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Abstract—We investigate the recovery of signals exhibiting
a sparse representation in a general (i.e., possibly redundant
or incomplete) dictionary that are corrupted by additive noise
admitting a sparse representation in another general dictionary.
This setup covers a wide range of applications, such as image
inpainting, super-resolution, signal separation, and the recovery
of signals that are corrupted by, e.g., clipping, impulse noise,
or narrowband interference. We present deterministic recovery
guarantees based on a recently developed uncertainty relation
and provide corresponding recovery algorithms. The recovery
guarantees we find depend on the signal and noise sparsity levels,
on the coherence parameters of the involved dictionaries, and on
the amount of prior knowledge on the support sets of signal and
noise.

I. INTRODUCTION

We consider the problem of identifying the sparse vec-
tor x ∈ CNa from M linear and non-adaptive measurements
collected in the vector

z = Ax + Be (1)

where A ∈ CM×Na and B ∈ CM×Nb are deterministic and
general (i.e., not necessarily of the same cardinality and pos-
sibly redundant or incomplete) dictionaries, and e ∈ CNb is a
sparse noise vector. The support set of e and the corresponding
nonzero entries can be arbitrary; in particular, e may also
depend on x and/or the dictionary A.

This recovery problem occurs in numerous applications,
some of which are described next:
• Clipping: Non-linearities in analog-to-digital converters

often cause signal clipping, e.g., [2]. Specifically, instead
of the M -dimensional signal vector y = Ax of interest,
the device in question delivers ga(y), where the function
ga(y) realizes entry-wise signal clipping to the interval
[−a,+a]. Setting B = IM , where IM denotes the M×M
identity matrix, and rewriting (1) as z = y + e with
e = ga(y) − y, we see that signal clipping is contained
in the model (1). The nonzero entries of e are those for
which clipping occurred; the vector e will therefore be
sparse if the clipping level is chosen high enough. Here it
is essential that the noise vector e be allowed to depend
on the vector x and/or the dictionary A.

• Impulse noise: In numerous applications, one has to
deal with the recovery of signals corrupted by impulse
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noise [3]. Specific applications include, e.g., reading out
from unreliable memory or recovery of audio signals im-
paired by click/pop noise. The model in (1) incorporates
such impairments by setting B = IM and identifying e
with the impulse-noise vector.

• Narrowband interference: In many applications one is
interested in recovering audio, video, or communication
signals that are corrupted by narrowband interference.
Such impairments typically exhibit a sparse representa-
tion in the frequency domain, which amounts to setting
B = FM in (1), where FM denotes the M ×M discrete
Fourier transform matrix.

• Super-resolution and inpainting: Our framework also
encompasses super-resolution [4] and inpainting [5] for
images, audio, and video signals. In both applications,
only a subset of the entries of the (full-resolution) signal
vector y = Ax is available. The missing entries are
accounted for by choosing the vector e so that the entries
of z = y + e, corresponding to the missing entries in
y, are set to some (arbitrary) value. The missing entries
of y are then filled in by recovering x from z followed
by computing y = Ax. Note that in both applications,
the dictionary A is typically redundant, i.e., A has more
columns than rows, which demonstrates the need for
recovery results that apply to redundant dictionaries.

• Signal separation: The decomposition of audio or video
signals into two distinct components also fits into our
framework. A prominent example is the separation of
texture from cartoon parts in images [5]. In this appli-
cation, one chooses the dictionaries A and B such that
texture parts can be sparsely represented in A and cartoon
parts are sparsely represented in B. Signal separation
then amounts to extracting the sparse vectors x and e,
simultaneously, from z = Ax + Be, where z represents
the image to be decomposed; Ax corresponds to the
texture part, and Be represents the cartoon part.

