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Abstract—In this paper, we present performance guarantees
for the recovery and separation of signals that are approximately
sparse in some general (i.e., basis, frame, over-complete, or in-
complete) dictionary but corrupted by a combination of measure-
ment noise and interference that is sparse in a second general
dictionary. Applications covered by this framework include the
restoration of signals impaired by impulse noise, narrowband
interference, or saturation, as well as image in-painting, super-
resolution, and signal separation. We develop computationally
efficient algorithms for signal restoration and signal separation
and present deterministic conditions that guarantee their stabil-
ity. A simple in-painting example demonstrates the efficacy of
our approach.

I. INTRODUCTION

We investigate the restoration of the vector x ∈ CNa from
the corrupted M -dimensional observations

z = Ax + Be + n, (1)

where A ∈ CM×Na and B ∈ CM×Nb are general (basis,
frame, over-complete, or in-complete) deterministic dictionar-
ies, i.e., matrices whose columns have unit Euclidean norm.
The vector x is assumed to be approximately sparse, i.e.,
its main energy (in terms of the sum of absolute values) is
concentrated in only a few entries; the M -dimensional signal
vector is defined as y = Ax. The vector e ∈ CNa represents
interference and is assumed to be perfectly sparse, i.e., only a
few entries are nonzero. Furthermore, the locations of the non-
zero coefficients are assumed to be known prior to recovery.
The vector n ∈ CM is used to model measurement noise,
which is, apart from ‖n‖2 < ε, allowed to be arbitrary.

In addition to restoration, the setting (1) also allows us to
study signal separation, i.e., the separation of two distinct
features Ax and Be from the noisy observation z. Here,
the vector e in (1) is used to represent a second desirable
feature (rather than undesired interference) and is also allowed
to be approximately sparse. Furthermore, no knowledge on
the locations of the dominant coefficients in e is required
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in this scenario. Signal separation amounts to simultaneously
recovering the vectors x and e from the noisy measurement z
followed by computation of the individual signal features Ax
and Be.

Both the recovery and separation problems outlined above
feature prominently in numerous applications (see [1], [2] and
the references therein), including the restoration of signals
from impulse noise [3], narrowband interference, and satu-
ration [4], as well as super-resolution [5], in-painting [6]–[8],
and signal separation [9], [10]. In almost all these applications,
a predetermined (and possibly optimized) dictionary pair A
and B is used. It is therefore of significant practical interest to
identify fundamental limits on the performance of restoration
or separation from the model (1) for the deterministic setting,
i.e., assuming no randomness in the dictionaries, the signal,
interference, or the noise vector. Deterministic recovery guar-
antees for the special case of perfectly sparse vectors x and
e and no measurement noise have been studied in [2], [11].
The corresponding algorithms and proof techniques, however,
cannot be adapted for the general (and practically more rele-
vant) setting formulated in (1), which features approximately
sparse signals and additive measurement noise.

A. Contributions

In this paper, we generalize the recovery guarantees of [2],
[11] to the framework detailed above. In particular, we provide
novel, computationally efficient signal restoration and separa-
tion algorithms, and derive corresponding recovery guarantees
for the deterministic setting. Our guarantees depend in a
natural way on the number of dominant nonzero entries of x
and e, on the coherence parameters of the dictionaries A and
B, and on the Euclidean norm of the measurement noise. We
provide a comparison to the recovery conditions for perfectly
sparse signals and noiseless measurements presented in [2],
[11] and, finally, we demonstrate the efficacy of our approach
for simultaneous attenuation of Gaussian noise and removal
of scratches from old photographs.

B. Notation

Lowercase and uppercase boldface letters stand for column
vectors and matrices, respectively. The transpose, conjugate
transpose, and (Moore–Penrose) pseudo-inverse of the matrix
M are denoted by MT , MH , and M† =

(
MHM

)−1
MH ,

respectively. The kth entry of the vector m is [m]k, and the



kth column of M is mk and the entry in the kth row and `th
column is designated by [M]k,`. The M ×M identity matrix
is denoted by IM and the M ×N all zeros matrix by 0M×N .
The Euclidean (or `2) norm of the vector x is denoted by
‖x‖2, ‖x‖1 stands for the `1-norm of x, and ‖x‖0 designates
the number of nonzero entries of x. The spectral norm of the
matrix M is ‖M‖2 =

√
λmax(MHM), where the minimum

and maximum eigenvalue of a positive-semidefinite matrix M
are denoted by λmin(M) and λmax(M), respectively. ‖M‖F
stands for the Frobenius matrix norm. Sets are designated by
upper-case calligraphic letters. The cardinality of the set T
is |T | and the complement of a set S in some superset T is
denoted by Sc. The support set of the vector m, i.e., the index
set corresponding to the nonzero entries of m, is designated
by supp(m). We define the M × M diagonal (projection)
matrix PS for the set S ⊆ {1, . . . ,M} as follows:

[PS ]k,` =

{
1, k = ` and k ∈ S
0, otherwise,

and mT = PTm. The matrix MT is obtained from M by
retaining the columns of M with indices in T and the |T |-
dimensional vector [m]T is obtained analogously. For x ∈ R,
we set [x]

+
= max{x, 0}.

