
Real-Time Principal Component Pursuit
Graeme Pope∗, Manuel Baumann∗, Christoph Studer†, and Giuseppe Durisi‡

∗Dept. of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
e-mails: gpope@nari.ee.ethz.ch, manubaum@ee.ethz.ch

†Dept. of Electrical and Computer Engineering, Rice University, Houston, TX, USA
e-mail: studer@rice.edu

‡Dept. of Signals and Systems, Chalmers University of Technology, Gothenburg, Sweden
e-mail: durisi@chalmers.se

Abstract—Robust principal component analysis (RPCA) deals
with the decomposition of a matrix into a low-rank matrix and a
sparse matrix. Such a decomposition finds, for example, applica-
tions in video surveillance or face recognition. One effective way
to solve RPCA problems is to use a convex optimization method
known as principal component pursuit (PCP). The corresponding
algorithms have, however, prohibitive computational complexity
for certain applications that require real-time processing. In
this paper we propose a variety of methods that significantly
reduce the computational complexity. Furthermore, we perform
a systematic analysis of the performance/complexity tradeoffs
underlying PCP. For synthetic data, we show that our methods re-
sult in a speedup of more than 365 times compared to a reference
C implementation at only a small loss in terms of recovery error.
To demonstrate the effectiveness of our approach, we consider
foreground/background separation for video surveillance, where
our methods enable real-time processing of a 640×480 color video
stream at 12 frames per second (fps) using a quad-core CPU.

I. INTRODUCTION

Robust principal component analysis (RPCA) deals with the
problem of making PCA (a widespread tool for the analysis
of high-dimensional data [1]) robust to outliers and grossly
corrupted observations [2], [3]. The RPCA problem can be
formulated mathematically as the problem of decomposing a
matrix consisting of the sum of a low-rank matrix and a sparse
matrix into these two components, without prior knowledge
of the low-rank part nor of the sparsity pattern of the sparse
part [3]. One effective way to solve this decomposition prob-
lem, which is in general intractable [4], [5], is to perform
a convex relaxation [3], [4]. The resulting computationally-
tractable optimization problem is known as principal compo-
nent pursuit (PCP) [3]. Under certain conditions on the rank
and the sparsity level of the two components, PCP is able to
exactly recover both components with high probability [3], [4].
Furthermore, PCP can be reformulated as a semidefinite pro-
gram [4], for which several standard solvers based on interior-
point methods are available (see, e.g., [6]). Unfortunately,
these solvers fail to efficiently handle matrices of large size,
which are typically encountered in the applications where PCA
is used. To overcome this issue, several algorithms based on
first-order methods [7], have been recently proposed in the
literature, e.g., iterative-thresholding, augmented Lagrangian
multipliers (ALM), and accelerated proximal gradient (see [2]

and references therein). However, for certain applications,
the resulting algorithms still have prohibitive computational
complexity. For example, the ALM algorithm investigated
in [3] in the context of foreground/background separation
for video surveillance, requires roughly 43 minutes to con-
verge on a desktop PC, when applied to the (25 344×200)-
dimensional matrix obtained through the concatenation of 200
video frames, each consisting of 176×144 pixels. Such a slow
convergence rate on state-of-the-art CPUs clearly prevents
such algorithms from being used in real-time applications.

Contributions: In this paper, we perform a simulative
performance and complexity analysis for the ALM algorithm.
To achieve real-time processing on state-of-the-art CPUs, we
propose a variety of techniques, which result in significant
complexity savings compared to a reference implementation
in C using LAPACK, with only a small loss in terms of
reconstruction performance. In particular, our techniques yield
a speedup of the ALM algorithm by more than 365 times
compared to our reference C implementation, when tested
with synthetic data. In order to demonstrate the effectiveness
of our approach, we further optimize our algorithm for the
foreground/background separation task considered in [3] and
achieve real-time processing of 640×480 color video signals at
12 fps on an off-the-shelf CPU. For real-world video data, our
methods result in 7 500 times lower computational complexity
than our reference implementation.

Note that our approach differs fundamentally from the one
proposed in [8]. There, a time-evolution model for the columns
of the sparse and low-rank components of the matrix is consid-
ered. The algorithm proposed in [8] solves the decomposition
problem for matrices drawn according to this model, whereas
our methods can be applied to the general PCP problem.
Furthermore, the adjective “real-time” in [8] has a different
meaning than in this paper. In [8], it is used to highlight the
fact that the proposed algorithm operates on-the-fly, i.e., on
a column-by-column basis. Unlike in this paper, no actual
measurements of the algorithm run-time are reported.

