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Abstract—Soft-input soft-output (SISO) detection algorithms
form the basis for iterative decoding. The computational com-
plexity of SISO detection often poses significant challenges for
practical receiver implementations, in particular in the context of
multiple-input multiple-output (MIMO) wireless communication
systems. In this paper, we present a low-complexity SISO sphere-
decoding algorithm, based on the single tree-search paradigm
proposed originally for soft-output MIMO detection in Studer
et al., IEEE J-SAC, 2008. The new algorithm incorporates
clipping of the extrinsic log-likelihood ratios (LLRs) into the
tree-search, which results in significant complexity savings and
allows to cover a large performance/complexity tradeoff region
by adjusting a single parameter. Furthermore, we propose a new
method for correcting approximate LLRs —resulting from sub-
optimal detectors— which (often significantly) improves detection
performance at low additional computational complexity.

Index Terms—Multiple-input multiple-output (MIMO) com-
munication, soft-input soft-output detection, sphere decoding,
iterative MIMO decoding

I. INTRODUCTION

SOFT-input soft-output (SISO) detection constitutes the
basis for iterative decoding in multiple-input multiple-

output (MIMO) systems, which, in general, achieves signif-
icantly better (error-rate) performance than decoding based
on hard-output or soft-output-only detection algorithms [1].
Unfortunately, this performance gain comes at the cost of a
significant (often prohibitive in terms of practical implemen-
tation) increase in computational complexity.

Various SISO detection algorithms for MIMO systems of-
fering different performance/complexity tradeoffs have been
proposed in the literature, see e.g., [1]–[6]. However, imple-
menting different algorithms, each optimized for a maximum
allowed detection effort or for a particular system configura-
tion, would entail considerable circuit complexity. A practical
SISO detector for MIMO systems should therefore cover a
wide range of performance/complexity tradeoffs and be easily
adjustable through a single tunable detection algorithm.

Soft-output single tree-search (STS) sphere decoding (SD)
in combination with log-likelihood ratio (LLR) clipping [7]

This paper was presented in part at the IEEE International Symposium on
Information Theory (ISIT), Toronto, Ontario, Canada, July 2008. This work
was partially supported by the STREP project No. IST-026905 (MASCOT)
within the Sixth Framework Programme (FP6) of the European Commission
and by the Swiss Innovation Promotion Agency (KTI/CTI) project No. 9268.1
PFNM-NM.

The authors are with the Department of Information Technology and
Electrical Engineering, ETH Zurich, CH-8092 Zurich, Switzerland (e-mail:
{studerc,boelcskei}@nari.ee.ethz.ch).

MATLAB code of the SISO STS-SD algorithm is available for download at
http://www.nari.ee.ethz.ch/commth/research/

has been demonstrated to be suitable for VLSI implementa-
tion and allows to conveniently tune detection performance
between maximum-likelihood (ML) a posteriori probability
(APP) soft-output detection and (low-complexity) hard-output
detection. The STS-SD concept is therefore a promising basis
for efficient SISO detection in MIMO systems.

Contributions: We describe a SISO STS-SD algorithm that
is tunable between max-log optimal SISO and hard-output
maximum a posteriori (MAP) detection performance. To this
end, we extend the soft-output STS-SD algorithm introduced
in [7], [8] by incorporating a priori information. Specifically,
this will be done through a method that significantly reduces
the tree-search complexity —relative to existing approaches in
the literature (e.g., [5], [6])— and avoids the computation of
transcendental functions, while maintaining (max-log) opti-
mality. The basic idea underlying this complexity reduction
and the tunability of the algorithm is to incorporate clipping
of the extrinsic LLRs into the tree search. This requires that
the list administration concept and the tree-pruning criterion
proposed for soft-output STS-SD in [7] be suitably modified.
We furthermore describe an approach for the compensation
of self-interference in the LLRs —caused by channel-matrix
regularization— directly in the tree search. In addition, we
describe a new method for correcting approximate LLRs —
resulting from sub-optimal detectors— which (often signifi-
cantly) improves detection performance at low additional com-
putational complexity. Simulation results show that the re-
sulting SISO STS-SD operates between 1.5 dB and 5.3 dB
away from outage capacity at remarkably low computational
complexity. In addition, the algorithm offers a significantly
larger performance/complexity tradeoff region than the soft-
output STS-SD algorithm proposed in [7].

Notation: Matrices are set in boldface capital letters, vec-
tors in boldface lowercase letters. The superscripts T and H

stand for transpose and conjugate transpose, respectively. We
write Ai,j for the entry in the ith row and jth column
of the matrix A and bi for the ith entry of the vector
b = [ b1 · · · bN ]T . The `2-norm of the vector b is denoted
by ‖b‖. IN and 0M×N refer to the N × N identity matrix
and the M ×N all-zero matrix, respectively. Slightly abusing
common terminology, we call an M × N matrix A, where
M ≥ N , satisfying AHA = IN , unitary. |O| denotes the
cardinality of the set O. The probability of an event Z is
referred to as P[Z], the probability density function of a
continuous random variable (RV) z is denoted by p(z) and
E[Z] stands for the expectation of the RV Z. x is the binary
complement of x ∈ {+1,−1}, i.e., x = −x.
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Fig. 1. Iterative MIMO decoder. SISO STS-SD (corresponding to the dashed
box) directly computes extrinsic LLRs.

Outline: The remainder of this paper is organized as
follows. Section II reviews the transformation of soft-input
soft-output MIMO detection into a tree-search problem and
presents new methods for tightening of the tree-pruning cri-
terion and for incorporating a priori information into the tree
search. Section III describes the new SISO STS-SD algorithm.
In Section IV, we propose a method for compensating the
impact of channel-matrix regularization on LLRs directly in
the tree search. A new technique for computationally efficient
correction of approximate LLRs —resulting from, e.g., the
max-log approximation, channel-matrix regularization, and/or
early termination [7], [9]— is presented in Section V. Sim-
ulation results are provided in Section VI. We conclude
in Section VII.

II. SOFT-INPUT SOFT-OUTPUT SPHERE DECODING

Consider a MIMO system with MT transmit and MR ≥MT

receive antennas. The coded bit-stream to be transmitted is
mapped to (a sequence of) MT-dimensional transmit symbol
vectors s ∈ OMT , where O stands for the underlying complex
scalar constellation1 and |O| = 2Q. Each symbol vector s is
associated with a label vector x containing MTQ binary values
chosen from the set {+1,−1} where the null element (0 in
binary logic) of GF(2) corresponds to +1. The corresponding
bits are denoted by xi,b, where the indices i and b refer to
the bth bit in the binary label of the ith entry of the symbol
vector s = [ s1 · · · sMT ]T . The associated complex baseband
input-output relation is given by

y = Hs + n (1)

where H stands for the MR×MT channel matrix, y is the MR-
dimensional received signal vector, and n is an i.i.d. circularly
symmetric complex Gaussian distributed MR-dimensional noise
vector with variance N0 per complex entry. Different trans-
mit powers on the individual transmit antennas are assumed
to be absorbed in the channel matrix H, which —including
the corresponding scaling factors— will be referred to as the
physical MIMO channel. Throughout the paper, we consider
coherent detection, i.e., we assume that the receiver knows the
realization of the channel matrix H perfectly.

A. Max-Log LLR Computation as a Tree Search

In the following, we consider an iterative MIMO decoder as
depicted in Fig. 1. The soft-input soft-output MIMO detector

1The algorithm developed in this paper can also be formulated for the
case where different constellations are used on different transmit antennas.
However, for the sake of simplicity of exposition, we restrict ourselves to
employing the same constellation on all transmit antennas.

computes intrinsic LLRs according to [1]

Li,b , log

(
P[xi,b = +1 |y,H]
P[xi,b = −1 |y,H]

)
(2)

for all bits i = 1, . . . ,MT, b = 1, . . . , Q, in the label x.
Bayes’s theorem applied to (2) leads to the equivalent formu-
lation

Li,b = log

 ∑
s∈X (+1)

i,b

p(y | s,H) P[s]


− log

 ∑
s∈X (−1)

i,b

p(y | s,H) P[s]

 (3)

where X (+1)
i,b and X (−1)

i,b are the sets of symbol vectors that
have the bit corresponding to the indices i and b equal
to +1 and −1, respectively. The probability density function
p(y | s,H) in (3) is given by

p(y | s,H) =
1

(πN0)MR
exp
(
− ‖y −Hs‖2

N0

)
and the prior P[s] is, e.g., delivered by an outer channel
decoder in the form of a priori LLRs

LA
i,b , log

(
P[xi,b = +1]
P[xi,b = −1]

)
, ∀i, b.