C. Outline of the paper

The remainder of the paper is organized as follows. In
Section II, we summarize the relevant prior art. Our restoration
and separation algorithms, the corresponding recovery guaran-
tees, and a comparison to the results in [2], [11] are presented
in Section III. We shown an application example in Section IV
and conclude in Section V.

II. PRIOR ART

Recovery of a vector x ∈ CNa from the noiseless observa-
tions y = Ax with A over-complete (i.e., M < Na) is well-
known to be ill-posed. However, assuming that x is perfectly
sparse (i.e., that only small number of its entries are nonzero)
enables us to uniquely recover x by solving

(P0) minimize ‖x̃‖0 subject to y = Ax̃,

which exhibits a prohibitive computational complexity, even
for small dimensions Na. One of the most popular and com-
putationally tractable alternative to solving P0 is basis pursuit
(BP) [12]–[17], which corresponds to the convex program

(BP) minimize ‖x̃‖1 subject to y = Ax̃.

Recovery guarantees for P0 and BP are usually expressed in
terms of the sparsity level nx = ‖x‖0 and the coherence
parameter of the dictionary A, which is defined as

µa = max
k,`,k 6=`

∣∣aHk a`
∣∣ .

A sufficient condition for x to be the unique solution of P0
and for BP to deliver this solution is [14], [15], [17]

nx < 1/2 (1 + 1/µa) . (2)

A. Recovery guarantees for approximately sparse signals from
noisy observations

For the case of bounded (otherwise arbitrary) measurement
noise, i.e., z = Ax + n with ‖n‖2 ≤ ε, recovery guarantees
based on the coherence parameter µa were developed in [18]–
[22]. In practice, most signals x are not perfectly-sparse (only
a small fraction of the entries x are nonzero), but rather
approximately sparse, i.e., most of the signal’s energy (in
terms of the sum of absolute values) is concentrated in only
a few entries. For such signals, the support set associated to
the best nx-sparse approximation (in `1-norm) corresponds to

X̂ = suppnx
(x) = arg min

X̃∈Σnx

∥∥x− xX̃
∥∥

1
,

where Σnx
contains all support sets of size nx corresponding

to perfectly nx-sparse vectors having the dimension of x.
The following theorem provides a sufficient condition for

which a suitably modified version of BP, known as BP
denoising (BPDN) [12], [22], stably recovers an approximately
sparse vector x from the noisy observation z.

Theorem 1 ([22, Thm. 2.1]): Let z = Ax + n, ‖n‖2 ≤ ε,
and X = suppnx

(x). If (2) is met, then the solution x̂ of

(BPDN) minimize ‖x̃‖1 subject to ‖z−Ax̃‖2 ≤ η

with ε ≤ η satisfies

‖x− x̂‖2 ≤ C0(ε+ η) + C1‖x− xX ‖1 , (3)

where both constants C0, C1 > 0 depend on µa and nx.
Proof: The proof in [22] is detailed for perfectly sparse

vectors only. The general case for approximately sparse signals
and measurement noise can be found in [1].

Theorem 1 generalizes the results for noiseless measure-
ments and perfectly sparse signals in [14], [15], [17] using
BP. Specifically, for ‖n‖2 = 0 and ‖x− xX ‖1 = 0, BPDN
with η = 0 corresponds to BP and (3) results in ‖x− x̂‖2 = 0,
which ensures perfect recovery of the vector x whenever (2) is
met. We emphasize that perfect recovery of x in the presence
of bounded (but otherwise arbitrary) measurement noise n, is
impossible, in general. We therefore consider stable recovery
instead, i.e., in a sense that the `2-norm of the difference
between the estimate x̂ and the true x is bounded from above
by η and the best nx-sparse approximation as in (3).

B. Recovery guarantees for perfectly sparse signals from
sparsely corrupted and noiseless measurements

A large number of restoration and separation problems
occurring in practice can be formulated as sparse signal
recovery from sparsely corrupted signals using the model (1).

1) Probabilistic recovery guarantees: Recovery guarantees
for the probabilistic setting (i.e., recovery of x is guaranteed
with high probability) for random Gaussian matrices, which
are of particular interest for applications based on compres-
sive sensing (CS), were reported in, e.g., [23]–[26] and the
references therein. In the remainder of the paper, however, we
will consider the deterministic setting exclusively.