Naturally, it is of significant interest to identify fundamental
limits on the recovery of x (and e, in the case of signal
separation) from z in (1). For the noiseless case z = Ax
such recovery guarantees are known [6], [7] and typically set
limits on the maximum allowed number of nonzero entries of
x. For the case of unstructured noise, i.e., z = Ax + n with
no constraints imposed on n apart from ‖n‖2 <∞, recovery



guarantees were derived in [8]–[10].
Contributions: We derive conditions that guarantee perfect

recovery of x (and e) from the sparsely corrupted observation
z. Specifically, based on an uncertainty relation for pairs
of general dictionaries presented in [1], we find recovery
guarantees that depend on the number of nonzero entries in x
and e, and on the coherence parameters of the dictionaries
A and B. These recovery guarantees are obtained for the
following different cases: i) The support sets of both x and e
are known (prior to recovery), ii) the support set of only x or
only e is known, iii) the number of nonzero entries of only x
or only e is known, and iv) nothing is known about x and e.
We formulate recovery algorithms and derive corresponding
performance guarantees.

Notation: Lowercase boldface letters stand for column
vectors and uppercase boldface letters designate matrices. For
the matrix M, we denote its transpose, conjugate transpose,
and pseudo-inverse by MT , MH , and M†, respectively. The
kth column of M is designated by mk and the kth entry of m
is [m]k. The space spanned by the columns of M is denoted
by R(M). Throughout the paper, we assume that the columns
of the dictionaries A and B have unit `2-norm. The M ×M
identity matrix is denoted by IM , the M ×N all zeros matrix
is 0M,N , and 0M stands for the all-zeros vector of dimension
M . The `2-norm of the vector x is denoted by ‖x‖2, ‖x‖1
stands for the `1-norm of x, and ‖x‖0 designates the number
of nonzero entries in x. Sets are designated by upper-case
calligraphic letters; the cardinality of the set T is |T |. The
complement of a set S is denoted by Sc. For two sets S1 and
S2, s ∈ (S1 + S2) means that s is of the form s = s1 + s2,
where s1 ∈ S1 and s2 ∈ S2. The set of subsets of S of
cardinality less than or equal to n is denoted by ℘n(S). The
support set of the vector m, i.e., the index set corresponding
to the nonzero entries of m, is designated by supp(m). The
matrix MT is obtained by retaining the columns of M with
indices in T ; the vector mT is obtained analogously from the
vector m. For x ∈ R, we set [x]+= max{x, 0}.

II. REVIEW OF RELEVANT PREVIOUS RESULTS

Recovery of the vector x from the sparsely corrupted
measurement z = Ax + Be corresponds to a sparse-signal
recovery problem subject to structured (i.e., sparse) noise. In
this section, we briefly summarize existing results for sparse-
signal recovery from noiseless measurements, and we re-
view recovery results available for unstructured and structured
noise.

A. Recovery in the Noiseless Case

If we do not impose additional assumptions on x, the
problem of recovering x from the (noiseless) observation
y = Ax with A being redundant (i.e., M < Na) is obviously
ill-posed. However, assuming that x is sparse changes the
situation drastically. More specifically, one can recover x by
solving

(P0) minimize ‖x‖0 subject to y = Ax.

This results, however, in prohibitive computational complexity,
even for small problem sizes. Two of the most popular and
computationally tractable alternatives to solving (P0) are basis
pursuit (BP) [6] and orthogonal matching pursuit (OMP) [7].
BP amounts to solving

(BP) minimize ‖x‖1 subject to y = Ax.

OMP is a greedy algorithm that iteratively constructs a sparse
representation of y. Recovery guarantees are usually expressed
in terms of the sparsity level nx = ‖x‖0 and the coherence
of the dictionary A defined as µa = maxk,`,k 6=`

∣∣aH
k a`

∣∣. As
shown in [6], [7], a sufficient condition for x to be the unique
solution of (P0) applied to y = Ax and for BP and OMP to
deliver this solution is

nx <
1

2

(
1 + µ−1a

)
. (2)

B. Recovery in the Presence of Unstructured Noise

Recovery guarantees in the presence of unstructured (and
deterministic) noise, i.e., z = Ax + n with no constraints
imposed on n apart from ‖n‖2 < ∞, were derived in,
e.g., [8], [9]. The corresponding results guarantee that a
suitably modified version of BP recovers an x̂ satisfying
‖x− x̂‖2 < C‖n‖2 provided that nx < (1 + µ−1a )/4, where
C > 0 depends on µa and nx. Another result in [8] states that
OMP delivers the correct support set (but does not perfectly
recover the nonzero entries of x) provided that

nx <
1

2

(
1 + µ−1a

)
−
‖n‖2
µa|xmin|

(3)

where |xmin| denotes the absolute value of the component of
x with smallest nonzero magnitude. This recovery condition
yields sensible results only if ‖n‖2/|xmin| is small. Recovery
guarantees in the case of stochastic noise n can be found in [9],
[10]. We finally point out that perfect recovery of x is, in
general, impossible in the presence of unstructured noise.

