
TO APPEAR IN IEEE JOURNAL OF SOLID-STATE CIRCUITS 2011 1

Design and Implementation of a Parallel
Turbo-Decoder ASIC for 3GPP-LTE

Christoph Studer, Student Member, IEEE, Christian Benkeser Member, IEEE,
Sandro Belfanti, and Qiuting Huang Fellow, IEEE

Abstract—Turbo-decoding for the 3GPP-LTE (Long Term
Evolution) wireless communication standard is among the most
challenging tasks in terms of computational complexity and
power consumption of corresponding cellular devices. This paper
addresses design and implementation aspects of parallel turbo-
decoders that reach the 326.4 Mb/s LTE peak data-rate using
multiple soft-input soft-output decoders that operate in parallel.
To highlight the effectiveness of our design-approach, we realized
a 3.57 mm2 radix-4-based 8× parallel turbo-decoder ASIC in
0.13 µm CMOS technology achieving 390 Mb/s. At the more
realistic 100 Mb/s LTE milestone targeted by industry today, the
turbo-decoder consumes only 69 mW.

Index Terms—3G mobile communication, LTE, parallel turbo-
decoder, ASIC implementation, low-power, radix-4

I. INTRODUCTION

DURING the last few years, 3G wireless communication
standards, such as HSDPA [2], firmly established them-

selves as an enabling technology for data-centric communica-
tion. The advent of smart-phones, netbooks, and other mobile
broadband devices finally ushered in an era of throughput-
intensive wireless applications. The rapid increase in wireless
data traffic now begins to strain the network capacity and
operators are looking for novel technologies enabling even
higher data-rates than those achieved by HSDPA. Recently,
the new air interface standard LTE (Long Term Evolution) [3]
has been defined by the standards body 3GPP and aims at
improving the data-rates by more than 30× (compared to that
of HSDPA) in the next few years. Theoretically, LTE supports
up to 326.4 Mb/s [4], whereas the industry plans to realize the
first milestone at about 100 Mb/s in 1-or-2 years.

LTE specifies the use of turbo-codes to ensure reliable com-
munication. Parallel turbo-decoding, which deploys multiple
soft-input soft-output (SISO) decoders operating concurrently,
will be the key for achieving the high data-rates offered by
LTE. However, the implementation of such will be among
the main challenges in terms of computational intensity and

This paper was presented in part at the IEEE International Solid-State
Circuits Conference (ISSCC), San Francisco, CA, USA, Feb. 2009 [1].

C. Studer is with the Communication Technology Laboratory (CTL),
ETH Zurich, 8092 Zurich, Switzerland, (e-mail: studerc@nari.ee.ethz.ch).
C. Benkeser and Q. Huang are with the Integrated Systems Laboratory
(IIS), ETH Zurich, 8092 Zurich, Switzerland (e-mail: benkeser@iis.ee.ethz.ch;
huang@iis.ee.ethz.ch).

The authors would like to thank S. Schläpfer and F. Gürkaynak for
their assistance during the ASIC design. Furthermore, the authors gratefully
acknowledge the support of H. Bölcskei, A. Burg, N. Felber, W. Fichter, and
H. Kaeslin.

Digital Object Identifier XXX-XXX-XXX

power consumption. The fact that none of the recently reported
parallel turbo-decoders [5]–[7] achieves the LTE peak data-rate
or provides desirable power consumption for battery-powered
devices of less than 100 mW at the 100 Mb/s milestone,
indicates that the architecture design for such decoders is a
challenging task.

1) Contributions: In this work, we discuss concepts and
architectures which allow for the power-efficient implemen-
tation of high-throughput parallel turbo-decoding for LTE.
To this end, we investigate the associated throughput/area
tradeoffs for the identification of the key design parameters
and optimize the most crucial design blocks. To alleviate the
design-inherent interleaver bottleneck, we describe a memory
architecture that supports the bandwidth required by LTE and
present a general architecture solution—referred to as Master-
Slave Batcher network—suitable for maximally-vectorizable
contention-free interleavers. We furthermore detail a radix-4-
based SISO decoder architecture that enables high-throughput
turbo-decoding. As a proof-of-concept, we show an 8× par-
allel ASIC prototype achieving the LTE peak data-rate and
the 100 Mb/s milestone at low power, and finally compare the
key characteristics to that of other measured turbo-decoder
ASICs [5]–[7].

2) Outline: The remainder of the paper is organized as
follows. Section II reviews the principles of turbo-decoding
and details the algorithm used for SISO decoding. The parallel
turbo-decoder architecture is presented in Section III and
the corresponding throughput/area tradeoffs are studied. The
interleaver architecture is detailed in Section IV and Section V
describes the architecture of the SISO decoder. Section VI
provides ASIC-implementation results and a comparison with
existing turbo-decoders. We conclude in Section VII.

II. TURBO-DECODING FOR LTE

Turbo codes [8], capable of achieving close-to-Shannon
capacity and amenable to hardware-efficient implementation,
have been adopted by many wireless communication stan-
dards, including HSDPA [2] and LTE [3]. The turbo encoder
specified in the LTE standard is illustrated in the left-hand side
(LHS) of Fig. 1 and consists of a feed-through, two 8-state
recursive convolutional encoders (CEs), and an interleaver.
The feed-through passes one block of K information bits xk,
k = 0, . . . ,K − 1, to the output of the encoder, which are then
referred to as systematic bits xs

k = xk. From the systematic
bits, the first CE generates a sequence of parity bits xp1

k . The

XXXXX.00 © 2011 IEEE

2 TO APPEAR IN IEEE JOURNAL OF SOLID-STATE CIRCUITS 2011

SISO

decoder

SISO

decoder

iterations
inter-

leaver

inter-

leaver

de-inter-

leaver

inter-

leaver

1st conv.

encoder

2nd conv.

encoder w
ir
e
le

s
s
 t
ra

n
s
m

is
s
io

n

Fig. 1. Left: Parallel-concatenated turbo-encoder. Right: Simplified block-
diagram of a turbo-decoder.

second CE receives an interleaved sequence of the information
bits xπ(k), where π(k) stands for the interleaved address
associated with address k, and generates a second sequence of
parity bits xp2. The systematic bits are then transmitted, along
with both parity-bit sequences, over the wireless channel.
In the receiver, a soft-output detector computes reliability
information in the form of log-likelihood ratios (LLRs) for
the transmitted bits xs

k, xp1
k and xp2

k [8]; the resulting LLRs
Ls
k, Lp1

k and Lp2
k indicate the probability of the corresponding

bits being a binary 1 or 0.