Notation: Matrices and vectors are denoted by uppercase
and lowercase boldface letters, respectively. Throughout the
paper, we shall deal exclusively with real-valued matrices.
For a given matrix A with entries Ai,j , we define its `1-

norm to be ‖A‖1 ,
∑
i,j |Ai,j |, its nuclear norm to be

‖A‖∗ ,
∑
i σi(A), where σi(A) is the ith singular value

of A, and its Frobenius norm to be ‖A‖F ,
√∑

i,j |Ai,j |
2.

The inner product of two matrices A and B is defined as
〈A,B〉 , tr(ATB), where tr(·) denotes the trace operator
and (·)T designates transposition. For a matrix A ∈ Rn1×n2

we define the operator vec(A) , [aT1 aT2 · · · aTn2
]T , where

ai is the ith column of A. This means that vec(A) is
the vertical stacking of all the columns of A. We shall
need the shrinkage operator Sτ (·), which maps x ∈ R to
Sτ (x) , sgn(x) max{|x| − τ, 0}. Here, sgn(x) denotes the
sign of x ∈ R, which is taken to be zero if x = 0. As in [3],
the shrinkage operator is extended to matrices by applying it
to each element. For a set of indices Ω ⊂ N2, AΩ stands
for the set of all values Ai,j with (i, j) ∈ Ω. Finally, Dτ (·)
denotes the singular-value shrinkage operator, which is defined
as Dτ (A) , USτ (Σ)VT , where A = UΣVT is a singular-
value decomposition (SVD) of the matrix A.

II. ROBUST PRINCIPAL COMPONENT ANALYSIS

Let M = L̂+ Ŝ be an n1×n2 matrix which is the sum of a
low-rank matrix L̂ and a sparse matrix Ŝ, i.e., a matrix with a
small fraction of nonzero entries. Principal component pursuit
(PCP) aims at recovering L̂ and Ŝ by solving the following
convex problem [3], [4]:

(PCP)

{
minimize ‖L‖∗ + λ ‖S‖1
subject to L + S = M.

Here, the parameter λ > 0 enables a tradeoff between rank
and sparsity. Intuitively, PCP is related to the problem of
decomposing M into L̂ and Ŝ, because the `1-norm enforces
sparsity in S (a well-known property used extensively in
the compressive-sensing literature [9]) and the nuclear norm
enforces low rank in L (see [10] and references therein).
Conditions under which PCP recovers L̂ and Ŝ exactly have
been reported recently in [3], [4].

One effective way to solve PCP for the case of large
matrices is to use a standard augmented Lagrangian multiplier
method [7]. This method consists of defining the augmented
Lagrangian function

`(L,S,Y) , ‖L‖∗ + λ ‖S‖1
+ 〈Y,M− L− S〉+ µ ‖M− L− S‖2F (1)

and then minimizing it iteratively by setting

(L(k),S(k)) = arg min
(L,S)

`(L,S,Y(k)) (2)

and updating Y(k+1) ← Y(k) + µ(M− L(k) − S(k)). In (1),
the matrix Y contains the Lagrangian multipliers, and µ > 0
is a tuning parameter that determines the convergence rate
of the algorithm [2], [5]. As noted in [2], [3], [5], one
can actually avoid performing the minimization (2) and use
instead an alternating optimization approach (see, e.g., [11]),

Algorithm 1 ALM using alternating directions [2], [3], [5]
1: input: M ∈ Rn1×n2

2: initialize: S(0) = Y(0) = 0, λ = 1/
√

max{n1, n2},
µ = (n1n2)/(4 ‖M‖1), k = 0

3: while not converged do
4: L(k+1) ← Dµ−1(M− S(k) + µ−1Y(k))
5: S(k+1) ← Sλµ−1(M− L(k+1) + µ−1Y(k))
6: Y(k+1) ← Y(k) + µ(M− L(k+1) − S(k+1))
7: end while
8: output: L(k),S(k)

enabled by the fact that both arg minL `(L,S,Y
(k)) and

arg minS `(L,S,Y
(k)) admit a simple closed-form expression

arg min
S

`(L,S,Y) = Sλµ−1(M− L + µ−1Y) (3)

arg min
L

`(L,S,Y) = Dµ−1(M− S + µ−1Y). (4)

Hence, one can replace (2) with the two minimization prob-
lems (3) and (4), which results in the alternating-directions
algorithm [5], [2, Alg. 5], and [3, Alg. 1] summarized
in Algorithm 1. As suggested in [3], we shall use λ =
1/
√

max{n1, n2} and µ = (n1n2)/(4 ‖M‖1) in the remain-
der of the paper.