C. Recovery Guarantees in the Presence of Structured Noise

Special cases of the general setup (1) were considered
in [2], [3], [11]–[14]. Specifically, in [11] it was shown that
for A = FM and B = IM , perfect recovery of the M -
dimensional vector x is possible if 2nxne < M , where
ne = ‖e‖0. We emphasize that this result assumes the support
set of e to be known (prior to recovery), an assumption that is
often difficult to meet in practice. It is interesting to observe
that the condition 2nxne < M is—in contrast to the recovery
guarantee (3)—independent of the `2-norm of the noise vector,
i.e., ‖Be‖2 may, in principle, be arbitrarily large. We note
that the recovery guarantees reported in [11] are based on an
uncertainty relation that puts limits on how sparse a given
signal can simultaneously be in the Fourier basis and in the
identity basis. The present paper is heavily inspired by this
observation.

In [2], [12]–[14] probabilistic recovery results for A i.i.d.
zero-mean Gaussian or a randomly sub-sampled unitary matrix
and B an orthonormal basis (ONB) were reported.



III. RECOVERY OF SPARSELY CORRUPTED SIGNALS

Based on the uncertainty relation in [1, Thm. 1], we next
derive conditions that guarantee perfect recovery of x from the
sparsely corrupted measurement z under different assumptions
on prior knowledge about the support sets of signal and noise.
Specifically, these conditions depend on the number of nonzero
entries of x and e, and on the coherence parameters µa and
µb of the dictionaries A and B, respectively, and the mutual
coherence µm = maxk,`

∣∣aH
k b`

∣∣. To simplify notation, we
define the function

f(u, v) = [1− µa(u− 1)]
+
[1− µb(v − 1)]

+
/µ2

m.

In the remainder of the paper, X denotes supp(x) and E stands
for supp(e). We furthermore assume that1 µm > 0.

A. Case I: Knowledge of X and E
We start with the case where both X and E are known (prior

to recovery). The values of the nonzero entries of x and e are
unknown, of course. This scenario is relevant, for example, in
applications requiring recovery of clipped band-limited signals
with known spectral support X (i.e., A = FM and B = IM ).

We first rewrite the input-output relation in (1) according
to z = DX ,EsX ,E with the concatenated dictionary DX ,E =

[AX BE ] and the stacked vector sX ,E =
[
xT
X eT
E
]T

. It is
now important to realize that we can recover the stacked vector
sX ,E perfectly and hence the nonzero entries of both x and e,
if DX ,E has full column rank and the pseudo-inverse is given
by D†X ,E = (DH

X ,EDX ,E)
−1DH

X ,E . In this case, we get sX ,E
according to

sX ,E = D†X ,Ez. (4)

The following theorem states a sufficient condition for DX ,E to
have full column rank, and hence for the pseudo-inverse D†X ,E
to exist. This condition depends on the coherence parameters
µa, µb, and µm, of the involved dictionaries A and B and on
X and E only through the cardinalities |X | and |E|, i.e., the
number of nonzero entries in x and e, respectively.

Theorem 1: Let z = Ax + Be with X = supp(x) and
E = supp(e). Define nx = ‖x‖0 and ne = ‖e‖0. If

nxne < f(nx, ne) (5)

then the concatenated dictionary DX ,E = [AX BE ] has full
column rank.

Proof: See Appendix A.
Consequently, if (5) holds, one can perfectly recover x (and
also e) from z using (4).

B. E is Known and X is Unknown
Next, we find recovery guarantees for the case where E is

known and X is unknown (prior to recovery). A prominent
application for this setup is the recovery of clipped band-
limited signals, where the spectral support of x is unknown
(i.e., A = FM , B = IM , and X is unknown), E is known and
corresponds to the set of clipped entries. The case where X

1If µm = 0, the recovery (separation) task is straightforward as R(A) is
orthogonal to R(B).

is known and E is unknown can be treated similarly (see [1]
for details).