A. Turbo-Decoding Algorithm

Decoding of turbo-codes is usually performed with the
algorithm proposed in [8]. The main idea is depicted on the
right-hand side (RHS) of Fig. 1 and amounts to iteratively
exchanging extrinsic LLRs LE1

k and LE2
k between the two

SISO decoders (SDs) to improve the error-rate performance
successively. The first and second SD perform decoding of
the convolutional code generated by the first or the second CE,
respectively. One pass by both the first and the second SD is
referred to as a full-iteration; the operation performed by a
single SD a half-iteration. The total number of full-iterations
for each code block is denoted by I (e.g., 11 half-iterations
correspond to I = 5.5).

Each SD computes intrinsic a-posteriori LLRs LD1
k

and LD2
k , for the transmitted bits, based on the systematic

LLRs in natural Ls
k or interleaved order Ls

π(k), on the parity
LLRs Lp1

k or Lp2
k , and on the so-called a-priori LLRs LA1

k

or LA2
k . For the first half-iteration, the a-priori LLRs are set

to zero (i.e., LA1
k = 0, ∀k). In subsequent iterations, each SD

i ∈ {1, 2} uses the extrinsic LLRs LEi
k = LDi

k −
(
Ls
k + LAi

k

)
computed by the other SD in the previous half-iteration as
a-priori LLRs, i.e., LA1

k = LE2
π−1(k) and LA2

k = LE1
π(k) (see

Fig. 1). After a given number of half-iterations, the turbo-
decoder generates estimates for the information bits based on
the sign of the intrinsic LLRs.

B. Radix-4 Max-Log M-BCJR Algorithm

The maximum a-posteriori (MAP) SISO decoding algorithm
developed by Bahl, Cocke, Jelinek, and Raviv (BCJR) [9]
forms the basis of the SD used in this work. The BCJR
algorithm resembles the Viterbi algorithm [10] and traverses
a trellis representing the convolutional code to compute the
intrinsic LLRs LD1,D2

k . Fig. 2 shows such a trellis, with nodes

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

Fig. 2. Left: Radix-2 forward state-metric recursion for two trellis-steps.
Right: Radix-4 forward state-metric recursion.

corresponding to the states of the CEs and branches indicating
admissible state-transitions. Each transition from a state s′

(trellis-step k − 1) to s (trellis-step k) is associated with a
branch-metric γk(s′, s) (refer to [11], [12] for details). The
BCJR algorithm in its original form is impractical due to large
memory requirements and the computation of transcendental
functions. We adopt an approximate algorithm [11], [13], as
briefly described below.

1) Max-log approximation: The BCJR algorithm traverses
the trellis in both forward and backward directions to compute
the state-metrics αk(s) and βk(s) recursively for all eight
states. To avoid transcendental functions, we apply the max-
log approximation to the forward state-metric recursions [11]

αk(s) =max
{
αk−1(s′0) + γk(s′0, s),
αk−1(s′2) + γk(s′2, s)

}
(1)

where s′0 and s′2 correspond to the two possible predecessor
states of s (see Fig. 2). The backward state-metrics βk(s′)
are computed similarly to (1) in the opposite direction. Both
recursions can be performed efficiently based on hardware-
friendly add-compare-select (ACS) operations.

After all forward and backward state-metrics, the intrinsic
LLRs are calculated. To this end, the SD considers the state
transitions (s′, s) associated with xs

k = 0 and those with xs
k =

1 and computes the intrinsic LLRs according to

LD1,D2
k ≈ max

(s′,s):xs
k=0

{
αk−1(s′) + γk(s′, s) + βk(s)

}
− max

(s′,s):xs
k=1

{
αk−1(s′) + γk(s′, s) + βk(s)

}
. (2)

The max-log approximation entails a mismatch in the output
LLRs, which can (at least partially) be compensated by a tech-
nique known as extrinsic scaling [14], [15] (cf. Section VI-A).

2) Windowing: Computation of the intrinsic LLRs (2)
requires storage of either all forward or all backward state-
metrics. For the maximum code-block length specified in LTE,
K = 6144, 8×6144 state-metrics need to be stored. To signif-
icantly reduce such large memory requirements, windowing is
usually employed [13]. In this approach the trellis is processed
in small windows of M trellis-steps and the intrinsic LLRs are
computed only on the basis of the state-metrics obtained within
each window. The corresponding procedure, summarized next,
will be referred to as the M-BCJR algorithm.

STUDER, BENKESER, BELFANTI, AND HUANG 3

The forward recursion computes the αk(s) as in (1) and
stores the M forward state-metrics associated with the mth
window. Since the backward recursion progresses from the
end of a window to its beginning, suitable initial values have
to be generated. To this end, a dummy backward recursion
is carried out in the next window m + 1 to provide initial
values for the backward state-metrics βk(s) computed in
window m. With the aid of the stored forward state-metrics
of the mth window, the intrinsic LLRs (2) are computed
simultaneously with the backward state-metric recursion. As
a consequence of windowing, the M-BCJR algorithm can be
started at arbitrary steps in the trellis, an ability essential for
parallel turbo-decoding (see Section III). To this end, a dummy
forward-recursion is carried out once to compute the state-
metrics α′k(s) for one window, which are then used as initial
state-metrics for the remaining forward recursions.