Based on the intrinsic LLRs in (3), the MIMO detector
computes the extrinsic LLRs

LE
i,b ,Li,b − LA

i,b, ∀i, b (4)

that are passed to a subsequent SISO channel decoder.
Straightforward evaluation of (3) requires the computation
of |O|MT Euclidean distances per LLR value, which, in
general, leads to prohibitive computational complexity. We
therefore apply the standard max-log approximation2 to (3),
which enables us to reformulate the LLR computation problem
as a weighted tree-search problem that can be solved efficiently
using the SD algorithm [7], [8], [11]–[18].

We start by QR-decomposing the channel matrix H accord-
ing to H = QR, where the MR×MT matrix Q is unitary and
the MT×MT upper-triangular matrix R has real-valued pos-
itive entries on its main diagonal. Left-multiplying (1) by QH

leads to the modified input-output relation

ỹ = Rs + QHn (5)

where ỹ ,QHy and QHn is also i.i.d. circularly symmet-
ric complex Gaussian with variance N0 per complex entry.
Based on (3), the soft-input soft-output MIMO detector then
computes intrinsic max-log LLRs according to [1]

LD
i,b , min

s∈X (−1)
i,b

{
1
N0

∥∥ỹ −Rs
∥∥2 − log P[s]

}
− min

s∈X (+1)
i,b

{
1
N0
‖ỹ −Rs‖2 − log P[s]

}
(6)

2The max-log approximation corresponds to log
`P

k exp(ak)
´
≈

maxk{ak} and entails a performance loss compared to using the exact LLRs
in (3). As shown in [10], this loss is small, in general.
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followed by the computation of extrinsic max-log LLRs, ob-
tained by replacing Li,b in (4) by LD

i,b. In the remainder of
the paper, whenever we speak of extrinsic LLRs and intrinsic
LLRs, we mean the extrinsic max-log LLRs LE

i,b = LD
i,b − LA

i,b

and the intrinsic max-log LLRs in (6), respectively. Note that
in each of the two minima in (6) we neglected the additive
constant that results from the part of the noise n that is orthog-
onal to the range space of H. This is possible as the constant
in question is independent of s and, hence, cancels out upon
taking the difference in (6).

For each bit, one of the two minima in (6) corresponds to

λMAP ,
1
N0

∥∥∥ỹ −RsMAP
∥∥∥2

− log P
[
sMAP

]
(7)

associated with the MAP solution of the MIMO detection
problem

sMAP = arg min
s∈OMT

{
1
N0

∥∥ỹ −Rs
∥∥2 − log P[s]

}
. (8)

In the remainder of the paper, xMAP stands for the (binary-
valued) label vector associated with the MAP solution sMAP.
The other minimum in (6) can be written as

λMAP
i,b , min

s∈XMAP
i,b

{
1
N0

∥∥ỹ −Rs
∥∥2 − log P[s]

}
(9)

where XMAP
i,b ,X

(
xMAP

i,b

)
i,b and xMAP

i,b denotes the (bit-wise)
counter-hypothesis to the MAP hypothesis. With the defini-
tions (7) and (9), the intrinsic LLRs in (6) can be written in
compact form as

LD
i,b =

{
λMAP
i,b − λMAP , xMAP

i,b = +1
λMAP − λMAP

i,b , xMAP
i,b = −1.

(10)

We can therefore conclude that efficient max-log-optimal soft-
input soft-output MIMO detection reduces to efficiently iden-
tifying sMAP, λMAP, and λMAP

i,b , ∀i, b.
We next define the partial symbol vectors (PSVs)

s(i) , [ si · · · sMT ]T and note that they can be arranged in
a tree that has its root just above level i = MT and leaves,
on level i = 1, which correspond to symbol vectors s. The
binary-valued label vector associated with s(i) will be denoted
by x(i). The distances3

d(s) ,
1
N0

∥∥ỹ −Rs
∥∥2 − log P[s] (11)

in (7) and (9) can be computed recursively by employing the
following factorization

P[s] =
MT∏
i=1

P
[
si | s(i+1)

]
(12)

with the definition P
[
sMT | s(MT+1)

]
, P[sMT ]. For the sake

of simplicity of exposition, we set Pc

[
s(i)
]
, P

[
si | s(i+1)

]
.

3Note that we are abusing common terminology by calling d(s) a “dis-
tance”, although it does not satisfy the defining properties of a distance
function.

We can now rewrite (11) as

d(s) =
MT∑
i=1

(
1
N0

∣∣∣∣ỹi − MT∑
j=i

Ri,jsj

∣∣∣∣2 − log Pc

[
s(i)
])

which can be evaluated recursively as d(s) = d1, with the
partial distances (PDs)

di = di+1 + ei, i = MT, . . . , 1, (13)

the initialization dMT+1 = 0, and the distance incre-
ments (DIs)

ei ,
1
N0

∣∣∣∣∣ỹi −
MT∑
j=i

Ri,jsj

∣∣∣∣∣
2

− log Pc

[
s(i)
]
. (14)

Note that the DIs are non-negative since the prior terms sat-
isfy − log Pc

[
s(i)
]
≥ 0. From (12) and the upper-triangularity

of R it follows that the dependence of the PD di on the symbol
vector s is only through the PSV s(i). Thus, the MAP detection
problem and the computation of the intrinsic LLRs LD

i,b have
been transformed into a tree-search problem: PSVs and PDs
are associated with nodes, branches correspond to DIs. For
brevity, we shall often say “the node s(i)” to refer to the node
corresponding to the PSV s(i) on level i. We shall furthermore
use d

(
s(i)
)

and d
(
x(i)
)

interchangeably to denote di. Each
path from the root node down to a leaf node corresponds to
a symbol vector s ∈ OMT . The quantities λMAP and λMAP

i,b

correspond to the leaves associated with the smallest metric in
OMT and XMAP

i,b , respectively. The SISO STS-SD algorithm
uses elements of Schnorr-Euchner SD (SESD) [13], [19],
briefly summarized as follows: The search in the weighted tree
is constrained to nodes that lie within a radius4 r around ỹ and
tree traversal is performed depth-first, visiting the children of
a given node in ascending order of their PDs. A node s(i) with
PD di can be pruned (along with the entire subtree originating
from this node) whenever the tree-pruning criterion

di ≥ r2 (15)

is satisfied. In the remainder of the paper, (15) is referred to
as the “standard pruning criterion.”

The radius r has to be chosen sufficiently large for the
SD algorithm to find the MAP solution and —in the soft-
output case— the QMT counter-hypotheses λMAP

i,b in (9) that
are required to compute the intrinsic LLRs in (10). On the
other hand, choosing r too large, leads to high complexity as a
large number of nodes needs to be visited. In order to avoid the
problem of choosing a suitable radius r altogether, we employ
a technique known as radius reduction [19], which consists of
initializing the algorithm with r = ∞, and performing the
update r2 ← d(s) whenever a valid leaf node s has been
found.

The tree-search complexity measure used in the remainder
of the paper is the total number of nodes visited by the detec-
tor, including the leaf nodes, but excluding the root node and is
simply termed as “complexity” from now on. This complexity
measure was shown in [20] and [7] to be representative of the
hardware complexity of VLSI implementations for hard-output

4Note that r corresponds to the radius of a hypersphere if P[s] = 0.



4 TO APPEAR IN IEEE TRANSACTIONS ON INFORMATION THEORY

and soft-output sphere decoding, respectively. Additionally, we
will frequently use the term “computational complexity” with
the exact meaning made clear in the specific context.

B. Tightening of the Tree-Pruning Criterion

Tightening of the tree-pruning criterion (15), i.e., a reduction
of the right-hand side (RHS) of (15), without sacrificing (max-
log) optimality is highly desirable as it reduces complexity.
Tightening can be accomplished, for example, through tech-
niques based on semi-definite relaxation and H∞-estimation
theory as proposed in [21]. Unfortunately, these approaches
entail, in general, a high computational complexity and are,
hence, not well-suited for practical (VLSI) implementation.