The setting of E known and X unknown was considered
previously in [11] for the special case A = FM and B = IM .
The recovery condition (8) in Theorem 2 below extends the
result in [11, Thms. 5 and 9] to pairs of general dictionaries
A and B.

Theorem 2: Let z = Ax + Be where E = supp(e) is
known. Consider the problem

(P0, E)
{

minimize ‖x̃‖0
subject to Ax̃ ∈ ({z}+R(BE))

(6)

and the convex program

(BP, E)
{

minimize ‖x̃‖1
subject to Ax̃ ∈ ({z}+R(BE)) .

(7)

Define nx = ‖x‖0 and ne = ‖e‖0. If

2nxne < f(2nx, ne) (8)

then the unique solution of (P0, E) applied to z = Ax + Be
is given by x and (BP, E) delivers this solution.

Proof: See Appendix B.
Solving (P0, E) requires a combinatorial search, which re-

sults in prohibitive computational complexity, even for moder-
ate problem sizes. The convex relaxation (BP, E) can, however,
often be solved more efficiently.

Rather than solving (P0, E) or (BP, E), we may compute
the projection onto the orthogonal complement of R(BE)
according to:

REz = RE(Ax + BEeE) = REAx , ẑ (9)

where RE = IM − BEB
†
E . This leaves us with the standard

problem of recovering x from the modified measurement
outcome ẑ = REAx. Since the columns of REA will, in
general, not have unit `2-norm, an assumption underlying the
threshold in (2), we normalize the modified dictionary REA
by rewriting (9) as

ẑ = REA∆x̂ (10)

where ∆ is the diagonal matrix with elements [∆]`,` =
1/‖REa`‖2, ` = 1, . . . , Na, and x̂ , ∆−1x. Now, REA∆
plays the role of the dictionary (with normalized columns)
and x̂ is the unknown sparse vector that we wish to recover.
Obviously, supp(x̂) = supp(x) and x can be recovered from
x̂ by noting that x = ∆x̂. The following theorem shows that
(8) is sufficient to guarantee the following: i) The columns
of BE are linearly independent (guaranteeing the existence of
B†E ), ii) ‖REa`‖2 > 0 for ` = 1, . . . , Na, and iii) no nonzero
vector x′ ∈ CNa satisfying ‖x′‖0 ≤ 2nx lies in the kernel of
REA. Hence, (8) guarantees perfect recovery of x from (10).

Theorem 3: If (8) is satisfied, the unique solution of (P0)
applied to ẑ = REA∆x̂ is given by x̂. Furthermore, BP and
OMP applied to ẑ = REA∆x̂ are guaranteed to recover the
unique (P0)-solution.

Proof: The proof can be found in [1].



For the case of X known and E unknown the recovery
guarantee (8) is replaced by [1]

2nxne < f(nx, 2ne). (11)

C. Case III: Cardinality of E or X Known
We next consider the case where neither X nor E are known,

but knowledge of either ‖x‖0 or ‖e‖0 is available (prior
to recovery). A possible corresponding application scenario
would be the recovery of a sparse pulse-stream with unknown
pulse-locations from measurements that are corrupted by elec-
tric hum with unknown base-frequency but known number of
harmonics (e.g., limited by the acquisition bandwidth). We
state our main result for the case ne = ‖e‖0 known and
nx = ‖x‖0 unknown. The case where nx is known and ne is
unknown can be treated similarly.

Theorem 4: Let z = Ax+Be, define nx = ‖x‖0 and ne =
‖e‖0, and assume that ne is known. Consider the problem

(P0, ne)

 minimize ‖x̃‖0
subject to Ax̃ ∈

(
{z}+

⋃
E′∈P

R(BE′)
)

(12)

where P=℘ne
({1, . . . , Nb}). The unique solution of (P0, ne)

applied to z = Ax + Be is given by x if

4nxne < f(2nx, 2ne). (13)

Proof: The proof is similar to that of Theorem 2. The
corresponding details can be found in [1].