Numerical simulations for the rate-1/3 LTE turbo-code
show that a window length of M = 30 yields close-to-optimal
performance (see Fig. 9). Code rates closer to 1 have also been
specified in LTE to take advantage of any exceptionally high-
SNR/low-EVM scenarios to achieve additional throughput
improvements. To support such higher code-rates, our radix-
4 M-BCJR architecture can be easily reconfigured to support
2-to-3 times larger window lengths that will be required for
optimal performance [16]. This mainly involves increasing the
capacity of the M-BCJR memories by a factor of 2-to-3, which
will lead to about 30% increase in the overall chip area.

3) Radix-4 recursion: The throughput of LTE turbo-
decoders can be enhanced by radix-4 state-metric recur-
sions [17]. This is illustrated in the RHS of Fig. 2 for the
forward recursion1 where two trellis-steps are processed at a
time, skipping odd-numbered steps. Specifically, the forward
state-metrics αk(s) are computed on the basis of its four
admissible predecessor states s′′0 , s′′1 , s′′2 , and s′′3 (at step k−2)
according to

αk(s) =max
{
αk−2(s′0) + γk(s′′0 , s), αk−2(s′′1) + γk(s′′1 , s),

αk−2(s′′2) + γk(s′′2 , s), αk−2(s′′3) + γk(s′′3 , s)
}
. (3)

The radix-4 branch-metrics required in (3) are computed
according to

γk(s′′i , s) = γk−1(s′′i , s
′
j) + γk(s′j , s) (4)

using the six branch-metrics associated with the trellis-steps k
and k − 1 required in the radix-2 recursion (see Fig. 2).

C. LTE Interleaver

Interleavers scramble data in a pseudo-random order to
minimize the correlation of neighboring bits at the input
of the convolutional encoders (see Fig. 1). Some (e.g., the
one specified in HSDPA [2]) can present a challenge for
on-the-fly address-computation and lead to rather complex
circuits [12]. LTE, on the other hand, specifies the use of
a quadratic polynomial permutation (QPP) interleaver [18],
[19] that allows efficient computation of interleaved addresses

1The radix-4 backward and dummy backward state-metric recursions are
carried out in a similar fashion.

in hardware. Specifically, address-computation for QPP inter-
leavers is carried out according to

π(k) =
(
f1k + f2k

2
)

mod K (5)

where f1 and f2 are suitably chosen interleaver parameters that
depend on the code-block length K. For k ∈ {0, 1, . . . ,K −
1}, interleaved addresses can be generated by means of the
following recursion [20]

π(k + 1) =
(
π(k) + δ(k)

)
mod K

δ(k + 1) =
(
δ(k) + b

)
mod K (6)

where π(0) = 0, δ(0) = f1 + f2, and b = 2f2. The
recursion can be implemented efficiently in hardware because
only additions and modulo operations are involved. Indeed, as
QPP interleavers map even addresses to even addresses and
odd to odd [19], they facilitate efficient address-generation for
radix-4 recursions; in addition, (6) can also be formulated for
other address-increments (e.g., for even-numbered addresses).

III. PARALLEL TURBO-DECODER ARCHITECTURE

The critical path of non-parallel turbo-decoders is usu-
ally in the state-metric recursion units, since the associated
recursive computations exacerbate pipelining. Corresponding
speed-optimized implementations achieve not more than tens
of Mb/s, e.g., [12], [21], and hence, to meet the 326.4 Mb/s
LTE peak data-rate, the decoding time per half-iteration must
therefore be reduced. A promising solution is to instantiate N
M-BCJR units and to perform N -fold parallel decoding of
the trellis [22]. To this end, the trellis is divided into N trellis
segments of equal2 length S and parallel SISO decoding is car-
ried out in the assigned trellis-segment in parallel fashion. This
approach roughly increases the turbo-decoding throughput by
a factor of N compared to (non-parallel) turbo-decoders.3

A. High-Level Architecture

The proposed architecture shown in Fig. 3 is based on the
(non-parallel) HSDPA turbo-decoder in [12]. SISO decoding
is performed by alternating between non-interleaved and inter-
leaved phases which decode the first and second convolutional
code, respectively.

1) Overview: The architecture contains N max-log M-
BCJR instances, input memories for the storage of the sys-
tematic and parity LLRs, and one intermediate memory for the
storage of the extrinsic LLRs. The LTE interleaver consists of
an address-generator unit for the computation of all interleaved
and non-interleaved addresses, and of dedicated permutation
networks located at the input and intermediate memories. Each
M-BCJR instance processes one trellis-step per clock cycle
for radix-2 and two steps when using radix-4 recursions. We
note that the use of radix-4 recursions entails 2× increased
memory-bandwidth, since the LLRs associated with even-
and odd-numbered trellis-steps are required per clock cycle.

2NS = K is guaranteed for all code-block lengths specified in LTE with
N ∈ {1, 2, 4, 8}.

3The overhead caused by the dummy forward-recursions and by latencies
present in the M-BCJR decoders prevents linear scaling of the throughput in
the number of parallel SD instances N .

4 TO APPEAR IN IEEE JOURNAL OF SOLID-STATE CIRCUITS 2011

parity-1
LLRs

1st
M-BCJR
decoder

address
generator

output data

parity-2
LLRs

half-
iteration

in
p

u
t

d
a

ta

input RAM

inter-
leaver

inter-
leaver

2nd
M-BCJR
decoder

Nth
M-BCJR
decoder

systematic
LLRs

input RAM

intermediate
RAM

extrinsic LLRs

Fig. 3. High-level architecture of the proposed parallel turbo-decoder for LTE.

To cope with this (potentially) high memory-bandwidth, the
following memory architecture is used.