In the following, we propose an alternative approach which
relies on the observation that the DIs (14) contain a —generally
non-zero— bias given by

bi , min
s(i)∈OMT+1−i

ei, i = 1, . . . ,MT (16)

where bi ≥ 0, by definition. Consider the case where the
detector stands at node s(i) with corresponding PD di. The
PDs of all leaves that can be reached from the node s(i) satisfy

d1 ≥ di +
i−1∑
j=1

bj . (17)

At level i, we can therefore prune every node that satisfies a
tightened version of the tree-pruning criterion in (15), namely

di ≥ r2 −
i−1∑
j=1

bj . (18)

We emphasize that tightening of the tree-pruning criterion
is either achieved by using the criterion (18) or by replacing ei
in (13) by the “tightened DIs” ei − bi and employing the
standard tree-pruning criterion (15). Since the tightened DIs
are non-negative, by definition, one can show that for initial
radius r = ∞, the two approaches visit exactly the same set
of nodes (in the same order) during the tree search. In the
remainder of the paper we focus on the latter approach.

Computation of the bias term (16) requires enumeration of
the DIs ei over all s(i) ∈ OMT+1−i, which, in general, leads
to prohibitive computational complexity. The major portion of
this computational complexity is caused by the computation
of the Euclidean distance-term 1

N0

∣∣ỹi −∑MT
j=i Ri,jsj

∣∣2 in (14),
whose contribution to the bias (16), as it turns out (correspond-
ing numerical results are shown in Section VI-A1), is negli-
gible. Hence, we only consider the contribution to bi caused
by the prior term − log Pc

[
s(i)
]

and we define accordingly the
non-negative quantities

pi , min
s(i)∈OMT+1−i

{
− log Pc

[
s(i)
]}
. (19)

The corresponding tightened DIs are then given by

ẽi , ei − pi (20)

which are non-negative by definition.

1) Statistically independent symbols: In practice, the sym-
bols si (i = 1, . . . ,MT) are often statistically independent,
which implies P[s] =

∏MT
i=1 P[si]. As an important conse-

quence, the computational complexity incurred by the evalua-
tion of the RHS of (19) is drastically reduced (compared to the
case of general P[s]) as we have to carry out one-dimensional
searches according to pi = minsi∈O

{
− log P[si]

}
only.

We emphasize that using the tightened DIs ẽi in (20) pre-
serves max-log optimality and leads, in general, to signifi-
cant complexity savings, when compared to the standard DIs
given in (14), which are widely used in the literature, see,
e.g., [5], [6]. To see this, consider the case where all constella-
tion points are equally likely, i.e., P[si] = |O|−1 for all si ∈ O
and i = 1, . . . ,MT. The corresponding total bias from level i
down to the leaf level is given by

∑i−1
j=1 pj = (i− 1) log |O|,

which can be large, especially for nodes close to the root.
Since pruning at and close to the root level, has, in general,
significant impact on the number of nodes visited in the tree
search, using the tightened DIs in (20) can lead to a major
complexity reduction. Corresponding simulation results are
provided in Section VI-A2.

2) Statistically independent bits: We have seen above that
statistical independence among individual symbols enables us
to tighten the tree-pruning criterion at low additional computa-
tional complexity. For bit-interleaved coded modulation [22],
we not only have independence on the symbol-level, but also
the bits xi,b (i = 1, . . . ,MT, b = 1, . . . , Q) are statistically
independent. As shown next, this independence on the bit-level
can be exploited to get further reductions in computational
complexity. To see this, consider the case where the MIMO
detector obtains a priori LLRs LA

i,b from an external device,
e.g., a SISO channel decoder as depicted in Fig. 1. We then
have [23]

P[si] =
∏

b:xi,b=+1

exp
(
LA
i,b

)
1 + exp

(
LA
i,b

) ∏
b:xi,b=−1

1
1 + exp

(
LA
i,b

)
which can be reformulated in more compact form as

P[si] =
Q∏
b=1

exp
(

1
2

(
1 + xi,b

)
LA
i,b

)
1 + exp

(
LA
i,b

) . (21)

The contribution of the a priori LLRs to the prior term in the
DIs in (14) can then be obtained from (21) as

− log Pc

[
s(i)
]

= − log P[si] = K̃i −
Q∑
b=1

1
2
xi,bL

A
i,b (22)

where the constants

K̃i ,
Q∑
b=1

(
1
2

∣∣LA
i,b

∣∣+ log
(

1 + exp
(
− |LA

i,b|
)))

(23)

are independent of the binary-valued variables xi,b and K̃i > 0
for i = 1, . . . ,MT.

It then follows from (22) and (23) that

pi =
Q∑
b=1

log
(

1 + exp
(
− |LA

i,b|
))

(24)
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with the corresponding tightened DIs ẽi = ei − pi given by

ẽi ,
1
N0

∣∣∣∣∣ỹi −
MT∑
j=i

Ri,jsj

∣∣∣∣∣
2

+Ki −
Q∑
b=1

1
2
xi,bL

A
i,b (25)

where Ki ,
∑Q
b=1

1
2

∣∣LA
i,b

∣∣. We emphasize that using the tight-
ened DIs in (25) avoids computation of transcendental func-
tions such as terms of the form log

(
1 + exp(x)

)
. This is

relevant in terms of computational complexity and arithmetic
precision in practical (e.g., VLSI) implementations.

Note that in [5, Eq. 9], the prior term (22) was approximated
as

− log P[si] ≈
Q∑
b=1

1
2

(∣∣LA
i,b

∣∣− xi,bLA
i,b

)
for

∣∣LA
i,b

∣∣ > 2 (b = 1, . . . , Q) which results in exactly the
same DIs we arrived at in (25). It is important, though, to
realize that using the tightened DIs (25) does not lead to an
approximation of (10), as the neglected log(·)-term does not
depend on xi,b and, hence, cancels out in the computation of
the intrinsic LLRs LD

i,b according to (10).

III. EXTRINSIC LLR COMPUTATION IN A
SINGLE TREE SEARCH

Computing the intrinsic LLRs in (10) requires to deter-
mine λMAP and the metrics λMAP

i,b associated with the counter-
hypotheses. For given i and b, λMAP

i,b , is obtained by traversing
only those parts of the search tree that have leaves in XMAP

i,b .
The quantities λMAP and λMAP

i,b can, in principle, be computed
using the sphere decoder based on the repeated tree-search
(RTS) approach described in [17]. The RTS strategy results,
however, in redundant computations as (often significant) parts
of the search tree are revisited during the RTS steps required
to determine λMAP

i,b for all i, b. Following the STS paradigm
described for soft-output SD in [7], we note that efficient com-
putation of the LLRs LD

i,b requires that every node in the tree
be visited at most once. This can be achieved by searching for
the MAP solution and computing the metrics λMAP

i,b concur-
rently while ensuring that the subtree originating from a given
node in the tree is pruned if searching that subtree can not
lead to an update of either λMAP or at least one of the λMAP

i,b .
Besides extending the ideas in [7] to take into account a priori
information, the main idea underlying SISO STS-SD presented
in this paper is to directly compute the extrinsic LLRs LE

i,b

through a tree search, rather than computing LD
i,b first and

then evaluating LE
i,b = LD

i,b − LA
i,b.

Due to the large dynamic range of LLRs, fixed-point de-
tector implementations need to constrain the magnitude of
the LLR values. Evidently, clipping of the LLR magnitude
leads to a performance degradation. It was demonstrated in [7]
that LLR clipping (when built into the tree search) allows to
tune the soft-output STS-SD algorithm in terms of complexity
versus performance by adjusting the clipping parameter. In
the SISO case, we are ultimately interested in the extrinsic
LLRs LE

i,b and clipping should therefore ensure that
∣∣LE
i,b

∣∣ ≤
Lmax, ∀i, b, where Lmax is the LLR clipping parameter. It

is therefore sensible to ask whether clipping of the extrinsic
LLRs can be built directly into the tree search. The answer
is in the affirmative and a corresponding solution is described
below. We start by writing the extrinsic LLRs as

LE
i,b =

{
ΛMAP
i,b − λMAP , xMAP

i,b = +1
λMAP − ΛMAP

i,b , xMAP
i,b = −1

(26)

where the quantities

ΛMAP
i,b ,

{
λMAP
i,b − LA

i,b , xMAP
i,b = +1

λMAP
i,b + LA

i,b , xMAP
i,b = −1

(27)

will be referred to as the extrinsic metrics. For the following
developments it will be convenient to define the function f(·)
that transforms an intrinsic metric λ with associated a priori
LLR LA and binary label x to an extrinsic metric Λ according
to

Λ = f
(
λ, LA, x

)
,

{
λ− LA , x = +1
λ+ LA , x = −1. (28)

With this notation, we can rewrite (27) more compactly as
ΛMAP
i,b = f

(
λMAP
i,b , LA

i,b, x
MAP
i,b

)
. The inverse function of (28)

transforms an extrinsic metric Λ to an intrinsic metric λ and
is given by

λ = f−1
(
Λ, LA, x

)
,

{
Λ + LA , x = +1
Λ− LA , x = −1. (29)

We emphasize that the tree-search algorithm described in the
following produces the extrinsic LLRs LE

i,b in (26) rather than
the intrinsic ones in (10). Since the soft-output STS-SD algo-
rithm described in [7] delivers LD

i,b and we have LE
i,b = LD

i,b

only if LA
i,b = 0, i.e., for uniform priors, careful modifications

of the list administration steps, the tree-pruning criterion, and
the LLR clipping rules are needed.