We emphasize that (P0, ne) exhibits prohibitive compu-
tational complexity, in general. Unfortunately, replacing the
`0-norm of x̃ in the minimization in (12) by the `1-norm
does not lead to a computationally tractable algorithm, as the
constraint Ax̃ ∈ ({z} +

⋃
E′∈P R(BE′)) specifies a non-

convex set, in general. Nonetheless, the recovery threshold
in (13) is interesting as it completes the picture on the impact
of knowledge about the support sets of x and e on the recovery
thresholds (see Section IV).

D. Case IV: No Knowledge about the Support Sets
Finally, we consider the case where no knowledge about the

support sets X and E is available (prior to recovery). A typical
application scenario for this setting is the decomposition of
images into two distinct features, i.e., into a part that exhibits
a sparse representation in A and another part exhibiting a
sparse representation in B.

Recovery guarantees for this case follow from results in [15]
for the concatenation of general (possibly redundant or in-
complete) dictionaries. This can be seen by writing (1) as
z = Dw with D = [A B] and w = [xT eT ]T . In particular,
it was shown in [15, Eq. 10] that the unique solution of
(P0) applied to z = Dw is given by w and, furthermore,
in [15, Eq. 13] that this solution is delivered by BP and OMP
applied to z = Dw, if the number of nonzero entries of w is
less than a corresponding sparsity threshold. These thresholds
(i.e., [15, Eqs. 10 and 13]) are more restrictive than those
in (5), (8), (11), and (13) (cf. Section IV), which reflects the
fact that additional knowledge about the support sets X and
E can only improve the recovery guarantees.
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Figure 1. Recovery thresholds (5), (8), (11), (13), and [15, Eq. 13] for
µa = 0.05, µb = 0.05, and µm = 0.1.

IV. THE FACTOR-OF-TWO PENALTY

Comparing the recovery thresholds (5), (8), (11), and (13)
(Cases I-III), we observe that the price to be paid for not
knowing the support set X or E is a reduction of the recovery
threshold by a factor of two. For example, consider the
recovery thresholds (5) and (8). For given ne ∈ [0, 1 + 1/µb],
solving (5) for nx yields

nx <
(1 + µa)(1− µb(ne − 1))

ne(µ2
m − µaµb) + µa(1 + µb)

.

Similarly, solving (8) for nx, we get

nx <
1

2

(1 + µa)(1− µb(ne − 1))

ne(µ2
m − µaµb) + µa(1 + µb)

.

Hence, knowledge of X (prior to recovery) allows for twice
as many nonzero entries in x compared to the case where X
is unknown. This factor-of-two penalty has the same roots
as the well-known factor-of-two penalty in spectrum-blind
sampling [16]–[18].

The factor-of-two penalty is illustrated in Fig. 1, where
we plot the recovery thresholds (5), (8), (11), (13), and
(for completeness) [15, Eq. 13] (which guarantees that w is
recovered through BP and OMP in Case IV without knowledge
about X or E) for µa = µb = 0.05 and µm = 0.1. In particular,
we can see that for a fixed error sparsity level, e.g., ne = 6, for
the case where both X and E are known the threshold evaluates
to nx < 8; when only E is known we have nx < 4. For a
fixed signal sparsity level, e.g., nx = 4, we can furthermore
see that in the case where only ne is known we can tolerate
only ne < 3 errors, compared to ne < 6 in the case when
E is known but X is unknown. Finally, for Case IV where
no knowledge about the support sets is available, the recovery
threshold is worse than in the case where ne is known.

APPENDIX A
PROOF OF THEOREM 1

We prove the full column-rank property of DX ,E by show-
ing that if (5) is satisfied, there is a unique pair (x, e) with
supp(x) = X and supp(e) = E such that z = Ax + Be.
Assume that there exists an alternative pair (x′, e′) such that



z = Ax′ + Be′ with supp(x′) ⊆ X and supp(e′) ⊆ E (i.e.,
the support sets of x′ and e′ are contained in X and E , respec-
tively); this would then imply that A(x − x′) = B(e′ − e).
Since both x and x′ are supported in X it follows that x−x′

is also supported in X , which implies ‖x− x′‖0 ≤ nx.
Similarly, we get ‖e′ − e‖0 ≤ ne. Defining p = x − x′ and
P = supp(x − x′) ⊆ X , and, similarly, q = e′ − e and
Q = supp(e′ − e) ⊆ E , we obtain the following chain of
inequalities:

nxne ≥ ‖p‖0 ‖q‖0 = |P| |Q|
≥ [1− µa(|P| − 1)]

+
[1− µb(|Q| − 1)]

+
/µ2

m (14)

≥ [1− µa(nx − 1)]
+
[1− µb(ne − 1)]

+
/µ2

m (15)

where (14) follows from the uncertainty relation [1, Cor. 2]
and (15) is a consequence of |P| ≤ nx and |Q| ≤ ne.
Obviously, (15) contradicts the assumption in (5), which
completes the proof.