2) Memory architecture: The instantiated input and inter-
mediate memories store up to 6144 LLRs in support of the
maximum LTE code-block length. Each memory contains N
LLR-values per address (see Section IV for details). When
performing radix-2 computations, the systematic, parity 1-and-
2, and extrinsic LLRs are stored in separate RAMs. Since
access to either the parity-1 or parity-2 LLRs is required (in
the non-interleaved or interleaved phase), one single-port (SP)
RAM storing both sets of parity LLRs is used to minimize
silicon area. The systematic RAM only requires SP-capability,
whereas the intermediate memory requires two-port (TP) ca-
pability to provide the required memory bandwidth. The 2×
higher memory-bandwidth required by radix-4 recursions can
be provided by instantiating two RAMs for the systematic
LLRs and two for the extrinsic LLRs, all providing half the
amount of storage. One RAM instance is then used for the
LLRs associated to the even-numbered and the other for the
odd-numbered trellis-steps. This partitioning enables the 2×N
LLRs to be read per clock cycle. Note that splitting of the
parity RAM can be avoided by storing the two sets of LLRs
for k and k − 1 per address.

B. Implementation Tradeoffs
The key design parameters of the parallel turbo-decoder

architecture in Fig. 3 are the number of parallel M-BCJR
instances N and the use of either radix-2 or radix-4 recursions.
In order to determine the most efficient configuration that
meets the throughput requirements of LTE, we study the
associated throughput/area tradeoffs in Fig. 4 for 0.13µm
CMOS technology.4

4The throughput is given for 5.5 full-iterations and a block-length of K =
3200. The area and throughput correspond to synthesis results that have been
scaled to match with the measured area and throughput of the 8× parallel
radix-4 turbo-decoder ASIC presented in Section VI.

3GPP-LTE
peak data-rate

radix-2

radix-4

co
nsta

nt

hard
ware

-e
ffic

iency

1

4

2

8

1
2

4

8

[12]

this
work

number of parallel
component decoders

Throughput [Mb/s]

Fig. 4. Throughput/area tradeoffs for parallel radix-2 and radix-4 turbo-
decoders for maximum clock frequency in 0.13µm CMOS technology.

Fig. 4 shows that the architectures employing radix-2 com-
putations achieve a throughput ranging from 28 Mb/s (N = 1)
to 180 Mb/s (N = 8). Note that the HSDPA implementa-
tion [12] exhibits similar throughput and area as the N = 1
radix-2 LTE design. Since N = 8 is the maximum parallelism
supported for decoding of all code-block lengths in LTE,
we switch from radix-2 to radix-4 to reach higher through-
puts. The 326.4 Mb/s LTE peak data-rate (indicated by the
horizontal line in Fig. 4) can only be achieved for N = 8
in combination with radix-4 computations and therefore, we
consider the use of this configuration in the remainder of the
paper. We emphasize that these parameters additionally lead
to best hardware-efficiency (in terms of throughput per area),
which is due to the fact that the parallelization improves the
throughput almost linearly in N while only increasing the

STUDER, BENKESER, BELFANTI, AND HUANG 5

permutation

address
decoding

interleaved
addresses for eight
component decoders:

b
,g

,h
,e

,f
,c

,d
,a

6,31,36,21,26,11,16,1
a

,b
,c

,d
,e

,f
,g

,h

3 8 13 18 23 28 33 38

2 7 12 17 22 27 32 37

1 6 11 16 21 26 31 36

0 5 10 15 20 25 30 35

:
:

:
:

:
:

:
:

:
:

:
:

:
:

:
:

folded-memory
address: 1

folded
memory

address generator

Fig. 5. Architectural principle of the contention-free interleaver for N = 8
and S = 5. Address-decoding generates the sorting-order that is required to
assign the LLRs from the folded memory to the corresponding SISO decoders.

area associated with the M-BCJR instances (and interleaver-
related circuitry) but not the area of the rather large (input and
intermediate) memories. Hence, increasing the parallelism N
reduces the (detrimental) influence of the memories to the
overall hardware-efficiency.

We finally note that the general throughput/area tradeoffs
remain valid for other technology nodes. However, if a more
advanced technology node is used, less parallelism would be
necessary or radix-2 recursions might be sufficient to meet the
LTE peak data-rate.

IV. ALLEVIATING THE INTERLEAVER BOTTLENECK

Providing interleaved memory access at the high band-
width required by eight parallel radix-4 M-BCJR units is a
challenging task. For most interleavers, e.g., the one speci-
fied in HSDPA [2], parallel and interleaved memory access
leads to an interleaver bottleneck which is caused by access-
contentions, eventually resulting in rather inefficient imple-
mentations (see [23] for details). In the ensuing discussion,
we propose an architecture solution for LTE that alleviates the
interleaver bottleneck arising from parallel turbo-decoding.

A. Contention-Free Interleaving for LTE

The LTE interleaver exhibits two properties that allow for
bandwidth-efficient access to the memories in interleaved and
natural order. First, the interleaver is contention-free [24],
which ensures that—if N divides all code-block lengths K
without remainder, i.e., for N ∈ {1, 2, 4, 8}—the LLR-
values required by the N SDs can always (in interleaved as
well as non-interleaved decoding phases) be read out of N
different memories. Second, the interleaver is maximally-
vectorizable [19], which implies that the address-distance be-
tween each of the N interleaved addresses is always an integer
multiple of the trellis-segment length S. We next describe a
general architecture solution that exploits both properties to
avoid the interleaver bottleneck.

1) Memory folding: As is illustrated in Fig. 5, the sequence
of K LLRs associated with one code-block is stored in a
folded-memory, which consists of S addresses, contains N
LLR-values per address, and provides storage for K = NS
LLRs.5 The LLRs are written column-wise, such that the nth
trellis-segment corresponds to the nth column of the memory.
In the non-interleaved phase, N -fold parallel access to the
folded memory is straightforward. Starting from the folded-
memory address 0 in incrementing fashion, one reads out
all N LLR values residing at the current address and assigns
the LLR-value located at the nth column to the nth M-BCJR
instance for n = 1, . . . , N . This access scheme ensures that
each M-BCJR instance obtains the LLRs corresponding to its
assigned trellis-segment in the right order.

