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Abstract—Low-density parity-check (LDPC) codes are key ingredients
for improving reliability of modern communication systems and storage
devices. On the implementation side however, the design of energy-
efficient and high-speed LDPC decoders with a sufficient degree of
reconfigurability to meet the flexibility demands of recent standards
remains challenging. This survey paper provides an overview of the state-
of-the-art in the design of LDPC decoders using digital integrated circuits.
To this end, we summarize available algorithms and characterize the
design space. We analyze the different architectures and their connection
to different codes and requirements. The advantages and disadvantages
of the various choices are illustrated by comparing state-of-the-art LDPC
decoder designs.

I. INTRODUCTION

Digital communication and storage systems rely on channel coding
to ensure reliable transmission and to guarantee data integrity. Besides
Turbo codes, low-density parity-check (LDPC) codes [1], are among
the best performing codes known today. While initially considered too
complex for economic implementation, LDPC codes have been redis-
covered [2] and turned out to be most suitable for implementation in
modern CMOS technologies. Due to this implementation advantage,
their excellent error-correction performance, and the favorable IP-
licensing situation, LDPC codes are gradually replacing other well-
established forward error-correction schemes.

A. LDPC Codes

Binary LDPC codes are defined through an M X N binary-valued
sparse parity-check matrix H, whose columns are associated with
coded bits and rows describe the parity-check equations. A convenient
representation of LDPC codes are bipartite graphs [3] (Tanner graphs)
in which variable nodes (VNs) are associated with code bits and check
nodes (CNs) with parity-check equations. In this graph, a VN and a
CN are connected when the corresponding entry in H is one. The
dimension and structure of H define the block size N, the code rate
and the performance of the code, as well as the complexity of the
decoding process.

B. Decoding Algorithm and Complexity

LDPC codes are commonly decoded using iterative message-
passing algorithms which improve the initial estimates of the bits
initializing the VNs by sending messages along the edges of the graph
in an iterative manner (see Sec. II for details). The computational
effort for decoding a single code block depends roughly linearly on
the number of edges in the graph and on the number of iterations
performed to achieve a given target error-rate. Normalizing this effort
with the number of information bits contained in a code block yields
the number of processed edges per information bit, which is a first-
order approximation for the computational effort required by the
decoder for a specific LDPC code. In Fig. 1, we compare the decoding
complexity for prominent applications relying on LDPC codes. To
this end, we plot the computational effort (assuming 10 iterations)
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Fig. 1. Computational effort and throughput overview of typical wired and
wireless communication standards employing LDPC codes.

against the throughput requirement given in information bits per
second for the various operation modes. The diagonal lines in the
double-logarithmic scale are representative for the overall complexity
required by a corresponding decoder.

It is interesting to see that the computational effort required per in-
formation bit remains approximately the same for all considered stan-
dards. However, the throughput requirements across standards vary by
more than three orders of magnitude, whereas the throughput within
a standard may also vary by one order of magnitude. Furthermore, we
observe that wireless communication standards foresee a wide range
of operation modes with similar—but not equal-—complexity. These
modes (covering different throughputs) must usually be supported
by a single flexible decoder implementation. What is not directly
visible from Fig. 1 is that some applications have a very tight energy-
efficiency constraint as they target battery-powered devices.

C. Contributions and Outline

In this survey paper, we review and investigate the trade-offs
associated with the design of digital LDPC decoders. To this end,
Sec. II briefly summarizes the essentials and preferred choices with
respect to the underlying decoding algorithms. Sec. III introduces the
prototype architecture from which all other architectures are derived
and describes our performance metrics to compare different state-of-
the-art designs. In Sec. IV we partition the design-space into three
different architecture classes. We describe similarities and differences
between these architectures and highlight solutions for the main
implementation challenges with reference to corresponding designs
in the literature.

II. ALGORITHM ASPECTS FOR LDPC DECODING

Decoding of LDPC codes essentially involves three different types
of values that are being updated in an iterative manner: Prior to
decoding, L-values (associated to VNs) are initialized by reliability
information (log-likelihood ratios) generated by the demodulator. In
each iteration, Q-messages are passed from the VNs to the CNs and
R-messages are sent back from the CNs to the VNs and L-values



are updated. After a certain number of iterations, estimates for the
information bits are computed.