APPENDIX B
PROOF OF THEOREM 2

We begin by proving that x is the unique solution of
(P0, E) applied to z = Ax + Be. Assume that there exists
an alternative vector x′ that satisfies Ax′ ∈ ({z} +R(BE))
with ‖x′‖0 ≤ nx. This would imply the existence of a vector
e′ with supp(e′) ⊆ E , such that A(x−x′) = B(e′−e). Since
supp(e) = E and supp(e′) ⊆ E , we have supp(e′ − e) ⊆ E
and hence ‖e′ − e‖0 ≤ ne. Furthermore, since both x and
x′ have at most nx nonzero entries (at possibly different
positions), we have ‖x− x′‖0 ≤ 2nx. Defining p = x − x′

and P = supp(x − x′), and, similarly, q = e′ − e and
Q = supp(e′ − e) ⊆ E , we obtain the following chain of
inequalities

2nxne ≥ ‖p‖0 ‖q‖0 = |P| |Q|
≥ [1− µa(|P| − 1)]

+
[1− µb(|Q| − 1)]

+
/µ2

m (16)

≥ [1− µa(2nx − 1)]
+
[1− µb(ne − 1)]

+
/µ2

m (17)

where (16) follows from the uncertainty relation [1, Cor. 2]
and (17) is a consequence of |P| ≤ 2nx and |Q| ≤ ne.
Obviously, (17) contradicts the assumption in (8), which
concludes the first part of the proof.

We next prove that x is also the unique solution of (BP, E)
applied to z = Ax + Be. Assume that there exists an
alternative vector x′ satisfying Ax′ ∈ ({z} + R(BE)) with
‖x′‖1 ≤ ‖x‖1; this would imply the existence of a vector e′

with supp(e′) ⊆ E , such that A(x−x′) = B(e′−e). Defining
p = x− x′ and ‖PSm‖1 =

∑
i∈S |[m]i| for some vector m,

we obtain the following lower bound on the `1-norm of x′:

‖x′‖1 = ‖x− p‖1 = ‖PX (x− p)‖1 + ‖PX cp‖1
≥ ‖PXx‖1 − ‖PXp‖1 + ‖PX cp‖1 (18)
= ‖x‖1 − ‖PXp‖1 + ‖PX cp‖1

where (18) is a consequence of the reverse triangle inequality.
Now, the `1-norm of x′ can be smaller than or equal to that
of x only if ‖PXp‖1 ≥ ‖PX cp‖1. This would then imply
that ‖PXp‖1 ≥ 0.5‖p‖1. Defining q = e′ − e and Q =

supp(e′ − e), and noting that supp(e) = E and supp(e′) ⊆ E ,
it follows that |Q| ≤ ne. Setting P = X (with |X | = nx), we
obtain the following chain of inequalities:

nx ne ≥ |P| |Q|

≥ [(1 + µa)(1− εP)− |P|µa]
+
[1− µb (|Q| − 1)]

+

µ2
m

(19)

≥ [1− µa(2nx − 1)]
+
[1− µb(ne − 1)]

+
/(2µ2

m) (20)

where (19) follows from the uncertainty relation [1, Thm. 1]
applied to the difference vectors p and q, and by using the fact
that ‖PXp‖1 ≥ 0.5‖p‖1. Furthermore, (20) is a consequence
of |P| = nx and |Q| ≤ ne. Rewriting (20), we obtain

2nxne ≥ [1− µa(2nx − 1)]
+
[1− µb(ne − 1)]

+
/µ2

m. (21)

Since (21) contradicts the assumption in (8), this proves that
x is the unique solution of (BP, E) applied to z = Ax+Be.
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