A. List Administration
The main idea of the SISO STS paradigm is to search

the subtree originating from a given node only if the result
can lead to an update of either λMAP or of at least one of
the ΛMAP

i,b . To this end, the algorithm needs to maintain a
list containing the current MAP hypothesis xMAP, the corre-
sponding metric λMAP, and all QMT extrinsic metrics ΛMAP

i,b .
This list is initialized with5 λMAP = ΛMAP

i,b =∞, ∀i, b, and
xMAP
i,b = 1, ∀i, b. Whenever a leaf node with corresponding

label x has been reached, the detector distinguishes between
two cases:

i) MAP hypothesis update: If d(x) < λMAP, a new MAP
hypothesis has been found. First, all extrinsic metrics ΛMAP

i,b

for which xi,b = xMAP
i,b are updated according to

ΛMAP
i,b ← f

(
λMAP, LA

i,b, x
MAP
i,b

)
followed by the updates λMAP ← d(x) and xMAP ← x.
In other words, for each bit in the MAP hypothesis that is
changed in the update process, the metric associated with the
former MAP hypothesis becomes the extrinsic metric of the
new counter-hypothesis.

5In practical implementations, λMAP and the ΛMAP
i,b are initialized with

the largest quantity that can be represented in the given number format.
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ii) Extrinsic metric update: In the case where
d(x) > λMAP, only extrinsic metrics corresponding to
counter-hypotheses might be updated. For each pair (i, b)
with xi,b = xMAP

i,b and f
(
d(x), LA

i,b, x
MAP
i,b

)
< ΛMAP

i,b , the
SISO STS-SD algorithm performs the update

ΛMAP
i,b ← f

(
d(x), LA

i,b, x
MAP
i,b

)
. (30)

The condition f
(
d(x), LA

i,b, x
MAP
i,b

)
< ΛMAP

i,b ensures that the

value of the extrinsic metric ΛMAP
i,b is, indeed, reduced in the

update process.

B. Extrinsic LLR Clipping

In order to ensure that the extrinsic LLRs delivered by the
algorithm indeed satisfy

∣∣LEi,b∣∣ ≤ Lmax, ∀i, b, the following
update rule

ΛMAP
i,b ← max

{
λMAP − Lmax,

min
{

ΛMAP
i,b , λMAP + Lmax

}}
, ∀i, b (31)

has to be applied after carrying out the steps in Case i) of
the list administration procedure described in Section III-A.
Note that for Lmax =∞ the detector attains max-log optimal
SISO performance, whereas for Lmax = 0, the LLRs satisfy
LE
i,b = 0 and the hard-output MAP solution (8) is obtained.

In Section VI-B1, it will be demonstrated (numerically) that
LLR clipping enables efficient tuning of the performance and
complexity of the SISO STS-SD algorithm.

We note that for LA
i,b = 0, ∀i, b, the update rule (31) reduces

to the corresponding update rule [7, Eq. 13] for the soft-output
STS-SD algorithm given by

ΛMAP
i,b ← min

{
ΛMAP
i,b , λMAP + Lmax

}
, ∀i, b. (32)

This can be seen by noting that LA
i,b = 0, ∀i, b, implies that

ΛMAP
i,b = λMAP

i,b ≥ λMAP, ∀i, b, and hence, we have

λMAP − Lmax ≤ min
{

ΛMAP
i,b , λMAP + Lmax

}
, ∀i, b.

Note that the computational complexity associated with the
evaluation of the RHS of (32) is lower than that incurred by the
evaluation of the RHS of (31). Specifically, half of the required
compare operations are saved. Numerical results have shown
that using the simpler LLR clipping rule (32) in the soft-input
case entails virtually no difference in terms of performance and
complexity. We stress, however, that clipping according to (32)
in the soft-input case no longer guarantees that

∣∣LEi,b∣∣ ≤ Lmax,
∀i, b, so that an additional clipping step after the computation
of (26) is required. In the presence of run-time constraints this
additional clipping step is required anyways (see Section V-C).
In the remainder of the paper, we exclusively use the LLR
clipping rule (32) and refer to it as “the extrinsic LLR clipping
rule.”

C. The Tree-Pruning Criterion

Consider the node s(i) corresponding to the label bits xj,b
(j = i, . . . ,MT, b = 1, . . . , Q). Assume that the subtree orig-
inating from this node and corresponding to the label bits xj,b
(j = 1, . . . , i− 1, b = 1, . . . , Q) has not been expanded yet.
The tree-pruning criterion for the node s(i) along with its
subtree is compiled from two sets, defined as follows:

1) The bits in the partial label x(i) corresponding to the
node s(i) are compared to the corresponding bits in the
label of the current MAP hypothesis. All extrinsic met-
rics ΛMAP

i,b , with xi,b = xMAP
i,b , found in this comparison

may be affected when searching the subtree originating
from s(i). As the PD d

(
x(i)
)

is an intrinsic metric,
the extrinsic metrics ΛMAP

i,b need to be transformed to
intrinsic metrics according to (29). The resulting set of
intrinsic metrics, which may be affected by an update, is
given by

A1

(
x(i)
)

,
{
f−1

(
ΛMAP
j,b , LA

j,b, x
MAP
j,b

) ∣∣∣ (j ≥ i,∀b)
∧
(
xj,b = xMAP

j,b

)}
.

2) The extrinsic metrics ΛMAP
j,b for j = 1, . . . , i − 1,

b = 1, . . . , Q corresponding to the counter-hypotheses in
the subtree originating from s(i) may be affected as well.
Correspondingly, we define

A2

(
x(i)
)

,
{
f−1

(
ΛMAP
j,b , LA

j,b, x
MAP
j,b

) ∣∣∣ j < i,∀b
}
.

The intrinsic metrics which may be affected during the
search in the subtree originating from s(i) are now given by
A
(
x(i)
)
,A1

(
x(i)
)
∪ A2

(
x(i)
)
. The node s(i) along with its

subtree is pruned if the corresponding PD d
(
x(i)
)

satisfies the
tree-pruning criterion

d
(
x(i)
)
> max
a∈A

(
x(i)
) a.

This tree-pruning criterion ensures that the subtree originating
from a given node is explored only if this could lead to an
update of either λMAP or of at least one of the extrinsic met-
rics ΛMAP

i,b . Note that λMAP does not appear in the setA
(
x(i)
)
,

as the update rules i) and ii) specified in Section III-A ensure
that λMAP is always smaller than or equal to all intrinsic
metrics associated with the counter-hypotheses.

IV. CHANNEL-MATRIX PREPROCESSING

In this section, we describe how performing the QR-
decomposition (QRD) on a column-sorted and regularized
version of the channel matrix H in combination with compen-
sation of self-interference in the LLRs —caused by channel-
matrix regularization— carried out directly in the tree search
can result in a significant complexity reduction at negligible
performance loss. The use of column-sorting and regulariza-
tion for soft-output SD was discussed in detail in [7]. We shall
therefore keep the discussion of the general aspects short and
put emphasis on self-interference compensation.
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A. Column-Sorting and Regularization of the Channel Matrix

Methods for column-sorting and regularization of the chan-
nel matrix H performed on the basis of the received symbol
vector y were discussed, e.g., in [24], [25]. Unfortunately,
these techniques require QRD at symbol-vector rate, which
leads to a significant computational burden. In contrast, column-
sorting and regularization based solely on the channel ma-
trix H (and possibly on the noise variance) require QRDs only
when the channel state changes, which entails a significantly
smaller computational burden. In the following, we restrict
ourselves to methods of the latter type.

1) Column-sorting: The complexity of SD can be reduced
(often significantly) by performing the QRD on a column-
sorted version of H rather than on H directly, i.e., by com-
puting HP = QR, where P is an MT × MT permutation
matrix. Reduction in terms of complexity is obtained if levels
closer to the root correspond to main-diagonal entries of R
with larger magnitude, or equivalently, to spatial streams with
higher effective SNR. A corresponding computationally ef-
ficient heuristic for obtaining P was proposed in [26] and
is referred to as sorted QRD (SQRD) in the following. We
emphasize that column-sorting does not entail a performance
degradation and the additional computational complexity re-
quired by SQRD (as compared to QRD) is negligible [27].