2) Interleaving: In the interleaved phase, each M-BCJR
instance is associated with an address-generator computing the
corresponding interleaved address. Since the LTE interleaver
is maximally-vectorizable, the N interleaved addresses always
point at the same row in the folded memory. The address
for the folded memory is immediately given by the smallest
address among the N interleaved addresses. The assignment
of the N LLR-values to the M-BCJR instances is more in-
volved and is performed in two stages. First, address-decoding
extracts the sorting-order that is required to assign the N
LLRs of the folded memory to the N M-BCJR instances
in the right order. Second, a permutation according to the
extracted sorting-order is applied to the N LLR values, which
are then passed to the corresponding M-BCJR instances. This
concept enables N× parallel and interleaved access to the
folded memory while avoiding access-contentions.

B. Master-Slave Batcher Network

On-the-fly address-generation for the LTE interleaver is—
thanks to the recursion (6)—not hardware-critical. However,
interleaved memory-access additionally requires i) the permu-
tation signals that enable the network to reverse the interleaved
order of the N addresses to its original order to be worked
out and ii) the LLRs to be assigned to the corresponding M-
BCJR unit. Both tasks are critical from a hardware-perspective,
since complex address-decoding logic and signal routing for
the distribution of the LLRs to the M-BCJR units are in-
volved. Multiplexers (MUXs), for example, offer an obvious
solution for the permutation in hardware, but require rather
complex address-decoding circuits and cause large fan-out and
wiring overhead for N > 4 with N MUXs each having N
inputs. In addition, achieving high throughput with pipelining
is rather inefficient, because many flip-flops are required to
cover all paths. We next propose an efficient solution that can
be used not only for the LTE interleaver, but also for arbitrary
contention-free interleavers that are maximally-vectorizable.

1) General idea: The proposed architecture implements the
two-step approach outlined in Section IV-A2. The first step
performs address-decoding, which amounts to sorting of the N
interleaved addresses in ascending order and extracting the

5In our radix-4 implementation, even- and odd-numbered systematic and ex-
trinsic LLRs are stored in separate RAMs with S/2 addresses (cf. Section III).

6 TO APPEAR IN IEEE JOURNAL OF SOLID-STATE CIRCUITS 2011

slave network

SW
a

b

c

d

e

f

g

h

6

31

36

21

26

11

16

1

master network

permutation signals

1

6

11

16

21

26

31

36

SO

SO

SO

SO SO

SO

SO SO

SO

SO

SO

SO

SO

SO

SO

SO

SO

SO

SO

SW

SW

SW

SW

SW

SW SW

SW

SW

SW

SW

SW SW

SW

SW

SW

SW

SW

input

b

g

h

e

f

c

d

a

output input

no outputs
generated

(a) MS Batcher network for N = 8.

>

2
-i
n
p
u
t
s
o
rt

e
r

(S
O

) permutation signal

2
-i
n
p
u
t
s
w

it
c
h
 (

S
W

)

permutation signal

(b) 2-input sorter (SO) and 2-input switch (SW) units.

Fig. 6. Address-decoding and permutation for maximally-vectorizable
contention-free interleavers based on the proposed master-slave (MS) Batcher
network.

corresponding sorting-order. The second step realizes the per-
mutation, which is obtained through sorting of the N LLRs
using the inverse sorting-order. The inverse sorting-order pro-
vides the permutation that generates the sequence of inter-
leaved addresses from the sorted address-sequence. Finally,
the nth output of the permutation stage is assigned to the nth
M-BCJR unit for n = 1, . . . , N .

2) Architecture: Our architecture, which is based on two
Batcher sorting networks [25], is shown in Fig. 6. Address-
decoding is carried out in the master network consisting of a
small number of 2-input sorter (SO) units to perform sorting
of the interleaved addresses in ascending order. As depicted in
Fig. 6(b), each 2-input sorter generates a permutation signal
indicating whether the inputs have been swapped or not. The
slave network performs the permutation by applying the in-
verse sorting-order to the N LLRs (see Fig. 6(a)). To this end,

we use a second network having the same interconnections as
the master network and consisting of 2-input switches (SW)
instead of sorters. The permutation signals generated in the
master network control the switches in the slave network. In
order for the slave network to implement the inverse sorting-
order, the LLRs are fed into the slave network from the op-
posite direction.6

3) Properties: The proposed master-slave (MS) Batcher net-
work offers an area-efficient way to perform address-decoding
and permutation in hardware and accommodates pipelining
with little hardware resources, which is essential to achiev-
ing high-throughput interleaving. In addition, the architectural
concept enables the use of asymptotically optimal sorting net-
works for an arbitrary number of inputs N .7 Consequently,
our solution allows for the economic implementation of inter-
leavers for highly-parallel turbo-decoders. Note that another
efficient permutation network, applicable to QPP interleavers
only, has been proposed in [7].

V. RADIX-4 MAX-LOG M-BCJR ARCHITECTURE

Pipelining applied to the MS Batcher network removes the
critical path from the interleaver. Hence, the maximum clock
frequency of the turbo-decoder will be determined by the crit-
ical path of the M-BCJR architecture. In addition, the eight
M-BCJR instances will carry out almost all computations and
hence, dominate the circuit area and power consumption of the
whole turbo-decoder. Therefore, to meet the LTE peak data-
rate while remaining area- and power-efficient, optimization
of the M-BCJR units is of paramount importance.

A. VLSI Architecture

The radix-2 M-BCJR unit of [12] forms the basis of the
radix-4 architecture depicted in Fig. 7. We implemented radix-
4 computations and applied further optimizations to improve
throughput and hardware-efficiency. The computation of two
trellis-steps is performed per clock cycle using three paral-
lel state-metric recursion units. These units implement the
forward, backward, and dummy backward state-metric recur-
sions, and contain one radix-4 ACS circuit for each of the
eight trellis-states. This processing scheme allows the radix-4
M-BCJR unit to compute two LLR values (associated with an
even- and odd-numbered trellis-step) per clock cycle, so that
each M = 30 trellis-step window is computed sequentially in
15 clock cycles.