2) Deterministic recovery guarantees: Recovery guarantees
in the deterministic setting for noiseless measurements and
signals being perfectly sparse were studied in [2], [11], [27].
In [27], it was shown that when A is the Fourier matrix,
B = IM and when the support set of the interference e is
known, perfect recovery of x is possible if 2nxne < M , where
ne = ‖e‖0. The case of A and B being arbitrary dictionaries
was studied for different cases of support-set knowledge in
[2], [11]. The presented recovery guarantees depend upon the
number of nonzero entries nx and ne in the perfectly sparse
vectors x and e, respectively, and on the coherence parameters
µa and µb of A and B, as well as on the mutual coherence
between the dictionaries A and B, which is defined as

µm = max
k,`

∣∣aHk b`

∣∣ .
For the case of signal restoration, i.e., where the support set
of e is known prior to recovery, the recovery guarantee in [2,
Thms. 4 and 5] states that if

2nxneµ
2
m<f(2nx, ne) (4)

with the definition

f(u, v) = [1− µa(u− 1)]
+

[1− µb(v − 1)]
+

is satisfied, then perfect recovery of x from z = Ax + Be is
guaranteed. An equivalent recovery condition for the case of
signal separation can be found in [11, Thm. 3]. We emphasize
that the results presented in [2], [11] are for perfectly sparse
and noiseless measurements only, and furthermore, the algo-
rithms and proof techniques cannot be adapted for the more
general setting proposed in (1). In order to gain insight into the
practically more relevant case of approximately sparse signals
and noisy measurements, we next develop and analyze novel
restoration and separation algorithms.

III. RECOVERY GUARANTEES

We next develop two computationally efficient methods for
restoration or separation under the model (1) and derive cor-
responding recovery conditions that guarantee their stability.

A. BP restoration: Support-set knowledge of e only

A prominent application for the setting where the support
set of e is known prior to recovery, is the restoration of
saturated signals [4]. Here, A is chosen to sparsify the audio
signal y (e.g., using the Fourier matrix) and B = IM , and
no knowledge on the locations of the dominant entries of
x is required. The support set E of e can, however, be
easily identified by comparing the measured signal entries [z]i,
i = 1, . . . ,M , to a saturation threshold. Further application
examples for this setting include the removal of impulse
noise [3], in-painting [6]–[8], and super-resolution [5] of
signals admitting an approximately sparse representation in
some carefully-chosen dictionary A.

The recovery procedure for this case is as follows. Since the
support set E of the interference vector e is known prior to
recovery, we may recover the vector x by projecting the noisy
observation z onto the orthogonal complement of the range

space spanned by BE . This projection eliminates the sparse
noise and leaves us with a sparse signal recovery problem
similar to that in Theorem 1. In particular, we consider
recovery from

REz = RE(Ax + BeE + n) = REAx + REn, (5)

where RE = IM−BEB†E , and we used the fact that REBeE =
0M×1. The following theorem provides a sufficient condition
that guarantees the stable restoration of the vector x from (5).

Theorem 2 (BP restoration): Let z = Ax + Be + n with
‖n‖2 ≤ ε. Assume e to be perfectly ne-sparse and E =
supp(e) to be known prior to recovery. Furthermore, let
X = suppnx

(x). If

2nxneµ
2
m < f(2nx, ne), (6)

then the result x̂ of BP restoration

(BP-RES)

{
minimize ‖x̃‖1
subject to ‖RE(z−Ax̃)‖2 ≤ η

with RE = IM −BEB
†
E and ε ≤ η satisfies

‖x− x̂‖2 ≤ C5(ε+ η) + C6‖x− xX ‖1 ,

where the (non-negative) constants C5 and C6 depend on µa,
µb, µm, nx and ne.

Proof: The proof is given in Appendix A.
We note that (6) provides a sufficient condition on the

number nx of dominant entries of x, for which BP-RES
can stably recover x from z. The situation guaranteeing that
the largest number nx of dominant coefficients in x will
be recovered stably using BP-RES, is when A and B are
maximally incoherent orthonormal bases (ONBs). In this case,
the recovery condition reduces to 2nxne < M . Furthermore,
(6) turns out to be equivalent to the condition (4) for perfectly-
sparse signals and noiseless measurement provided in [2,
Thms. 4 and 5]. Hence, generalizing the recovery procedure
to approximately sparse signals and measurement noise does
not incur a penalty in terms of the recovery condition.

B. BP separation: No knowledge of the support sets

A typical application scenario for no knowledge on the
support sets is signal separation [9], [10], e.g., the decom-
position of audio, image, or video signals into two or more
distinct features, i.e., in a part that exhibits an approximately
sparse representation in the dictionary A and another part that
exhibits an approximately sparse representation in B. Decom-
position then amounts to performing simultaneous recovery of
x and e from (1), followed by computation of the individual
signal features according to Ax and Be. The idea underlying
the signal-separation approach studied here is to rewrite (1) as

z = Dw + n (7)

where D = [A B ] is the concatenated dictionary of A and B
and the stacked vector w = [xT eT ]T . Signal separation now
amounts to performing BPDN on (7) for recovery of w from z,
which is also known as the synthesis separation problem (see,
e.g., [10] and the references therein).