III. METHODS FOR COMPLEXITY REDUCTION

The main goal of this work is to reduce the computational
complexity of Algorithm 1, so as to be able to use it in
applications requiring real-time processing. To achieve this,
we describe several techniques that reduce the computational
complexity at the cost of only a small penalty in terms of the
recovery error.

A. Speeding up the SVD

The most computationally demanding step of Algorithm 1
is the application of the shrinkage operator Dµ−1(·), which
requires the computation of an SVD. In order to reduce the
computational complexity of this step, it is important to realize
that the shrinkage operator embedded in Dµ−1(·) sets every
singular value smaller than the threshold µ−1 to zero. Hence,
only those singular values larger than µ−1 (and the correspond-
ing singular vectors) need to be calculated. To take advantage
of this property, we use the Power method [12] for calculating
the SVD, since it enables us to compute the singular values
in a sequential manner, and, hence, to stop the procedure as
soon as a singular value smaller than µ−1 is found. The Power
method, which is summarized below, typically performs better
than the Hestenes/Nash [13] or Golub/Reinsch methods when
dealing with large low-rank matrices [14].

Assume we wish to find the largest singular value and the
associated left and right singular vectors of the matrix A ∈
Rn1×n2 . The Power method operates as follows: generate a
non-zero vector v(0) ∈ Rn2 , and repeat the following three
steps for k = 1, 2, . . .

1) u(k+1) ← Av(k)/
∥∥Av(k)

∥∥
2

2) v(k+1) ← ATu(k)/
∥∥ATu(k)

∥∥
2

3) σ(k+1) ←
∥∥ATu(k)

∥∥
2
.

until convergence is attained, that is until
∥∥v(k+1) − v(k)

∥∥
2
<

δSVD
√
n2, for some small δSVD.

Here, σ(k) is an estimate of the largest singular value of
A at iteration k, and u(k) and v(k) are the estimates of the
corresponding left and right singular vectors, respectively. To
compute the second largest singular value (and the associated
left and right singular vectors), we just need to apply the Power
method to A−σuvT , where the triple (σ, u, v) is the output
of the previous instance of the Power method. Obviously, this
procedure can be generalized to any number of singular values.
We stop the Power SVD algorithm when we find a singular
value σi < µ−1 or when a certain predetermined number of
singular values has been found. Note that if a good initial
guess for v is available, the number of iterations required for
convergence of the Power method decreases significantly [14].

B. Seeding the PCP Algorithm

In certain applications, the algorithm will operate on ma-
trices consisting of blocks of contiguous frames; this is, for
example, the case in foreground/background separation for
video surveillance. More specifically, under the assumption
of a stationary camera, the low-rank component is expected
not to change significantly from one block to the next. Thus,
we can use the low-rank part returned by the ALM algorithm
from the previous block of data as a starting point for the next
block. In this case, we begin running Algorithm 1 at Step 5
instead of at Step 4, after having set L(1) to be equal to the
low-rank matrix component that was output the last time the
PCP algorithm was used.

C. Partitioning into Subproblems

In order to further reduce the computational complexity
of Algorithm 1, we propose to partition the matrix M into
P smaller submatrices. The hope is that, by combining the
solutions of the P corresponding PCP subproblems, we can
recover the solution of the original problem at lower computa-
tional complexity. The drawback of partitioning is that it is less
likely that the recovery guarantees reported in [3] are satisfied
for each individual subproblem; this eventually reduces the
probability that the concatenated solution is correct.