A. Message-Passing Schedule

The message-passing schedule determines the order of updating the
L-values, Q-, and R-messages in each iteration. With the conventional
flooding schedule [2], each iteration comprises of a two-step update
procedure: i) all VNs compute Q-messages based on their L-values
and R-messages (received in the previous iteration) and send them to
the connected CNs; ii) all CNs compute new R-messages based on
the incoming Q-messages and pass them back to the VNs.

A superior approach to the flooding schedule is the layered
schedule [4], which partitions the computations in each iteration
into several layers, corresponding to distinct subsets of rows of H.
For each layer, only the CNs corresponding to the current layer
receive Q-messages and pass their R-messages back to the VNs,
which then update both, the L-values and Q-messages. Then, the
next layer is processed similarly. The advantage of this schedule is
that information gained in each layer will then be considered in the
processing of the subsequent CNs. With proper layer selection, this
schedule generally leads to faster convergence, eventually reducing
the number of iterations roughly by a factor of two [4].

B. Message-Update Rules

The optimum message-update rules for Q- and R-messages and
L-values are given by the sum-product algorithm (SPA) [2]. Unfortu-
nately, these rules involve transcendental functions and are therefore
ill-suited for VLSI implementation. A straightforward approximation
to the SPA is known as the min-sum (MS) algorithm [5]. Here,
the transcendental functions are replaced by minimum operations.
The resulting complexity reduction, however, comes at the cost of
a considerable loss in terms of error-rate, which can be mitigated
almost entirely by either using the normalized min-sum (NMS) or
the offset-min-sum (OMS) algorithm [6]. Further advantages of OMS
and NMS result from their value-reuse properties [7], which reduces
the number of minimum computations without additionally penalizing
the error-rate performance.

C. Early Termination

Early termination (ET) essentially avoids redundant iterations by
stopping the decoding process when further iterations are unlikely to
alter the result. From an energy-efficiency perspective, ET is highly
desirable since the required energy per bit grows proportionally in
the number of iterations. The most prominent method is to stop
decoding, whenever all parity-check equations are satisfied, based on
the current estimates of the transmitted bits; this ensures that decoding
is terminated whenever a valid code-word has been found. This
approach can be implemented very efficiently for flooding schedules,
but it is more involved for layered decoding [8], [9].

III. GENERAL ARCHITECTURE AND PERFORMANCE METRICS

As illustrated in Sec. I, the architecture’s portfolio for LDPC
decoders must span three orders of magnitude in terms of throughput
requirements, different levels of importance of energy-efficiency, and
various needs for reconfigurability.

A. Prototype Architecture

From a high-level perspective, almost all implementations of
message-passing LDPC decoders start from an isomorphic architec-
ture [10] which is a direct mapping of the Tanner graph to three
types of hardware components: VN units (VNUs) and CN units
(CNUs) to compute the update equations, an interconnect network
representing the edges of the graph, and storage devices for the
L-values and R-messages. Starting from this prototype architecture,
different implementation trade-offs are obtained through architectural
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Fig. 3. Energy-efficiency vs. throughput trade-offs.
transformations such as resource sharing across VNUs and CNU and
iterative decomposition of the update equations within the VNUs
and CNUs together with algorithm-specific customizations to tailor
the isomorphic architecture to individual application requirements. In
Sec. IV we shall provide more details on the specific architectures
and the associated trade-offs.