2) Regularization: A further reduction in terms of complex-
ity —at the cost of slightly reduced performance— can be ob-
tained by performing the tree search on a Tikhonov-regularized
(and column-sorted) version of H according to [28][

H
αIMT

]
︸ ︷︷ ︸

H

P =
[

Qa Qc

Qb Qd

]
︸ ︷︷ ︸

Q

[
R̃

0MR×MT

]
︸ ︷︷ ︸

R

(33)

where α ∈ R is a suitably chosen regularization parameter.
Here, the MT ×MT matrix R̃ is upper-triangular, Q is uni-
tary, and Qa, Qb, Qc, and Qd are of dimension MR ×MT,
MT×MT, MR×MR, and MT×MR, respectively. Note that
the computational complexity for regularized SQRD is approx-
imately 50% higher than that for non-regularized SQRD [27],
[29]. However, the QRD needs to be performed only if the
channel matrix H changes, as opposed to the tree-search itself,
which needs to be carried out at symbol-vector rate. Therefore,
the computational complexity increase incurred by channel-
matrix regularization is —in most practical applications— not
critical.

For regularized SQRD, the input-output relation in (5) is
replaced by

ŷ = R̃s̃ + ñ (34)

where ŷ ,QH
a y, s̃,PT s, and ñ,−αQH

b s + QH
a n. The

corresponding intrinsic (max-log) LLRs in (6) are obtained
by pretending that the resulting noise ñ has the same statistics
as n, which leads to

L̃D
i,b , min

s̃∈X (−1)
i,b

{
1
N0

∥∥ŷ − R̃s̃
∥∥2 − log P[s̃]

}
− min

s̃∈X (+1)
i,b

{
1
N0
‖ŷ − R̃s̃‖2 − log P[s̃]

}
. (35)

The intrinsic LLRs L̃D
i,b in (35) will, in general, only be

approximations to the true intrinsic LLRs LD
i,b in (6). This

is a consequence of ñ not being i.i.d. circularly symmetric
complex Gaussian distributed with variance N0 per complex
entry, as was assumed to arrive at (35). Specifically, ñ contains
self-interference (i.e., it depends on s) and Qa is, in general,
not unitary. Setting α,

√
N0/E[|s|2] leads to the so-called

minimum mean-square error6 (MMSE) SQRD [30], which
was shown in [7] to result in a good performance/complexity
tradeoff for soft-output STS-SD. In the remainder of this pa-
per, regularization will always refer to using MMSE-SQRD.
Finally, we note that the LLRs in (35) need to be reordered
after the detection stage to account for the permutation induced
by P.

B. Compensation of Self-Interference

Note that for α 6= 0, the (max-log) LLRs in (35) approxi-
mate the intrinsic (max-log) LLRs in (6), resulting in a per-
formance degradation. In order to recover (part of) this perfor-
mance loss, a method for the compensation of self-interference
was developed in [31] for list-based MIMO detectors. The
approach described in [31] can not be applied directly to SISO
STS-SD. It turns out, however, that compensation of self-
interference can be incorporated into the tree-search. This leads
to a noticeable performance improvement compared to us-
ing (35) directly, while the corresponding increase in complex-
ity is negligible (corresponding numerical results are shown in
Section VI-B3).

1) Compensation of self-interference: As shown in [31],
the squared Euclidean distance

∥∥y −Hs
∥∥2

with the vector
y ,

[
yT 01×MT

]T
can be expanded in two different ways

according to∥∥y −Hs
∥∥2

= ‖y −Hs‖2 + α2‖s‖2 (36)

and ∥∥y −Hs
∥∥2

=
∥∥QH

y −RPT s
∥∥2

=
∥∥ŷ − R̃s̃

∥∥2+
∥∥QH

c y
∥∥2

(37)

where (37) is obtained by using (33). Equating the RHS terms
of (36) and (37) and using ‖s‖2 = ‖s̃‖2 yields

‖y −Hs‖2 =
∥∥ŷ − R̃s̃

∥∥2 +
∥∥QH

c y
∥∥2 − α2‖s̃‖2 (38)

which allows us to conclude that the metric ‖y −Hs‖2 con-
tains a contribution that is independent of the symbol vectors,
namely ‖QH

c y‖2, and a term caused by self-interference given
by −α2‖s̃‖2. Since we use

∥∥ŷ−R̃s̃
∥∥2

(instead of the left-hand
side of (38)) in the LLR computation (35), the two remain-
ing RHS-terms in (38) must be compensated for. As already
observed in Section II-B2, constant terms (i.e., terms that are
independent of s) cancel out in the LLR computation (10)
so that the term

∥∥QH
c y
∥∥2

in (38) can be neglected without
affecting the resulting LLRs. However, the term −α2‖s̃‖2 does
depend on s and therefore needs to be compensated for. This

6Strictly speaking, the name MMSE-SQRD is justified only in the case
of E

ˆ
|si|2

˜
= E

ˆ
|s|2
˜
, ∀i, as otherwise this approach will not deliver the

MMSE estimate of s based on the observation y.
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is accomplished by computing the self-interference free (SIF)
intrinsic max-log LLRs according to [31]

L̄D
i,b , min

s̃∈X (−1)
i,b

{
1
N0

∥∥ŷ − R̃s̃
∥∥2 − α2

N0
‖s̃‖2 − log P[s̃]

}
− min

s̃∈X (+1)
i,b

{
1
N0
‖ŷ − R̃s̃‖2 − α2

N0
‖s̃‖2 − log P[s̃]

}
.

(39)

We emphasize, however, that (39) remains an approximation
to (6) as the noise term ñ in (34) is not i.i.d. circularly symmet-
ric Gaussian distributed with variance N0 per complex entry,
as was assumed to arrive at (35).

2) Compensation of self-interference in the SISO STS-SD
algorithm: In [31] it was suggested to compensate self-
interference after the tree-search has been carried out. In the
present case, this would require explicit knowledge of the
symbol vectors s̃ that attain the minima in (39). These symbol
vectors are, however, not required to be kept track of in the
SISO STS-SD algorithm, as the extrinsic LLRs are computed
on the basis of the MAP hypothesis xMAP, its metric λMAP,
and the extrinsic metrics ΛMAP

i,b only (see (26)). Inspection
of (39) suggests, however, that self-interference compensation
may be incorporated into the tree-search procedure, which
would avoid keeping track of the minimizing symbol vectors
s̃ in (39). Straightforward modification of the DIs in (25) to
accomplish this would lead to the modified DIs ei − α2

N0
|s̃i|2

which are, however, not guaranteed to be non-negative. As
in the tightening of the tree-pruning criterion described in
Section II-B, we recognize that symbol-vector-independent
terms can be added to the DIs without loss of (max-log)
optimality. Therefore, setting the DIs to

ēi , ei +m(s̃i) (40)

with the non-negative term

m(s̃i) ,
α2

N0

(
max
s∈O
|s|2 − |s̃i|2

)
(41)

leads to the smallest possible non-negative DIs that compen-
sate self-interference directly in the tree search. Note that
adding non-negative terms to the DIs as done in (40), in gen-
eral, increases the (tree-search) complexity. On the other hand,
channel-matrix regularization almost always significantly re-
duces (tree-search) complexity [7] and the increase (caused
by adding the term m(s̃i)), is marginal, as shown numerically
in Section VI-B3. In addition, it turns out that self-interference
compensation recovers the performance loss due to channel-
matrix regularization almost entirely so that near-max-log
optimal performance is achieved (see the numerical results
in Section VI-B3). In the case of constant-modulus symbol
alphabets (e.g., BPSK or 4-QAM) we have m(s̃i) = 0,
i = 1, . . . ,MT, and hence compensation of self-interference
in the tree-search (as described above) is not necessary. We
conclude by noting that the quantities maxs∈O |s|2 can be
pre-computed so that the additional computational complexity
required to incorporate compensation of self-interference into
the tree-search procedure is small.

Fig. 2. LLR correction post-processes the LLRs resulting from the effective
channel using side information Z .

V. LLR CORRECTION

The max-log approximation, channel-matrix regularization,
and other complexity-reducing mechanisms, such as early ter-
mination of the tree-search [7], lead to LLRs that are ap-
proximations to the true LLRs in (2). However, channel de-
coders (see Fig. 1) rely on exact LLRs to achieve optimum
performance. In the following, we present a post-processing
method for correcting approximate LLRs resulting from sub-
optimal detectors. This method is based on ideas developed
in [32] and [33] and is able to (often significantly) improve
the performance of (iterative) MIMO decoding while requiring
low additional computational complexity.