Since the matrices we are interested in have considerably
more rows than columns, we found that the best method for
partitioning is to use a row-based scheme. Let Ωi be chosen
so that MΩi is the set of rows of M between 1+(i−1)n1/P
and in1/P . Then MΩi is the observation matrix for the
ith subproblem. We finally note that partitioning enables us
(i) to perform parallelization across multiple processing cores
(e.g., CPUs or GPUs) and (ii) to handle larger dimensions by
overcoming memory constraints. The corresponding optimal
partition and parallelization scheme heavily depends on the tar-
get architecture. We present a specific example in Section V-C.

IV. PERFORMANCE/COMPLEXITY EVALUATION USING
SYNTHETIC DATA

As the basis of our performance and complexity compar-
isons, we consider a standard C implementation of Algo-
rithm 1, which uses the LAPACK SVD routine SGESVD [15]
returning all singular values. Whenever possible, the Intel
math kernel library (MKL) is used to perform the calculations.
The experiments presented in the following are carried out on
a PC with an Intel i7 920 (Quad Core with Hyper-threading
enabled) CPU and 4 GB of memory, clocked at 2.66 GHz and
1.066 GHz respectively. Unless stated otherwise, all libraries
and code fragments were compiled so that they would use only
one CPU core.

To characterize the performance gains resulting from our
modifications on Algorithm 1, we use the following random
test data. We generate low-rank matrices L̂ = R1R2 with
R1 ∈ Rn1×r and R2 ∈ Rr×n2 independent matrices with
i.i.d. Gaussian entries of mean zero and variance 1. The sparse
matrix Ŝ is an all-zero matrix, except for n1n2/20 entries
chosen uniformly at random. These entries are then assigned
the values ±1 with equal probability. The observed data is
M = Ŝ + L̂. We use n1 = 19 200, n2 = 200 and r = 10,
which models a block of 200 frames of video data, where
each frame contains 160× 120 pixels. We define the error in
approximating L̂ with L to be

ε(L̂,L) , ‖L̂− L‖F/‖L̂‖F

and similarly for Ŝ and S. The total error is then

εT , ε(L̂,L) + ε(Ŝ,S).

We say that our algorithm has converged when it returns two
matrices S and L satisfying ε(M,S + L) < δPCA (thus we
do not assume knowledge of the true solution). Note that this
does not imply that ε(L̂,L) < δPCA or ε(Ŝ,S) < δPCA. We
use the thresholds δSVD = δPCA = 10−4.

A. Impact of the Power SVD Algorithm

The use of the Power method instead of the LAPACK SVD
routine (which, in contrast to the Power method, finds all
the singular values and vectors) results in 4.32× lower run-
time. If we stop computing singular values as soon as we find
one below the threshold, we gain a further 2.02× speedup.
If we assume that the rank of L̂ is known and we terminate
the Power SVD algorithm when we have found more than
rank(L̂) singular values, we get an additional 17.35× speedup.

B. Impact of Seeding the SVD and PCP Algorithm

Using the seeding techniques of [13] for the Power SVD
algorithm yields an additional 1.73× speedup. For the consid-
ered synthetic data, the low rank components are independent
from one problem to the next, and therefore, no speedup can
be obtained by seeding the ALM algorithm.

C. Impact of Partitioning

By subdividing M into 8 sub-matrices and using a row-
based partitioning scheme, we achieve a 1.4× lower run-time.

100

101

102

103

C implementation

power SVD

ignoring small σi

seeding SVD

rank-targeted SVD

partiti
oning

sp
ee

du
p

10−5

10−4

10−3

10−2

to
ta

l
er

ro
r

(ε
T

)

speedup
total error

365

Figure 1. Speedup and recovery performance breakdown for synthetic data.

D. Summary of the Achieved Complexity and Performance

Fig. 1 shows the individual impact of the techniques pre-
sented in Section IV-A to IV-C. The combination of all
methods results in an overall complexity reduction by a factor
of 365 over the original C implementation using the standard
LAPACK SVD algorithm. Furthermore, as shown in Fig. 1,
the impact of the proposed algorithmic modifications to the
recovery error turns out to be marginal, which proves the
effectiveness of our methods.

V. APPLICATION EXAMPLE: REAL-TIME
FOREGROUND/BACKGROUND SEPARATION

In order to demonstrate the effectiveness of the methods
proposed in Section III, we consider the real-time separation of
a video stream into foreground and background components.