B. Performance Metrics

Besides the throughput and error-rate requirements prescribed by
each standard, area- and energy-efficiency are the main performance
criteria, where the importance of energy-efficiency clearly depends
on the specific application. In order to evaluate the impact of
architectural choices for LDPC decoding on silicon area and energy-
efficiency, we collect data-points from state-of-the-art implemen-
tations highlighting designs that correspond to recent standards
(cf. Fig 1). For a fair comparison of the architectural features we take
technology scaling into account, i.e., we scale the area, throughput,
and energy-efficiency of all designs to 90 nm CMOS assuming 1.0V
supply voltage. We use 5 and 10 iterations for architectures based
on layered (filled markers) and flooding schedules, respectively, to
account for the difference in convergence speed. Furthermore, we
assume that all collected designs use appropriate word lengths for
Q- and R-messages to satisfy the error-rate requirements prescribed
by the respective standard. Fig. 2 relates the area per bit to the time
required for decoding. The diagonal lines correspond to the area-
time-per-bit (AT) product which is a common measure for hardware-
efficiency. Fig. 3 relates the energy per bit to the maximum achievable
throughput for each design. The diagonals on the double-logarithmic



scale correspond to constant power consumption. In both figures, area
and energy are normalized by the block length N and the throughput
is measured at the input of the decoder to avoid dependencies on the
code rate (which has negligible impact on the computational effort).

IV. AREA AND ENERGY-EFFICIENCY TRADE-OFFS

In the following, we illustrate how the design space can be divided
into three different classes: Full-parallel, row-parallel, and block-
parallel architectures (see Fig. 4)

A. Full-Parallel Architectures

Fully parallel LDPC decoder designs [11]-[14] were among the
first high-throughput implementations of LDPC decoders. They have
been considered for custom codes and for high-speed applications
such as 10GBASE-T 10Gb/s Ethernet. Corresponding implemen-
tations rely on the flooding schedule and directly implement the
isomorphic prototype architecture of the message-passing algorithm.

1) Architecture: A high-level block diagram of a typical full-
parallel design is shown in Fig 4.a). The update equations are mapped
into individual VNUs and CNUs that exchange messages through
a hard-wired routing network. The parallel processing allows each
iteration to be performed in a single clock cycle in which VNUs
fetch all R-messages from local (register-based) storage and compute
new Q-messages that are sent through the routing network. The CNUs
compute new R-messages and send them back to the VNUs where
they are stored for the next iteration and are used to update the local
L-value registers [12].

2) Discussion: The inherent advantage of full-parallel architec-
tures is the ability to fully exploit the intrinsic parallelism offered by
LDPC codes; this enables very high throughput since one iteration is
performed per clock cycle with simple computations that allow for
high clock frequencies. This performance advantage is clearly visible
in Fig. 2, where designs that are based on isomorphic architectures
achieve the highest throughput. Unfortunately, the complex routing
network that connects CNUs and VNUs turns out to be a major
implementation bottleneck for these designs [11] and straightforward
implementations exhibit extremely poor area utilization and suffer
from a considerable speed penalty that may even become worse
when proceeding to more advanced process technologies. Proposals
to mitigate this routing bottleneck include the serialization of multi-
bit interconnect busses [14], and the rearrangement of operations
between the CNs and the VNs or guided placement to reduce the
number or the length of global wires [15]. A particularly interesting
approach is a modification on the algorithmic level that reduces the
amount of routing at the expense of a small error-rate performance
degradation [11]. The impact of this modification on hardware- and
energy-efficiency is clearly visible from Fig. 2 and Fig. 3, where
the design with the modified algorithm [11]-(a) achieves much better
results than the accompanying reference design without algorithm
modifications [11]-(b).

B. Row-Parallel Architectures

Row parallel architectures [16]-[18] are a step towards less par-
allelism by means of resource sharing [10] across the CNUs. The
objective is to reduce active silicon area and to partially alleviate the
routing bottleneck while maintaining very high throughput.

1) Architecture: The architectural principle underlying such row-
parallel architectures is depicted in Fig 4.b). In essence, the parity-
check matrix is partitioned vertically into groups of parity-check
equations (layers). The equations in each layer are executed in
parallel on a subset of time-shared CNUs. An iteration now con-
sists of multiple cycles in which the VNUs access the R-messages
corresponding to the current layer sequentially from a small storage
array (typically too small for economic use of SRAMs) to compute

Q-messages and communicate them to the CNUs through a pro-
grammable routing network. Due to the sequential processing of the
CNUs, the update of the L-values in the VNUs can by performed
in an iteratively decomposed fashion', while the computation of R-
messages in the CNUs is still carried out in a single cycle on a purely
combinatorial network.