A. The Basic Idea

We start by defining (or recalling the definitions of) the
following objects (see Fig. 2):

• the effective channel with the binary-valued inputs xi,b
and outputs given by the (possibly approximated) extrin-
sic LLRs LE

i,b.
• the physical MIMO channel with input s and output y.
• the soft-input soft-output MIMO detector with inputs y

and LA
i,b and outputs LE

i,b.
• the LLR correction unit (see Fig. 2) computes corrected

extrinsic LLRs LC
i,b based on (approximated) extrinsic

LLRs LE
i,b and on side information Z , by applying an

LLR correction function

LC
i,b = g

(
LE
i,b,Z

)
. (42)

• the side information Z is, for example, obtained from
the (instantaneous) receive SNR, the singular values of
the channel matrix H, and/or from knowledge of whether
the soft-input soft-output MIMO detector was terminated
prematurely [7].

The choice for the LLR correction function in (42) is mo-
tivated by drawing the following parallel. The SISO detec-
tor considered in Section II computes (intrinsic) LLRs for all
transmitted bits xi,b according to (2), based on the obser-
vation y and the side information H. The LLR correction
function (42) should implement a soft-output detector for the
effective channel in Fig. 2. Hence, LLR correction amounts to
computing the log-likelihood function for the bits xi,b, based
on the observation LE

i,b (instead of y) and the side information
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Z (instead of H) according to

g
(
LE
i,b,Z

)
, log

P
[
xi,b = +1 |LE

i,b,Z
]

P
[
xi,b = −1 |LE

i,b,Z
]
 . (43)

Note that this choice for the correction function also ensures
that the resulting (corrected) LLRs LC

i,b are, indeed, valid LLRs.
The formulation (42) together with (43) entails that for a
given pair (i, b) LC

i,b depends only on LE
i,b and Z . Making the

correction function g(·) depend on other LLR values, besides
the one to be corrected, would certainly improve the correction
performance, but at the same time also dramatically increase
the computational effort for LLR correction (for computation
of the LLR correction function as well as for carrying out
the LLR correction itself). This will become clear when the
numerical procedure for LLR correction is described below.

The main idea is now, depending on the mechanisms used
to approximate the extrinsic LLRs (e.g., the max-log approxi-
mation, channel-matrix regularization, early termination of the
tree-search), to extract suitable side information Z . To see that
this is non-trivial and the problem is multi-faceted, simply note
that the set of all possible channel matrices H is a continuum
of MR ×MT complex-valued matrices. This continuum will
be absorbed in Z through, e.g., the singular values or the rank
of H. We emphasize that we will require the set Z to be
finite. In addition, we will need the individual entries of Z
to have finite cardinality. Hence, continuous-valued quantities,
such as, e.g., the SNR or singular values, must be suitably
quantized. The total number of different instances of the side
information Z is denoted by Z in the following.

B. Computation of the LLR Correction Function

Once we have chosen Z , the LLR correction function is
seen in (43) to be obtained from the conditional probabil-
ities P

[
xi,b = ±1 |LE

i,b,Z
]
. Analytical expressions for cor-

rection functions seem very hard to obtain (even for simple
examples such as for Hagenauer’s approximation to the box
function [32]). We next propose an approach for numerically
computing (approximations to) the LLR correction function
in (43).

First, the range of the LLRs to be corrected needs to
be constrained, say to LE

i,b ∈ [−Lmax,+Lmax] (e.g., by
performing LLR clipping in the detector). This interval is
then divided into K equally-sized bins such that the kth bin
corresponds to

Bk =
[
−Lmax + k

2Lmax

K
,−Lmax + (k + 1)

2Lmax

K

)
for k = 0, . . . ,K − 1. Then, the histogram

pk(Z) , P
[
xi,b = +1 |LE

i,b ∈ Bk,Z
]
, ∀k (44)

is computed by performing Monte-Carlo simulations (averaged
over noise and channel realizations) with randomly generated
bits xi,b. For each LE

i,b and given instance of Z , the (ap-
proximated) LLR correction function is obtained by linear

interpolation between the base-points(
− Lmax +

(
k +

1
2

)
2Lmax

K
, log

(
pk(Z)

1− pk(Z)

))
(45)

where (x, y) denotes the x- and y-coordinates of the base-
points. We emphasize that for each instance of Z , in general,
a different LLR correction function is obtained. Note that the
LLRs resulting from (45) can have a magnitude that is larger
than Lmax (see Section VI-D) so that an additional LLR-
clipping step to limit the dynamic range (to a clipping level
possibly larger than Lmax) may be necessary.

The computational complexity incurred by evaluating the
histogram (44) and the corresponding storage requirements
depend critically on the number of bins K and on Z. In
particular, ZK histogram values need to be stored and hence, it
is important to keep ZK small. Application of the LLR correc-
tion function itself amounts to simple table look-up operations
followed by linear interpolation, which can be performed at
very low computational complexity.

C. An Example

We next provide an example that illustrates the potential
impact of LLR correction. The complexity of the SISO STS-
SD algorithm depends critically on the noise realization n, the
channel-matrix realization H, the transmit-vector s, and the
a priori LLRs LA

i,b. The often prohibitively high worst-case
complexity of SD (see, e.g., [34, Section III-C]), constitutes a
problem in many practical application scenarios, as it inhibits
meeting the throughput requirements of many of the available
communication standards. A promising approach to limiting
the worst-case complexity of SD, while keeping the resulting
performance degradation small, was proposed in [35], [7]. The
basic idea is to impose an aggregate complexity constraint
of NDavg visited nodes for a block of N symbol vectors by
using maximum-first (MF) scheduling. This scheduling strat-
egy allocates the overall complexity budget (in terms of the
number of visited nodes in the tree search) according to

Dmax[j] ,NDavg −
j−1∑
`=1

D[`]− (N − j)M (46)

for j = 1, . . . , N , where M is a parameter to be specified
below, D[`] is the actual number of nodes visited in the de-
tection of the `th symbol vector, and Dmax[j] is a constraint on
the maximum complexity for the detection of the jth symbol
vector. The detector is terminated if Dmax[j] nodes have been
visited and the LLRs are obtained from the current MAP hy-
pothesis, the associated metric λMAP, and the current extrinsic
metrics ΛMAP

i,b . The main idea realized by the policy (46) is
that detection of the jth symbol vector is allowed to use up
all of the remaining complexity budget (within the block of N
symbol vectors) up to (N−j)M nodes, i.e., the parameter M
determines that in decoding the remaining N − j symbol
vectors, we can afford a budget of at least M nodes per symbol
vector. Setting M = MT and choosing Davg ≥ MT, ensures
that for each of the remaining N−j symbol vectors at least the
hard-output successive interference cancellation (SIC) solution
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TABLE I
REDUCTION OF AVERAGE COMPLEXITY OBTAINED BY TIGHTENING OF
THE TREE-PRUNING CRITERION BASED ON THE EUCLIDEAN-DISTANCE

TERM ONLY

SNR Lmax std. [nodes] tight [nodes] reduction

10 dB 0.0125 34.9 34.4 1.4%
∞ 328.3 327.8 0.2%

20 dB 0.0125 11.0 10.8 1.8%
∞ 227.2 227.0 0.1%

is found [7]. For details on early termination and scheduling,
we refer to [7], [10], [35]. For the remainder of the paper, we
set M = MT and we ensure that Davg ≥MT.

If early termination happens before the extrinsic metric
ΛMAP
i,b was updated from its initial value∞, the corresponding

LLR satisfies
∣∣∣LE
i,b

∣∣∣ ≥ Lmax. Hence, early termination may

result in LLRs with a higher reliability (i.e.,
∣∣∣LE
i,b

∣∣∣ > Lmax)
than what would be obtained if no complexity constraints had
been imposed. This calls for LLR correction with the goal
of adjusting the magnitude of such LLRs. Consequently, the
side information set Z should contain a binary-valued state
variable, which indicates whether early termination during
detection of a symbol vector occurred or not. Corresponding
numerical results are provided in Section VI-D1.