A straightforward way to arrive at a corresponding recovery
guarantee for this problem is to consider D as the new
dictionary with the dictionary coherence defined as

µd = max
i,j,i 6=j

∣∣dH
i dj

∣∣ = max
{
µa, µb, µm

}
. (8)

One can now use BPDN to recover w from (7) and invoke
Theorem 1 with the recovery condition in (2), resulting in

w = nx + ne < 1/2 (1 + 1/µd) . (9)

It is, however, important to realize that (9) ignores the structure
underlying the dictionary D, i.e., it does not take into account
the fact that D is a concatenation of two dictionaries that are
characterized by the coherence parameters µa, µb, and µm.
Hence, the recovery guarantee (9) does not provide insight
into which pairs of dictionaries A and B are most useful for
signal separation. The following theorem takes into account
this structure, enabling us to gain insight into which pairs of
dictionaries A and B support signal separation.

Theorem 3 (BP separation): Let z = Dw + n, with
‖n‖2 ≤ ε, D = [A B ], and w = [aT eT ]T . The dictio-
nary D is characterized by the coherence parameters µa,
µb, µm, and µd, and we assume µb ≤ µa without loss of
generality. Furthermore, let W = suppw(w). If

w < max

{
2(1 + µa)

µa + 2µd +
√
µ2
a + µ2

m

,
1 + µd

2µd

}
, (10)

then the solution ŵ of BP separation

(BP-SEP)

{
minimize ‖w̃‖1
subject to ‖z−Dw̃‖2 ≤ η

using ε ≤ η satisfies

‖w − ŵ‖2 ≤ C7(ε+ η) + C8‖w −wW‖1 , (11)

with the (non-negative) constants C7 and C8.
Proof: The proof is given in Appendix B.

The recovery condition (10) refines that in (9); in particular,
considering the two-ONB setting for which µa = µb = 0 and
µm = µd. In this case, the straightforward recovery condition
corresponds to (9), whereas the one for BP separation (10) is
w < 2/(3µd). Hence, (10) guarantees the stable recovery for a
larger number of dominant entries w. The recovery condition
for perfectly sparse signals and noiseless measurements in
the two-ONB setting corresponds to w < (

√
2 − 0.5)/µd

(see [16], [17], [28]) and turns out to be slightly less restrictive
than the recovery condition for approximately sparse signals
and measurement noise in (10). Whether this behavior is a
fundamental result of considering approximately sparse signals
or is an artifact of the proof remains an open research problem.

C. Comparison of the recovery conditions

Figure 1 compares the recovery conditions for the general
model (1) to those obtained in [2], [11] for perfectly sparse
signals and noiseless measurements. We set µd = µm = 0.1
and µa = µb = 0.04, and compare the recovery conditions of
BP restoration and BP separation analyzed in Section III. The
following observations can be made:
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signal sparsity

perfectly sparse, no noise

approx. sparse, noise (1)

only    known

and    unknown

signal separation:

signal restoration:

Fig. 1. Comparison of the recovery conditions using the coherence param-
eters µm = µd = 0.1 and µa = µb = 0.04. In the case of only E known,
the curves for both models overlap.

• BP restoration: In this case, the recovery conditions
for the general setup considered in this paper and the
condition [2, Eq. 14] for perfectly sparse signals and
noiseless measurements coincide. Hence, generalizing the
results does not incur a loss in terms of the recovery
conditions. The asymmetry of the curve results from
the fact that only knowledge of the support set of e is
available (see [2] for a detailed discussion).

• BP separation: We see that the recovery conditions for
the general case (1) and the case of perfectly sparse
signals with noiseless measurements differ, i.e., the con-
dition [11, Eq. 13] is slightly less restrictive. Note that
both recovery conditions are a linear function in nx and
ne as they guarantee the recovery of w = nx + ne non-
zero (or dominant) entries in w.

In summary, we see that having more knowledge on the
support sets of x and/or e prior to recovery yields less
restrictive recovery conditions. This intuitive behavior can also
be observed in practice and is illustrated next.

IV. APPLICATION EXAMPLE

We now present a simple sparsity-based in-painting exam-
ple, where we simultaneously attenuate Gaussian noise and
remove scratches from old photographs. A plethora of in-
painting methods have been proposed in the literature (see,
e.g., [6]–[8] and the references therein). Our goal here is
not to benchmark our performance vs. theirs, but rather to
quantify the impact of support-set knowledge on the recovery
performance in a practical application.