In order to reduce storage requirements, the branch-metric
preprocessing unit computes LA

k + Ls
k (for k and k − 1)

and stores this intermediate result together with the corre-
sponding Lp1,p2

k in one of the three γ-memories [12]. The
γ-memories are realized by arrays of latches (requiring ap-
proximately the same area compared to SRAM macrocells) to
simplify placing of the eight M-BCJR units during the back-
end design. The radix-4 branch-metric computation units first

6In [1], the slave Batcher Network was implemented incorrectly, so that
only a subset of code-block lengths specified in LTE can be decoded.

7The number of required sorters scales with O
`
N log(N)

´
and the depth of

such networks (i.e., the number of sorters in the critical path) is O
`
log(N)

´
,

e.g., [26].

STUDER, BENKESER, BELFANTI, AND HUANG 7

radix-4
ACS
unit

init

forward
state-metric-
recursion unit G G

backward
state-metric-
recursion unit G

dummy
state-metric-
recursion unit

extrinsic/intrinsic
LLR computation

init

8x radix-4
ACS units

radix-4
branch-metric
computation

reuse of inter-
mediate values

radix-4
ACS
unit

radix-4
ACS
unit

output
data

input
data

branch-metric
preprocessing

-memory

-memory

-memory-memory

Fig. 7. Architecture of the implemented radix-4 max-log M-BCJR core.

parallel radix-4 ACS

comparison circuit for
modulo-normalization

>

MSB-1..0 MSB

MSB-1..0 MSB

+

+

+

+

L
U

TCMP

CMP

CMP

CMP

CMP

CMP

+

CMP

+

radix-2 ACS

Fig. 8. Radix-2 (left) and radix-4 (right) ACS architectures based on modulo-
normalization.

work out the radix-2 branch-metrics and then calculate the
radix-4 branch metrics (4). The forward state-metric recursion
unit starts with a dummy recursion for one window to obtain
initial forward state-metrics and then, computes the αk(s) for
each window, which are cached within the α-memory (realized
using latches only). The backward state-metric recursion unit
computes the βk(s) for each window. The initial backward
state-metrics required at the beginning of each window are
generated by the dummy state-metric recursion unit. The
cached forward state-metrics, the intermediate results obtained
in the backward recursion, and the radix-2 branch-metrics are
finally used to compute the intrinsic LLRs (2).

B. Radix-4 ACS Units with Modulo-Normalization

To arrive at a short critical path in the ACS units, (ex-
pensive) re-normalization circuitry is avoided by employing
modulo-normalization [27], [28], which only requires minor
modifications of the comparison circuit involved [12]. Fig. 8

shows corresponding radix-2 and radix-4 ACS architectures.
The critical path of the presented (parallel) radix-4 ACS unit is
optimized for throughput. Here, the selection signal is carried
out by six parallel comparators followed by a look-up table
(LUT). This architecture shortens the critical path-delay by
about 50% compared to a tree-like radix-4 ACS implemen-
tation. We finally note that radix-4 recursions require one bit
more for the state-metrics (as for radix-2) to ensure proper
functioning of modulo-normalization, which is due to the fact
that the radix-4 branch-metrics (4) have 2× larger dynamic
range.

Our implementation results have shown that radix-4 M-
BCJR units achieve approximately 40% higher throughput
(at 0.7× lower clock frequency) while being only 15% less
hardware-efficient (in terms of Mb/s per area) compared
to radix-2-based designs. We therefore conclude the use of
radix-4 is essential for turbo-decoders aiming at maximum
throughput and considerably relax the corresponding design
constraints due to the reduced clock frequency.

C. LLR Computation Unit

The LLR computation unit shown in Fig. 7 computes the
intrinsic and extrinsic LLRs for the trellis-steps k − 1 and k
in each clock cycle. Since radix-4 computations only obtain
the state- and branch-metrics associated with even trellis-steps
k = 2k′, computation of the (intermediate) state- and branch-
metrics associated with the odd trellis-steps k = 2k′ + 1 is
required. These values can be derived from the state-metrics
αk−2(s) stored in the α-memory, from the intermediate results
of the backward state-metric recursion γk(s′′i , s) + βk(s), and
from the (radix-2) branch metrics γk(s′i, s) and γk−1(s′′j , s

′
i).

LLR computation first works out the forward αk−1(s) and
backward βk−1(s) state-metrics associated with the odd trellis-
step k − 1 and then—with the aid of the radix-2 branch-
metrics—calculates the intrinsic LLRs (2). Computation of (2)
is realized using two maximization trees, which have been
pipelined to ensure that the critical path of the M-BCJR block
is in one of the three state-metric recursion units.

VI. IMPLEMENTATION RESULTS AND COMPARISON

In this section, we summarize the key characteristics of the
8× parallel LTE turbo-decoder designed in this paper and
compare our ASIC implementation results to that of other
turbo-decoder implementations.

A. Error-Rate Performance

To achieve near-optimal error-rate performance, the input
LLRs are quantized to 5 bit, the extrinsic LLRs to 6 bit, all
state-metrics in the radix-4 ACS units require 10 bit, and ex-
trinsic scaling with a hardware-friendly constant of 0.6875
was used. Fig. 9 shows the resulting bit error-rate (BER) of
the hardware implementation and provides a comparison to
the ideal turbo-decoding algorithm (i.e., employing floating-
point arithmetics and using the BCJR algorithm) at 5.5 full-
iterations. One can observe that the use of extrinsic scaling
leads to a 0.2 dB improvement compared to the standard max-
log M-BCJR algorithm and the final implementation loss is

8 TO APPEAR IN IEEE JOURNAL OF SOLID-STATE CIRCUITS 2011

implementation
loss: 0.14dB

impact of
extrinsic
scaling

Ideal turbo-decoding algorithm (I=5.5)

Hardware implementation (I=5.5)

Max-log-MAP turbo decoder (I=5.5)

Fig. 9. BER performance in AWGN channel for code-block length 3200.

parity 1 and 2 memorysystematic
memories

extrinsic
memories

a
d

d
re

s
s
-

g
e
n

e
ra

to
rs

 a
n

d
B

a
tc

h
e
r

n
e
tw

o
rk

s

BCJR 1

BCJR 2

BCJR 3

BCJR 4

BCJR 5

B
C

J
R

 6

BCJR 7

B
C

J
R

 8

Fig. 10. Turbo-decoder ASIC micrograph with highlighted units.

smaller than 0.14 dB (in terms of Eb/N0) compared to that
achieved by the ideal turbo-decoding algorithm.