VI. SIMULATION RESULTS

Unless explicitly stated otherwise, all simulation results
are for a convolutionally encoded (rate R = 1/2, generator
polynomials [133o 171o], and constraint length 7) MIMO-
OFDM system with MT = MR = 4, 16-QAM constellation O
with Gray labeling, 64 OFDM tones, TGn type C channel
model [36], and a BCJR channel decoder [37] based on the
min-sum algorithm and employing the max-log approximation
for LLR computation. One frame consists of 1024 randomly
interleaved (across space and frequency) bits corresponding to
one (spatial) OFDM symbol and we assume that the bits xi,b
are statistically independent. A frame is said to be in error if
at least one of the bits in the frame is decoded in error. The
SNR is per receive antenna and the SNR values specified in the
figures are in decibels (dBs). The number of iterations I is the
number of times the soft-input soft-output MIMO detector and
the SISO channel decoder are used, i.e., I = 1 corresponds to
soft-output SD according to [7] followed by one application of
the BCJR algorithm. The LLR clipping parameters shown in
the simulation results correspond to normalized LLR clipping
parameters according to Lmax/N0.

A. Tightening of the Tree-Pruning Criterion

We first numerically characterize the impact on complexity
caused by tightening of the tree-pruning criterion.

1) Impact of the Euclidean-distance term: The goal of the
simulation results shown in Table I is to quantify the impact
of the Euclidean distance term 1

N0

∣∣ỹi −∑MT
j=i Ri,jsj

∣∣2 in the
bias (16) on the complexity reduction that can be obtained by
tightening the tree-pruning criterion according to (18). To this

TABLE II
REDUCTION OF AVERAGE COMPLEXITY OBTAINED BY TIGHTENING OF

THE TREE-PRUNING CRITERION BASED ON THE PRIOR TERM ONLY

SNR I Lmax std. [nodes] tight [nodes] reduction

10 dB
1 0.0125 1890.4 34.9 98.2%

∞ 2440.2 328.3 86.5%

2 0.0125 1630.6 43.4 97.3%
∞ 2148.4 406.6 81.1%

20 dB
1 0.0125 1914.7 11.0 99.4%

∞ 2397.0 227.2 90.5%

2 0.0125 1228.7 6.2 99.5%
∞ 361.9 132.4 65.9%

end, we omit the prior term by setting log Pc

[
s(i)
]

= 0 in (14)
and compare the complexity (averaged over independent chan-
nel, noise, and data realizations) resulting from the tightened
tree-pruning criterion according to (18) to that of the standard
tree-pruning criterion (denoted by “std.” in Table I) specified
in (15). We observe that the complexity reduction obtained
by tightening of the tree-pruning criterion based on the bias
caused by the Euclidean distance-term only, is marginal, in
particular in the light of the prohibitive effort required to
compute (16).

2) Impact of the prior term: Next, we start with uniform
priors, i.e., LA

i,b = 0 (∀i, b) for the first iteration, and employ
the tightened DIs in (25). Table II shows that removing the
bias pi in (19) leads to a dramatic reduction in terms of
complexity, ranging from 65.9% to 99.5%. Furthermore, we
can see that the complexity reduction due to tightening of
the tree-pruning criterion is less pronounced in the second
iteration (denoted by I = 2), but still significant. This can
be explained by noting that in the first iteration, the priors
satisfy LAi,b = 0, which leads to the largest possible values
for pi, i = 1, . . . ,MT (see Section II-B1). In general, the
complexity reduction due to tightening of the tree-pruning
criterion decreases with increasing iteration number.

We can now conclude that tightening of the tree-pruning
criterion, based on removing the bias caused by the prior term
in (14) only, leads to a significant complexity reduction. In the
remainder of the paper, we employ tightened DIs according
to (25) in combination with the standard pruning criterion (15).

B. Performance/Complexity Tradeoffs

The performance/complexity tradeoffs discussed next and
quantified in Figs. 3 – 5, 7, and 8 refer to the cumulative (tree-
search) complexity in terms of the total number of nodes
visited (averaged over independent channel, noise, and data
realizations) for SISO detection over I iterations, designated
as “average complexity” from now on. The computational
complexity incurred by channel decoding is not accounted
for in the following. The minimum SNR required to achieve
a given frame error rate (FER) is referred to as the “SNR
operating point” for that FER.

1) Impact of LLR clipping: From Fig. 3, we can conclude
that LLR clipping allows for a smooth performance/complexity
tradeoff, adjustable through a single parameter, namely the
LLR clipping parameter Lmax. For a fixed SNR operating
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SNR operating point for 1% FER

Fig. 3. Performance/complexity tradeoff of SISO STS-SD with SQRD.
The numbers next to the curves correspond to normalized LLR clipping
parameters.
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point, the minimum complexity is not necessarily achieved
by maximizing the number of iterations. We conclude that in-
corporating LLR clipping into the tree search is of paramount
importance as it reduces the complexity substantially and ren-
ders the detector easily adjustable in terms of performance
versus complexity.

2) Column-sorting and regularization: We next examine
the impact of column-sorting and regularization of the channel
matrix on the performance/complexity tradeoff of the SISO
STS-SD algorithm. It can be seen, in Fig. 4, that in the low-
complexity regime, the Pareto-optimal tradeoff curve is achieved
by MMSE-SQRD. In the high-complexity regime, the perfor-
mance loss incurred by regularization renders MMSE-SQRD
inferior to un-regularized SQRD. This observation has already
been made for the soft-output-only case in [7], but is also valid
for I > 1 under the SISO STS-SD.
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3) Self-interference free LLRs: Fig. 4 also quantifies
the impact of compensating self-interference —according to
the procedure described in Section IV-B2— on the perfor-
mance/complexity tradeoff of the SISO STS-SD algorithm.
We observe that compensation of self-interference results
in a performance improvement in terms of the SNR op-
erating point of 0.3 dB to 0.5 dB in almost all regions
of the performance/complexity curve compared to MMSE-
SQRD, but yields no improvement over MMSE-SQRD in the
low-complexity regime. In the high-complexity regime, un-
regularized SQRD has an SNR-operating point that is 0.15 dB
below that obtained in the case of SIF MMSE-SQRD.

C. Comparison with List Sphere Decoding
Fig. 5 compares the performance/complexity tradeoff

achieved by list sphere decoding (LSD) as proposed in [1] to
that obtained through SISO STS-SD. For the LSD algorithm,
we take the complexity to equal the number of nodes visited
when building the initial candidate list. The (often significant)
computational burden incurred by list administration in LSD is
neglected, leading to a complexity measure that favors the LSD
algorithm. We can draw the following conclusions from Fig. 5:

i) SISO STS-SD outperforms LSD for all SNR operating
points.

ii) LSD requires relatively large list sizes and hence a large
amount of memory to come close to (max-log) optimal
SISO performance.7 The underlying reason is that the
extrinsic LLRs are obtained from a candidate list that has
been computed around the maximum-likelihood solution
and hence a priori information is ignored. The SISO STS-
SD exhibits significantly smaller memory requirements as
it needs memory mainly to store the extrinsic metrics.

Besides LSD, various other SISO detection algorithms for
MIMO systems have been developed, see e.g., [2]–[6], [39].

7In addition to the memory requirements, the search-and-replace operations
required in the LSD algorithm’s list administration, quickly lead to pro-
hibitively high VLSI implementation complexity when the list size grows [38].
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¯
.

The algorithms described in [3] and [6] are related to LSD but
require rebuilding the candidate list in each iteration; this can
lead to a substantial complexity increase compared to LSD.
For [2], [4] issues indicating potentially high computational
complexity include the requirement for multiple matrix inver-
sions for each symbol vector in each iteration.8 In contrast,
the QRD required for SD has to be computed only when
the channel state changes. The computational complexity of
the list-sequential (LISS) algorithm in [5], [39] seems difficult
to relate to the complexity measure employed in this paper.
However, due to the need for sorting of candidate vectors and
the structural similarity of the LISS algorithm to LSD, we
expect the performance/complexity tradeoff realized by the
LISS algorithm to be comparable to that of the LSD algorithm.

D. Impact of LLR Correction

Fig. 6 shows examples of LLR correction functions (for
SISO STS-SD) obtained by linear interpolation using K = 31
bins and side information given by

Z =
{
Lmax, Davg,SNR, T

}
(47)

where Lmax = 0.2, Davg ∈ {16,∞}, and T ∈ {0, 1}
indicates whether early termination occurred (T = 1) or not
(T = 0). Here, the number of instances of Z is given by
Z = 4. Note that depending on T , different LLR correction
functions need to be applied to the extrinsic LLRs LE

i,b. In the
following, we analyze the LLR correction functions obtained
for column-sorting (SQRD), for regularization with column-
sorting (i.e., MMSE-SQRD), and for compensation of self-
interference in combination with MMSE-SQRD, all having un-
constrained maximum complexity (i.e., Davg =∞ and, hence,
T = 0). Fig. 6 shows the corresponding correction functions
along with the correction functions for SIF compensation
under MMSE-SQRD in combination with MF scheduling for

8A detailed complexity analysis of the algorithm described in [2] based on
VLSI implementation results can be found in [10].