A. Corruption and restoration procedure

We corrupt a 512×512 greyscale image (the pixel intensities
are scaled to be within 0 and 1) by adding a mask containing
artificially generated scratch patterns, which destroys 15% of
the image. We furthermore corrupt each pixel with additive



(a) Original (courtesy of NASA [29]) (b) Corrupted (MSE = −16.6 dB) (c) BP-RES (MSE = −28.1 dB) (d) BP-SEP (MSE = −19.3 dB)

Fig. 2. Example of using BP restoration (BP-RES) and BP separation (BP-SEP) for simultaneous denoising and scratch removal for old photographs.

i.i.d. zero-mean Gaussian noise and variance 0.04. The mean-
squared error (MSE) between the original in Fig. 2(a) and the
corrupted version in Fig. 2(b) is −16.6 dB.

Scratch removal proceeds as follows. We assume that the
image admits an approximately sparse representation in the
two-dimensional DCT basis A, whereas the interference is
assumed to be sparse in the identity basis B = IM . Recovery
is performed on the basis of the full 512 × 512 pixel image,
i.e., we have M = 5122 corrupted measurements. For BP
restoration, we assume that the locations of the scratches are
known prior to recovery, whereas no such knowledge is re-
quired for BP separation. For BP restoration we recover x̂ (for
BP separation we additionally recover ê) and then compute an
estimate of the (uncorrupted) image as ŷ = Ax̂. To arrive at
a low recovery MSE, we set η = 0.5 for both algorithms.

B. Discussion of the results

Figure 2 shows results of the corruption and recovery
procedure along with the associated MSE values. For BP
restoration, we see that the recovered image has an MSE of
−29.2 dB and well approximates the ground truth. For BP
separation, the MSE improves over the corrupted image, but
in parts where large areas of the image are corrupted, blind
removal of scratches fails. Hence, knowing the locations of
the sparse corruptions leads to a significant MSE advantage
and is therefore highly desirable for sparsity-based in-painting
methods using the proposed algorithms.

We finally emphasize that the recovery conditions (6) and
(10) turn out to be useful in practice as they show that the
dictionary A must both i) sparsify the signal to be recovered
and ii) be incoherent with the interference dictionary B [2].
Note that the second requirement is satisfied for the DCT–
Identity pair used here, whereas other transform bases typically
used to sparsify images (i.e., to satisfy the first requirement),
such as wavelet bases exhibit high mutual coherence with the
identity basis. Hence, our recovery conditions also help to
identify suitable dictionary pairs for a variety of sparsity-based
restoration and separation problems.

V. CONCLUSIONS

In this paper, we have generalized the recovery guarantees
presented in [2], [11] for the restoration and separation of

perfectly sparse signals to the much more practical case of
approximately sparse signals and noisy measurements. We
proposed computationally efficient restoration and separation
algorithms which build upon basis-pursit (BP) denoising and
derived corresponding deterministic recovery guarantees. The
provided recovery conditions put limits on the number of
dominant coefficients that guarantee stability of recovery and
separation, and additionally explain which dictionary pairs A
and B are most suited for signal restoration or separation using
the proposed algorithms.

APPENDIX A
PROOF OF THEOREM 2

The proof follows that for Theorem 1 detailed in [22,
Thm. 2.1] and relies on techniques developed earlier in [13],
[22], [30]. We first derive a set of key properties, which are
then used to prove the main result.

A. Prerequisites

We start with the following definitions. Let h = x̂ − x,
where x̂ denotes the solution of BP-RES and x is the vector
to be recovered. Furthermore, define h0 = PXh with the set
X = suppnx

(x). The proof relies on the following facts.
1) Cone constraint: Let e0 = 2‖x− xX ‖1 with xX =

PXx; then [13], [30]

‖h− h0‖1 ≤ ‖h0‖1 + e0 (12)

which follows from the fact that BPDN delivers a feasible
solution x̂ satisfying ‖x‖1 ≥ ‖x̂‖1 and from

‖x‖1 ≥ ‖xX + h0‖1 + ‖h− h0 + xX c‖1
≥ ‖xX ‖1 − ‖h0‖1 + ‖h− h0‖1 − ‖xX c‖1 .

Application of the reverse triangle inequality to the left-hand
side term of (12) yields the following useful bound:

‖h‖1 ≤ 2‖h0‖1 + e0. (13)

2) Tube constraint: Analogously to [13], [22], [30], we
arrive at the following chain of ineqialities:∥∥∥Ãh

∥∥∥
2
≤ ‖RE(Ax̂− z)‖2 + ‖RE(Ax− z)‖2
≤ η + ‖REn‖2 ≤ η + ε,



where the last inequality follows from the fact that RE is a
projection matrix and, hence, ‖REn‖2 ≤ ‖n‖2 ≤ ε.