A. Formulation as an RPCA Problem

The separation of a video stream into foreground and
background can be set up as an RPCA problem as follows.
Let {Fi} be a collection of F consecutive video frames of
dimension n1 × n2 and form the vectorized version fi =
vec(Fi) ∈ Rn1n2 of each frame Fi. Set M = [f1 · · · fF],
which is then a matrix of size n1n2 × F . Following the
reasoning in [3], the foreground consists of the moving objects
and can thus be modeled as a sparse matrix S, and the
background consists of stationary objects and is thus low rank.
Note that the foreground data is not actually directly contained
in the matrix Ŝ, which is the difference between the observed
frames and the low-rank component. The foreground image is
rather given by MΩ, where Ω is the location of the non-zero
components of Ŝ.

We next apply our ALM algorithm to a test video-stream
to show how well our techniques work with real world data.
These simulations are performed with 8-bit greyscale video
frames of dimension 160×120 with an incoming frame rate of
10 fps. We process 25 frames in one block, i.e., F = 25, which
means that our implementation must be able to process each
block in less than 2.5 seconds, to be able to run in real-time.

The speedup gains using the techniques discussed earlier are
illustrated in Fig. 2.

B. Impact of the Power SVD Algorithm

The use of the Power SVD algorithm in place of the
LAPACK SVD results in an 83× speedup, even when we
calculate all the singular values. If we abort the Power SVD
algorithm when we find a singular value less than µ−1, we
further decrease the runtime by a factor of 5.2. Using the
previously calculated singular vectors to form estimates of the
new ones, we further decrease the complexity by a factor of
1.32. The combined effect of all of these SVD optimizations
nets us a speed improvement by a factor of 578.

C. Parallelization and Partitioning for a Multi-Core CPU

We now explore a combination of partitioning and paral-
lelization to further reduce complexity. As the partitioning is,
in part, motivated by a desire to make it easier to parallelize,
we compare the following options for parallelization: (i) solve
each subproblem in parallel, (ii) implement the matrix-vector
arithmetic in parallel, or (iii) a combination of the previous
two. For the target CPU (having four cores and using hyper-
threading), the best results were achieved by running two
problems in parallel and letting the LAPACK libraries run on
two cores each; this approach resulted in a 2.35× speedup.

D. Final Tweaking of the Parameters

In order to further speed up the PCP algorithm, we op-
timized some of the thresholds. Since we do not know the
ground truth, we compare the results of the original LAPACK
implementation with the optimized version, to ensure that we
still have a good solution. Let S0 and L0 be the solutions
returned by the LAPACK implementation and let S and L be
the solutions returned by the modified algorithm, then we take
as error

εL = ε(S0,S) + ε(L0,L) .

We found that δPCA and δSVD could be increased while
maintaining an error satisfying εL < 10−3, which resulted in a
speedup by a factor of 1.41. Instead of a numerical constraint,
if we merely require that there is “little noticeable visual
difference” between the original and new solutions, we can
further decrease the complexity of the algorithm by a factor
of 3.15. We do this in part by limiting the number of iterations
that the ALM and Power SVD algorithms can run for. This
early-termination scheme has the added advantage that it caps
the amount of time that the ALM algorithm can operate, so
we can force the program to process data in real-time.

E. Final Results

Fig. 2 illustrates the speedups achieved for real-time sepa-
ration of a video stream. In summary, the final implementation
is 7 544× faster than the naive C implementation using the LA-
PACK SVD routine. Our final implementation took, on average,
0.17 seconds to process 25 frames of data. Thus, the resulting
algorithm is fast enough to allow for the processing of a

1

2

3

4

5

100

101

102

103

104

C implementation

power SVD

ignoring small σ
i

seeding SVD

seeding PCP

partiti
oning & parallelization

parameter tweaking

set max. iteration

sp
ee

du
p

7 54483

re
la

tiv
e

sp
ee

du
p

Figure 2. Individual speedups for video data.

(a) Frame 1 – original image (b) Frame 25 – original image

(c) Low-rank component (d) Low-rank component

(e) Sparse component (f) Sparse component

Figure 3. Two frames of an analyzed video sequence taken in a shopping mall
[16]. The sparse components show the moving people and their shadows. The
low-rank components show the background and the single stationary person.

video stream in real-time, even when the frame resolution is
increased up to 640×480 pixels. An example of the separation
result is shown in Fig. 3.