B. Key Characteristics and Comparison

Table I summarizes the key characteristics of the imple-
mented turbo-decoder prototype [1] in 0.13 µm (1P/8M) CMOS
technology. The corresponding ASIC micrograph is shown in
Fig. 10. About 2/3 of the area is occupied by the eight radix-4
max-log M-BCJR instances, which confirms that optimization
of the M-BCJR unit is of paramount importance during the
design of a parallel turbo-decoder.

Normalized hardware efficiency (in Mb/s/mm2) of our ASIC
prototype is best in class. The active area of the chip is
3.57 mm2, comprises 553 kGE (excluding the memories), and
uses 129 kb of RAM. The maximum measured clock frequency
is 302 MHz, at which a throughput of 390.6 Mb/s at 5.5
iterations has been measured. Our ASIC prototype is therefore
the first reported in the open literature that achieves the
theoretical 326.4 Mb/s LTE peak data-rate (with a 20% safety-

TABLE II
POWER CONSUMPTION WITH SUPPLY-VOLTAGE SCALING

Throughput Supply Leakage Power Energy eff.
[Mb/s] voltage [Vdd] current consumption [nJ/bit/iter.]

326.4 1.06 V 0.98 mA 503 mW 0.28

100.0 0.71 V 0.56 mA 68.6 mW 0.13

margin). The power consumption (measured at maximum
throughput) is 788.9 mW, leading to an energy-efficiency of
0.37 nJ/bit/iteration.8 Note that only [5] reports a slightly better
energy-efficiency at less than half the throughput and about 5×
larger silicon area.

Table II shows the power consumption required for the
326.4 Mb/s LTE peak data-rate and the more realistic 100 Mb/s
throughput targeted by industry today. The supply voltage was
scaled to meet the specified throughputs, leading to 503 mW
for the LTE peak data-rate and only 68.6 mW for the 100 Mb/s
milestone. A comparison of the 0.13 nJ/bit/iteration energy-
efficiency with other turbo-decoders in Table I highlights the
effectiveness of our implementation concept.

VII. CONCLUSIONS

In this paper, we detailed the design of a parallel
turbo-decoder for the 3GPP-LTE standard. The analysis of
the throughput/area tradeoffs associated with parallel turbo-
decoders have shown that radix-4 in combination with eight
M-BCJR instances are necessary for the LTE peak data-
rate in 0.13 µm CMOS technology. Parallel and interleaved
access to the memories at high throughput was achieved
through the development of a master-slave Batcher network.
Optimizations in the radix-4 M-BCJR unit finally led to a
high-performance and low-area turbo-decoder architecture. In
addition to setting a record in turbo-decoding throughput, both
ultra low-power and cost-effectiveness have been demonstrated
by the presented implementation concept.

REFERENCES

[1] C. Studer, C. Benkeser, S. Belfanti, and Q. Huang, “A 390Mb/s 3.57mm2

3GPP-LTE turbo decoder ASIC in 0.13µm CMOS,” in IEEE ISSCC dig.
tech. papers, vol. 1, San Francisco, CA, USA, Feb. 2010, pp. 274–275.

[2] 3rd Generation Partnership Project; Technical Specification Group
Radio Access Network; Channel Coding and Multiplexing Examples,
3GPP Organizational Partners TS 25.944, Rev. 4.1.0, Jun. 2001.

[3] 3rd Generation Partnership Project; Technical Specification Group
Radio Access Network; Evolved Universal Terrestrial Radio Access (E-
UTRA); Multiplexing and channel coding (Release 9), 3GPP Organiza-
tional Partners TS 36.212, Rev. 8.3.0, May 2008.

[4] 3GPP TR25.912 V8.0.0, “Feasibility study for evolved universal terres-
trial radio access (UTRA) and universal terrestrial radio access network
(UTRAN),” Feb. 2009.

[5] C.-C. Wong, M.-W. Lai, C.-C. Lin, H.-C. Chang, and C.-Y. Lee, “Turbo
decoder using contention-free interleaver and parallel architecture,”
IEEE JSSC, vol. 45, no. 2, pp. 422–432, Feb. 2010.

[6] J.-H. Kim and I.-C. Park, “A unified parallel radix-4 turbo decoder for
mobile WiMAX and 3GPP-LTE,” in Proc. CICC, San Jose, CA, USA,
Sept. 2009, pp. 487–490.

8All power measurements are performed at T = 300 K for a code-block
length K = 3200 and 5.5 full-iterations using typical stimuli generated at
Eb/N0 = 0.6 dB.

STUDER, BENKESER, BELFANTI, AND HUANG 9

TABLE I
KEY CHARACTERISTICS AND COMPARISON TO OTHER MEASURED TURBO-DECODER ASICS

Publication This work Wong Kim and Park Wong Benkeser Bickerstaff
et al. [5] [6] et al. [7] et al. [12] et al. [21]

Standard LTE — LTE / WiMAX LTE HSDPA HSDPA

Radix/parallel decoders 4/8 2/16 4/8 2/8 2/1 4/1

CMOS technology [nm] 130 130 130 90 130 180

Supply voltage [V] 1.2 1.32 1.2 1.0 1.2 1.8

Gate count 553 k 2.67a M 800a k — 44.1 k 410 k

Memory [kb] 129 — — — 122 410

Active area [mm2] 3.57 17.81 10.7 2.1 (4.3b) 1.2 14.5 (7.3b)

Maximum throughput 390.6 233c 271c 188c
20.3 26.2c

at 5.5 iterations [Mb/s] (133bc) (37bc)

Normalized hardware- 109.4 13.1 25.3 30.9 16.9 5.07
efficiencyb [Mb/s/mm2]

Leakage current [mA] 1.23d — — — 1.73 —

Power consumption 788.9d 275 — 219 (619b) 57.8 956 (338b)
in [mW] at [Mb/s] at 390.6 at 160 at 129 at 10.8 at 10.8

Normalized energy 0.37d 0.22 0.61 0.59 0.7 3.9
efficiencybc [nJ/bit/iter.]

aIncluding the gate count of the memories.
bTechnology scaling to 0.13 µm CMOS assuming: A ∼ 1/s2, tpd ∼ 1/s, and Pdyn ∼ 1/s3.
cThroughput linearly scaled to 5.5 iterations.
dMeasured at Vdd = 1.2 V and T = 300 K.