B. Properties of the matrix Ã

It is important to realize that BP restoration operates on the
input-output relation (5) using with RE = IM − BEB

†
E and

Ã = REA. The recovery condition for BP-RES (6), which
will be derived next, also ensures that RE exists. Specifically,
in [2] it was shown that the same condition as in (6) ensures
the existence of RE . In order to adapt the proof in [22] for the
projected input-output relation (5), the following properties of
Ã are required.

1) Coherence-based bound on the RIC: We next compute
a coherence-based bound on the restricted isometry constant
(RIC) for the matrix Ã. To this end, let h0 be perfectly nx-
sparse and bound ‖Ãh0‖2 as∥∥∥Ãh0

∥∥∥2

2
=
∣∣∣hH

0 AHAh0 − hH
0 AHBEB

†
EAh0

∣∣∣ (14)

≤ (1 + µa(nx − 1))‖h0‖22 +
∣∣∣hH

0 AHBEB
†
EAh0

∣∣∣ , (15)

where (14) follows from RH
E RE = RE and (15) from

Geršgorin’s disc theorem [31, Thm. 6.1.1]. Next, we bound
the second RHS term in (15) as follows:∣∣∣hH

0 AHBEB
†
EAh0

∣∣∣ ≤ λ−1
min(BH

E BE)
∥∥BH
E Ah0

∥∥2

2
(16)

≤ λ−1
min(BH

E BE)
∥∥BH
E AX

∥∥2

2
‖h0‖22 (17)

≤ nxneµ
2
m

[1− µb(ne − 1)]
+ ‖h0‖22 (18)

where (16) follows from [31, Thm. 4.2.2], (17) from the `2-
norm inequality. The inequality (18) results from∥∥BH

E AX
∥∥2

2
≤
∥∥BH
E AX

∥∥2

F
=
∑
`∈E

∑
k∈X

∣∣bH
` ak

∣∣2 ≤ nxneµ2
m.

Note that (18) requires ne < 1 + 1/µb, which is a sufficient
condition for (BH

E BE)
−1 to exist. Note that ne < 1 + 1/µb

holds whenever the recovery condition for BP-RES is satisfied.
Combining (15) with (18) results in

‖REAh0‖22 ≤
(

1 + µa(nx−1) +
nxneµ

2
m

[1− µb(ne − 1)]
+

)
‖h0‖22

(19)

= (1 + δ̂)‖h0‖22 .

We next compute the lower bound on the RIC as∥∥∥Ãh0

∥∥∥2

2
≥ (1− µa(nx − 1))‖h0‖22 −

∣∣∣hH
0 AHBEB

†
EAh0

∣∣∣
≥
(

1− µa(nx − 1)− nxneµ
2
m

[1− µb(ne − 1)]
+

)
‖h0‖22

= (1− δ̂)‖h0‖22 , (20)

which is obtained by carrying out similar steps used to arrive
at (18). Note that (19) and (20) provide a coherence-based
upper bound δ̂ on the RIC of the projected matrix Ã = REA.

2) Upper bound on the inner products: To carry out the
proof in [22], we need an upper bound on the inner products
of columns of the matrix Ã. For i 6= j, we obtain∣∣ãHi ãj

∣∣ =
∣∣aHi REaj

∣∣ ≤ ∣∣aHi aj
∣∣+
∣∣∣aHi BEB

†
Eaj

∣∣∣
≤ µa +

∣∣aHi BEB
H
E aj

∣∣
[1− µb(ne − 1)]

+ (21)

≤ µa +

∥∥BH
E ai

∥∥
2

∥∥BH
E aj

∥∥
2

[1− µb(ne − 1)]
+ , (22)

where (21) is a consequence of Geršgorin’s disc theorem, and
(22) of the Cauchy-Schwarz inequality. Since∥∥BH

E ai
∥∥

2
=

√∑
k∈E

∣∣bH
k ai

∣∣2 ≤√neµ2
m

for all i = 1, . . . , Na, the inner products with i 6= j satisfy∣∣ãHi ãj
∣∣ ≤ µa +

neµ
2
m

[1− µb(ne − 1)]
+ , a. (23)

3) Lower bound on the column norm: The last prerequisite
for the proof is a lower bound on the column-norms of Ã.
Application of the reverse triangle inequality, using the fact
that ‖ai‖2 = 1, ∀i, and carrying out the similar steps used to
arrive at (23) results in

‖ãi‖22 = ‖REai‖22 ≥
∣∣aHi ai

∣∣− ∣∣∣aHi BEB
†
Eai

∣∣∣
≥ 1− neµ

2
m

[1− µb(ne − 1)]
+ , b.

C. The recovery guarantee

We now derive the recovery condition and bound the corre-
sponding error ‖h‖2. The proof follows that of [22, Thm. 2.1].
For the sake of simplicity of exposition, we make use of the
previously defined quantities δ̂, a, and b.