F. Handling Color Videos

So far we have only dealt with greyscale images. We use a
simple method for processing a color video sequence. Let M
be a grayscale version of the video sequence and let M(`) for
` = 1, 2, 3 be the three observed color components. Run the
algorithm on M to get the low-rank matrix L and the sparse
matrix S and let Ω be the locations of the non-zero components

of S. We use Ω to specify the locations of the color channels
M(`), so that the color version of the foreground is given
by M

(`)
Ω . This method works since we are not interested in

the sparse components per se, but rather only their locations.
Unfortunately, we cannot use this approach to directly get
the low-rank color approximation. We are, however, able to
greatly simplify the computations by taking advantage of the
fact that the locations of the non-zero components are known,
so the problem reduces to the classical matrix completion
problem [10].

VI. CONCLUSION

In this paper, we detailed a variety of methods that sig-
nificantly reduce the computational complexity of principal
component pursuit for robust principal component analysis.
Furthermore, we demonstrated that the the PCP algorithm of
[3] is in fact suitable for real-time foreground/background
separation for video-surveillance application using off-the-
shelf hardware. Our linux software for real-time principal
component pursuit is available at http://www.nari.ee.ethz.ch/
commth/research/downloads/.

REFERENCES

[1] I. T. Jolliffe, Principal Component Analysis, 2nd ed., ser. Springer Series
in Statistics. New York, NY, U.S.A.: Springer, 2002.

[2] Z. Lin, M. Chen, L. Wu, and Y. Ma, “The augmented Lagrange
multiplier method for exact recovery of corrupted low-rank matrices,”
Oct. 2009. [Online]. Available: http://arxiv.org/abs/1009.5055

[3] E. J. Candès, X. Li, Y. Ma, and J. Wright, “Robust principal
component analysis?” Jan 2009. [Online]. Available: http://arxiv.org/
abs/0912.3599v1

[4] V. Chandrasekaran, S. Sanghavi, P. A. Parrilo, and A. S. Willsky, “Rank-
sparsity incoherence for matrix decomposition,” SIAM J. Opt., vol. 21,
no. 2, pp. 572–596, 2011.

[5] X. Yuan and J. Yang, “Sparse and low-rank matrix decomposition via
alternating direction methods,” preprint, 2009.

[6] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex
programming.” [Online]. Available: http://cvxr.com/cvx/

[7] D. P. Bertsekas, Constrained Optimisation and Lagrange Multiplier
Methods. Belmont, MA, U.S.A.: Athena Scientific, 1982.

[8] C. Qiu and N. Vaswani, “Real-time robust principal components’ pur-
suit,” in Proc. Allerton Conf. Commun., Contr., Comput., Monticello, IL,
U.S.A., Oct. 2010, pp. 591–598.

[9] A. Bruckstein, D. Donoho, and M. Elad, “From sparse solutions of
systems of equations to sparse modeling of signals and images,” SIAM
Review, vol. 51, no. 1, pp. 34–81, 2009.

[10] E. J. Candès and B. Recht, “Exact matrix completion via convex
optimization,” Found. Comput. Math., vol. 9, no. 6, pp. 717–772, Apr.
2009.

[11] J. C. Bezdek and R. J. Hathaway, “Some notes on alternating optimiza-
tion,” Lecture Notes in Computer Science, vol. 2275, pp. 187–195, 2002.

[12] S. Shlien, “A method for computing the partial singular value decom-
position,” IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-4, no. 6,
pp. 671 – 676, Jun. 1982.

[13] J. C. Nash, “A one-sided transformation method for the singular value
decomposition and algebraic eigenproblem,” Computer Journal, vol. 18,
no. 1, pp. 74–76, Jan. 1975.

[14] J. C. Nash and S. Shlien, “Simple algorithms for the partial singular
value decomposition,” Computer Journal, vol. 30, no. 3, pp. 268–275,
Jan. 1987.

[15] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Don-
garra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and
D. Sorensen, LAPACK Users’ Guide, 3rd ed. Philadelphia, PA, U.S.A:
Society for Industrial and Applied Mathematics, 1999.

[16] L. Li, W. Huang, I. Y.-H. Gu, and Q. Tian, “Statistical modeling of
complex backgrounds for foreground object detection,” IEEE Trans.
Image Process, vol. 13, no. 11, pp. 1459 –1472, Nov. 2004.

