preferred for implementation.
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