1) Bounding the error on the signal support: We start by
bounding the error ‖h0‖2 as follows:∣∣∣hHÃHÃh0

∣∣∣ ≥ ∣∣∣hH
0 ÃHÃh0

∣∣∣− ∣∣∣(h− h0)HÃHÃh0

∣∣∣
≥ (1− δ̂)‖h0‖22 − anx‖h0‖22 − a

√
nx‖h0‖2 e0

= c‖h0‖22 − a
√
nx‖h0‖2 e0

with

c , 1− δ̂ − anx = 1− µa(2nx − 1)− 2nxneµ
2
m

[1− µb(ne − 1)]
+ .

Note that the parameter c is crucial, since it determines the
recovery condition for BP-RES (6). In particular, c > 0 is
equivalent to (6)

[1− µa(2nx − 1)]
+

[1− µb(ne − 1)]
+
> 2nxneµ

2
m.

If this condition is satisfied, then we can bound ‖h0‖2 from
above as follows:

‖h0‖2 ≤
(ε+ η)

√
1 + δ̂ + a

√
nxe0

c
.



2) Bounding the recovery error: We next compute an upper
bound on ‖h‖2. To this end, we start with the lower bound∥∥∥Ãh

∥∥∥2

2
≥ (b+ a)‖h‖22 − a‖h‖

2
1 = (1 + µa)‖h‖22 − a‖h‖

2
1 ,

since b+ a = 1 + µa. Finally, we bound ‖h‖2 as follows:

‖h‖2 ≤ (ε+ η)
c+ 2

√
anx

√
1 + δ̂√

1 + µac
+ e0

√
a
√

1 + µa

c

= C5(η + ε) + C6‖x− xX ‖1 ,

where the constants C5 and C6 depend on µa, µb, nx, and ne,
which concludes the proof.

APPENDIX B
PROOF OF THEOREM 3

We start by deriving a coherence-based bound on the RIC
of the concatenated matrix D = [A B ], which is then used
to prove the main result.

A. Coherence-based RIC for D = [A B ]

In this section, we obtain an equivalent bound to that in
Section A-B1 for the dictionary D that depends only on
the coherence parameters µa, µb, µm, and µd, and the total
number of nonzero entries denoted by w = nx + ne.

1) Bounds that are explicit in nx and ne: Let h0 =
[hT

x hT
e ]T where hx = PX (x̂ − x) and he = PE(ê − e)

are perfectly nx and ne sparse, respectively. We start by the
lower bound on the squared `2-norm according to

‖Dh0‖22 =
[
hH
x hH

e

] [ AHA AHB
BHA BHB

] [
hx

he

]
= hH

0

[
INa

0
0 INb

]
h0 + hH

0

[
AHA− INa

AHB
BHA BHB− INb

]
h0

≥ ‖h0‖22 −
∥∥∥∥[ AH

XAX − I|X | AH
XBE

BH
E AX BH

E BE − I|E|

]∥∥∥∥
2

‖h0‖22 ,

which follows from the reverse triangle inequality and ele-
mentary properties of the `2 matrix norm. We next compute
an upper bound on the matrix norm as follows:∥∥∥∥[AH

XAX − I|X | 0
0 BH

E BE − I|E|

]
+

[
0 AH

XBE
BH
E AX 0

]∥∥∥∥
2

≤ max
{∥∥AH

XAX − I|X |
∥∥

2
,
∥∥BH
E BE − I|E|

∥∥
2

}
+
∥∥AH
XBE

∥∥
2
,

which results from the triangle inequality for matrix norms and
the facts that the spectral norm of both a block-diagonal matrix
and an anti-block-diagonal matrix is given by the largest
among the spectral norms of the individual nonzero blocks.
The application of Geršgorin’s disc theorem and∥∥AH

XBE
∥∥

2
≤
∥∥AH
XBE

∥∥
F
≤
√
nxneµ2

m

leads to

max
{∥∥AH

XAX − I|X |
∥∥

2
,
∥∥BH
E BE − I|E|

∥∥
2

}
+
∥∥AH
XBE

∥∥
2

≤ max {µa(nx − 1), µb(ne − 1)}+
√
nxneµ2

m.

Hence, we arrive at the following lower bound

‖Dh0‖22 ≥ ‖h0‖22
(

1−m(nx, ne)−
√
nxneµ2

m

)
(24)

with m(nx, ne) = max {µa(nx − 1), µb(ne − 1)}. Perform-
ing similar steps as for (24) results in the upper bound

‖Dh0‖22 ≤ ‖h0‖22
(

1 +m(nx, ne) +
√
nxneµ2

m

)
. (25)

2) Bounds depending on w = nx+ne: Both bounds in (24)
and (25) are explicit in nx and ne. Since the individual sparsity
levels nx and ne are unknown prior to recovery, we require
a coherence-based bound on the RIC that depends solely on
the total number w = nx +ne of nonzero entries of h0 rather
than on nx and ne. To this end, we define the function

g(nx, ne) = max{µa(nx − 1), µb(ne − 1)}+
√
nxneµ2

m

and find the maximum

ĝ(w) = max
0≤nx≤w

g(nx, w − nx). (26)

Since ĝ(w) only depends on w = nx + ne and g(nx, ne) ≤
ĝ(w), we can replace g(nx, ne) by ĝ(w) in (24) and (25).