2) Discussion: Considering the available reference designs in
Fig. 2, it is interesting to see that row-parallel architectures are still
sufficiently fast to meet even the 10 Gb/s throughput requirements
of high-speed wireline communication standards (e.g., 10GBASE-
T). At the same time, they provide an area advantage over full-
parallel designs which is partially due to a smaller number of global
wires and partially due to architectural/layout measures that exploit
regularities in the code [16] or circuit-level measures that reuse
routing resources [17]. A key advantage of the row-parallel archi-
tectures is that they are naturally suited for a layered schedule which
allows for fewer iterations (exploitable for area reduction through
less stringent timing constraints). Note that additional storage to hold
the L-values computed in the previous iteration, while processing
layers of the current iteration, can be avoided for a layered schedule.
This difference in area is visible from Fig. 2 when comparing [16]
and [17].

C. Block-Parallel Architectures

The two previous architectures provide very high throughput at
the cost of area and without flexibility. They are therefore ill-suited
for many wireless communication standards (e.g., WiMAX, IEEE
802.11n, and DVB-S2) that require support for different code rates
and block lengths at moderate to low throughput. Block-parallel
architectures [8], [9], [19]-[25] are tailored to such applications. They
rely on further resource sharing and iterative decomposition together
with structured codes that facilitate reconfigurability.

1) Architecture: Fig 4.c) outlines the architectural principle, which
is usually used in conjunction with the layered schedule. In essence,
this architecture is obtained by starting from the row-parallel ap-
proach and by partitioning the computation of a layer further into
multiple cycles, corresponding to multiple blocks. This iterative
decomposition simplifies the CN processing and allows for resource
sharing also across the VNUs, which are now tightly coupled to the
CNUs to form a node computation unit (NCU). Due to the reduced
parallel access requirements, R-messages and L-values can now be
stored in area-efficient macro cells. However, a programmable routing
network is required that connects the L-value storage array to the
NCUs since in each layer a different NCU is associated with a
particular L-value. The complexity and the amount of bits required
to control the routing network depend on the structure of the code
and on its partitioning into layers. In the worst-case, a full crossbar
is needed. However, most relevant standards rely on structured codes
such as quasi-cyclic LDPC codes [25] for which the programmable
interconnect can be realized by area-efficient programmable cyclic
shifters [8].

2) Discussion: Fig. 2 clearly illustrates how the block-parallel
architectures cover the lower-throughput region of the design space,
but it also shows that recent designs are approaching the multiple-
Gb/s range [22], [23]. This is achieved by increasing the number of
blocks that are processed in parallel, either within a layer or across
layers. The trajectory across [8], [22], [23] shows that this transition
is possible at an almost constant AT-product.

In terms of energy-efficiency, Fig. 3 reveals a disadvantage of the
block-parallel architectures compared to the full-parallel and row-

'The degree of iterative decomposition depends on the choice of the layers
and on the code. Ideally, the degree of each column of a layer should be one,
which can be achieved for most of the relevant codes.
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parallel designs. This trend can be explained by the higher degree of
control and flexibility required after extensive resource sharing and
iterative decomposition. Another trend that is visible from Fig. 2 and
Fig. 3 is the split between two types of block-parallel designs. The
first type exploits the ability of the architecture to use SRAM macro-
cells to reduce core area, but suffers from poor energy-efficiency. The
second type relies on standard-cell based storage at the cost of silicon
area to achieve better results in terms of energy-efficiency (e.g., [9]).

V. CONCLUSION

State-of-the-art implementations of LDPC decoders use message
passing with the normalized or offset min-sum approximation, often
with a layered schedule. On the architectural side, non-programmable
parallel architectures are still required to meet throughput require-
ments in excess of 10 Gb/s. For wireless communication applications,
more serial architectures (which also approach the multiple Gb/s
range) are used together with mostly quasi-cyclic codes. Interestingly,
for codes with similar computational effort, most of the different
architectures exhibit almost the same AT-product indicating the
suitability of the message-passing algorithm for the realization of
very different area/delay trade-offs.
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