[7] C.-C. Wong and H.-C. C. Y.-Yu Lee, “A 188-size 2.1mm2 reconfigurable
turbo decoder chip with parallel architecture for 3GPP LTE system,” in
Symp. VLSI circuits dig. tech. papers, Kyoto, Japan, June 2009, pp.
288–289.

[8] C. Berrou and A. Glavieux, “Near optimum error correcting coding and
decoding: turbo-codes,” IEEE Trans. Comm., vol. 44, no. 10, pp. 1261–
1271, Oct. 1996.

[9] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear
codes for minimizing symbol error rate,” IEEE Trans. Inf. Th., vol. 20,
no. 2, pp. 284–287, Mar. 1974.

[10] A. J. Viterbi, “Error bounds for convolutional codes and an asymptoti-
cally optimum decoding algorithm,” IEEE Trans. Inf. Th., vol. 13, no. 2,
pp. 260–269, Apr. 1967.

[11] J. P. Woodard and L. Hanzo, “Comparative study of turbo decoding
techniques: an overview,” IEEE Trans. Vehicular Tech., vol. 49, no. 6,
pp. 2208–2233, Nov. 2000.

[12] C. Benkeser, A. Burg, T. Cupaiuolo, and Q. Huang, “Design and
optimization of an HSDPA turbo decoder ASIC,” IEEE JSSC, vol. 44,
no. 1, pp. 98–106, Jan. 2008.

[13] V. Franz and J. B. Anderson, “Concatenated decoding with a reduced-
search BCJR algorithm,” IEEE J. Sel. Areas in Comm., vol. 16, no. 2,
pp. 186–195, Feb. 1998.

[14] M. van Dijk, A. J. E. M. Janssen, and A. G. C. Koppelaar, “Correcting
systematic mismatches in computed log-likelihood ratios,” Europ. Trans.
Telecomm., vol. 14, no. 3, pp. 227–244, Jul. 2003.

[15] J. Vogt and A. Finger, “Improving the max-log-MAP turbo decoder,”
Elec. Letters, vol. 36, no. 23, pp. 1937–1939, Nov. 2000.

[16] M. May, T. Ilnseher, N. Wehn, and W. Raab, “A 150MBit/s 3GPP LTE
turbo code decoder,” in Proc. DATE, Dresden, Germany, Mar. 2010.

[17] G. Fettweiss and H. Meyr, “Parallel Viterbi algorithm implementation:
breaking the ACS-bottleneck,” IEEE Trans. Comm., vol. 37, no. 8, pp.
785–790, Aug. 1989.

[18] J. Sun and O. Y. Takeshita, “Interleavers for turbo codes using permu-
tation polynomials over integer rings,” IEEE Trans. Inf. Th., vol. 51,
no. 1, pp. 101–119, Jan. 2005.

[19] A. Nimbalker, Y. Blankenship, B. Classon, and T. K. Blankenship, “ARP
and QPP interleavers for LTE turbo coding,” in Proc. IEEE WCNC, Las
Vegas, NV, USA, Mar. 2008, pp. 1032–1037.

[20] B. Moision and J. Hamkins, “Coded modulation for the deep-space

optical channel: Serially concatenated pulse-position modulation,” IPN
Progess Report 41-161, pp. 1–25, May 2005.

[21] M. Bickerstaff, L. Davis, C. Thomas, D. Garrett, and C. Nicol, “A
24Mb/s radix-4 logMAP turbo decoder for 3GPP-HSDPA mobile wire-
less,” in IEEE ISSCC dig. tech. papers, vol. 1, San Francisco, CA, USA,
Feb. 2003, pp. 150–484.

[22] R. Dobkin, M. Peleg, and R. Ginosar, “Parallel VLSI architecture for
MAP turbo decoder,” in Proc. IEEE Int. Symp. PIMRC, vol. 1, Sept.
2002, pp. 384–388.

[23] C. Benkeser, “Power efficiency and the mapping of communication
algorithms into VLSI,” Ph.D. dissertation, ETH Zürich, Switzerland,
Series in Microelectronics, vol. 209, Hartung-Gorre Verlag Konstanz,
2010.

[24] O. Y. Takeshita, “On maximum contention-free interleavers and permu-
tation polynomials over integer rings,” IEEE Trans. Inf. Th., vol. 52,
no. 3, pp. 1249–1253, Mar. 2006.

[25] K. E. Batcher, “Sorting networks and their applications,” in Proc. of 32th
AFIPS Spring Joint Computer Conf., Atlantic City, NJ, USA, 1968, pp.
307–314.

[26] M. Ajtai, J. Komlós, and E. Szemerédi, “An O(n logn) sorting net-
work,” Ann. ACS Symp. Theory of Comp., pp. 1–9, 1983.

[27] A. P. Hekstra, “An alternative to metric rescaling in Viterbi decoders,”
IEEE Trans. Comm., vol. 37, no. 11, pp. 1220–1222, Nov. 1989.

[28] C. B. Shung, P. H. Siegel, G. Ungerboeck, and H. K. Thapar, “VLSI
architectures for metric normalization in the Viterbi algorithm,” in Proc.
IEEE ICC, vol. 4, Atlanta, GA, USA, Apr. 1990, pp. 1723–1728.