We start by computing the maximum in (26). Assume
µa(nx − 1) ≥ µb(ne − 1) and consider the function

ga(nx, w − nx) = µa(nx − 1) +
√
nx(w − nx)µ2

m. (27)

It can easily be shown that ga(nx, w−nx) is strictly concave
in nx for all 0 ≤ nx ≤ w and 0 ≤ w <∞ and, therefore, the
maximum is either achieved at a stationary point or a boundary
point. Standard arithmetic manipulations show that the (global)
maximum of the function in (27) corresponds to

ĝa(w) =
1

2

(
µa(w − 2) + w

√
µ2
a + µ2

m

)
. (28)

For the case where µa(nx − 1) < µb(ne − 1), we carry out
similar steps used to arrive at (27) and exploit the symmetry
of (26) to arrive at

ĝb(w) =
1

2

(
µb(w − 2) + w

√
µ2
b + µ2

m

)
.

Hence, by assuming that µb ≤ µa, we obtain upper and lower
bounds on (24) and (25) in terms of w = nx + ne with the
aid of (28) as follows:

(1− ĝa(w))‖h0‖22 ≤ ‖Dh0‖22 ≤ (1 + ĝa(w))‖h0‖22 . (29)

It is important to realize that for some values of µa, µm,
and w, the bounds in (29) are inferior to those obtained when
ignoring the structure of the concatenated dictionary D, i.e.,

(1− µd(w − 1))‖h0‖22 ≤ ‖Dh0‖22
≤ (1 + µd(w − 1))‖h0‖22 (30)

with µd = max{µa, µb, µm}. In order to tighten the RIC in
both cases, we consider(

1− δ̂w
)
‖h0‖22 ≤ ‖Dh0‖22 ≤

(
1 + δ̂w

)
‖h0‖22 ,

where the coherence-based upper bound on the RIC of the
concatenated dictionary D = [A B ] corresponds to

δ̂w = min
{

1/2
(
µa(w − 2) + w

√
µ2
a + µ2

m

)
, µd(w − 1)

}
.



B. Recovery guarantee

We now bound the error ‖h‖2 and derive the recovery
guarantee by following the proof in Appendix A. In the
following, we only show the case where

1/2
(
µa(w − 2) + w

√
µ2
a + µ2

m

)
≤ µd(w − 1).

The other case, i.e., where the standard RIC bound (30) is
tighter than (29), readily follows from the proof for Theorem 1
in [22], by replacing A by D, µa by µd, and nx by w.

1) Bounding the error on the signal support: We start by
bounding the error ‖h0‖2. Since µm ≤ µd, we arrive at∣∣hHDHDh0

∣∣ ≥ ∣∣hH
0 DHDh0

∣∣− ∣∣(h− h0)HDHDh0

∣∣
≥ (1− δ̂w)‖h0‖22 − µdw‖h0‖22 − µd

√
w‖h0‖2 e0

= d‖h0‖22 − µd

√
w‖h0‖2 e0

with

d , 1− δw − µdw = 1− w

2

(
µa + 2µd +

√
µ2
a + µ2

m

)
+ µa.

It is important to note that d is crucial for the recovery
guarantee as it determines the condition for which BP-SEP
in (10) enables stable separation. Specifically, if d > 0 or,
equivalently, if

w <
2(1 + µa)

µa + 2µd +
√
µ2
a + µ2

m

then the error on the signal support ‖h0‖2 is bounded from
above as

‖h0‖2 ≤
(ε+ η)

√
1 + δ̂w + µd

√
we0

d
.

where e0 = 2‖w −wW‖1 with W = suppw(w).
2) Bounding the recovery error: We now compute an upper

bound on ‖h‖2, i.e.,

‖Dh‖22 ≥ (1 + µd)‖h‖22 − µd‖h‖21 . (31)

Finally, bounding ‖h‖2 similarly to Appendix A results in

‖h‖2 ≤ (ε+ η)
d+ 2

√
µdw

√
1 + δ̂w√

1 + µdd
+ e0

√
µd(d+ 2µdw)
√

1 + µdd

= C7(η + ε) + C8‖w −wW‖1 .

where the constants C7 and C8 depend on the parameters µa,
µb, µm, µd, and w = nx + ne, which concludes the proof.
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