Davg = 16 (denoted by “MF16” in Fig. 6) and T = 1. The
following observations can be made:

• For unconstrained complexity, i.e., Davg = ∞, LLRs
corresponding to ±Lmax are corrected to LLRs with
larger magnitude; this is a result of clipping LLRs with
magnitude larger than Lmax to ±Lmax. We note that since
the LLR correction functions are obtained by binning and
linear interpolation, LLR-values that have slightly smaller
(mandated by the bin-width) magnitude than Lmax are
also corrected to values larger than Lmax.

• For early termination with MF-scheduling (i.e.,
Davg = 16 and T = 1), LLRs with magnitude close to
Lmax are corrected to LLRs with smaller magnitude
(i.e., their reliability is reduced). In the presence of
early termination, LLRs with

∣∣∣LE
i,b

∣∣∣ ≥ Lmax are, as
already mentioned in Section V-C, often a consequence
of having terminated the tree search prematurely and
hence are corrected to less reliable LLR-values.

• The LLR correction function associated with column-
sorting (SQRD) only is almost a linear function with
slope one, i.e., LC

i,b = LE
i,b, which indicates that little

correction is performed. The reason for this behavior
is that column-sorting maintains (max-log) optimality
and the impact of the max-log approximation itself on
performance is small, in general [10].

• The correction functions associated with channel-matrix
regularization show a stronger deviation from LC

i,b = LE
i,b

(cf. the zoom in Fig. 6), thus reflecting the error in
the (max-log) LLRs incurred by regularization (see
Section IV-A2).

1) Impact of LLR correction on performance/complexity
tradeoff for SISO STS-SD with early termination: Fig. 7 shows
the performance/complexity tradeoff for early-termination
based on MF scheduling with and without LLR correction.
The side information was chosen according to (47) and the
LLR correction function was computed based on K = 31 bins
with linear interpolation. As observed for the soft-output STS-
SD in [7], for large values of Lmax, the run-time constrained
detector will be unable to compute accurate LLR values since
the corresponding average complexity is high; this, in turn,
results in poor performance. For small Lmax, performance is
dominated by the impact of LLR clipping rather than early
termination. Depending on the constraint on the average run-
time, LLR correction can reduce (i.e., improve) the SNR
operating point by up to 3 dB. The performance gains resulting
from LLR correction are more pronounced for larger clipping
parameters as in these cases performance is dominated by the
run-time constraint and early termination happens more often.
Note that LLR correction also yields slight performance gains
for small LLR clipping levels, where the run-time constraints
do not affect performance. This indicates that LLR correction
can also correct —at least partly— the errors induced by LLR
clipping and by channel-matrix regularization.

2) Impact of LLR correction on performance/complexity
tradeoff for turbo codes: The next simulation result is aimed at
understanding which of the conclusions drawn above change
in the presence of more sophisticated channel codes. To this
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Fig. 7. Impact of LLR correction. The solid lines correspond to the perfor-
mance obtained with LLR correction, whereas the dotted lines pertain to un-
corrected LLRs. Both variants employ early termination with MF scheduling
and MMSE-SQRD accompanied by compensation of self-interference in the
LLRs.

end, we evaluated the performance/complexity tradeoff for a
parallel-concatenated turbo code (PCTC) of rate 1/2 (punc-
tured, memory 2, and generator polynomial [7o 5o], where 7o
pertains to the feedback path) with eight iterations within the
turbo decoder. We use the interleaver specified in the 3GPP
standard [40] with 508 information bits. One code-block cor-
responds to 1024 coded bits including two times four bits for
termination of the trellises. We observed (in simulation results)
that BCJR decoding in its original form [37] requires very
accurate input LLRs. Since we employ the BCJR algorithm
in exactly the form as described in [37] for decoding of the
PCTC, LLR correction as described in Section V is prudent
and is used here with Z = {Lmax,SNR, I}.

The results in Fig. 8 indicate that the perfor-
mance/complexity tradeoff achieved by the PCTC in
the first iteration is significantly better than that obtained for
the convolutional code (CC) used in the previous simulations.
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In the second iteration, the performance/complexity tradeoff
is almost identical for the two different codes. For I > 2,
the CC slightly outperforms the PCTC, which could be due
to the fact that we use a turbo code with very short block
length and a channel model that exhibits correlation across
frequency and space (see, e.g., [41]).

E. Information Transfer Characteristics

In order to benchmark the performance of soft-input soft-
output MIMO detectors, we compare information transfer
characteristics (ICTs) as described in [42, Chapter 16] using
an i.i.d. (across space and OFDM tones) Rayleigh multi-path
fading channel model. Specifically, the ITCs are obtained as
follows. The bits xi,b, ∀i, b, are assumed to be uniformly
distributed and the a priori LLRs are taken to be Gaussian
distributed according to [43]

LA
i,b =

2
σ2

(
xi,b + n

)
where n is a real-valued Gaussian RV with zero mean and
variance σ2. We then define the a priori information content9

as IA = I
(
xi,b;LA

i,b

)
and the extrinsic information content at

the output of the MIMO detector (averaged over all transmit
antennas and bits) as

IE ,
1

MTQ

MT∑
i=1

Q∑
b=1

I
(
xi,b;LE

i,b

)
in bits per binary symbol where 0 ≤ IE ≤ 1. The ITC is
then given by the function IE = g(IA). Here, we evaluate
IE through Monte-Carlo simulations. Note that LA

i,b = 0
implies IA = 0 and corresponds to soft-output-only MIMO
detection.

1) Impact of LLR clipping: Fig. 9 shows that a normalized
LLR clipping parameter of Lmax = 0.4 achieves almost the

9Note that 0 ≤ IA ≤ 1 and IA is determined by σ2 and corresponds
to the mutual information of an additive white Gaussian-noise channel with
uniform inputs chosen from a BPSK alphabet.
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SNR = 12 dB.

same ITC as max-log optimal SISO STS-SD with Lmax =∞
(all ITCs are computed under the assumption of no channel-
matrix regularization). We note that the same observation
was made in the performance/complexity tradeoff simulations
in Fig. 3.

2) Performance comparison with LSD: Fig. 10 compares
the ITC of SISO STS-SD to that of LSD [1]. For IA close
to 1, LSD requires list-sizes in excess of L = 64 to yield
performance close to that of the max-log-optimal SISO STS-
SD algorithm. For IA close to zero, the ITC of the LSD
comes close to that of the SISO STS-SD for a list size of
L = 32. Note that even hard-output MAP detection (which
corresponds to SISO STS-SD with Lmax = 0) can outperform
LSD —in terms of ITCs— if IA is close to 1 and the list-size is
small. We can conclude that SISO STS-SD exhibits advantages
over LSD in terms of complexity and memory requirements,
independently of the underlying channel code. This is in
agreement with the observations made in Section VI-C.
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F. Approaching Outage-Capacity with SISO STS-SD

We finally compare the performance obtained with SISO
STS-SD to outage capacity using the TGn type C channel
model [36]. To this end, we define the ε-outage capacity Cout,ε

as [44], [45]

P[I(SNR,H) < Cout,ε] = ε (48)

where H,
{
H[1], . . . ,H[N ]

}
contains the MR×MT channel

matrices for the N = 64 OFDM tones and [46]

I(SNR,H) ,
1
N

N∑
`=1

log2 det

(
IMR +

SNR

MT
HH [`]H[`]

)
.

The FER is lower-bounded by the outage probability (48)
according to [47]

P[I (SNR,H) < RMTQ] ≤ FER(SNR)

where the information rate per OFDM tone is given by RMTQ
and R = 1/2 denotes the code-rate. The performance compar-
ison we conducted consists of setting the outage probability
and the FER to 1% and identifying the gap in the resulting
SNR operating points. Fig. 11 shows the corresponding re-
sults for different modulation schemes and for I = 1 and
I = 8. Note that the LLR clipping parameters are chosen
so as to minimize complexity while retaining near-max-log
optimal performance at 1% FER (i.e., we used Lmax = 0.1,
Lmax = 0.4, Lmax = 2.0, and Lmax = 6.0 for 64-QAM, 16-
QAM, QPSK, and BPSK, respectively). We can see that SISO
STS-SD operates between 1.5 dB (for 4-QAM) and 5.3 dB
SNR (for 64-QAM) away from outage capacity.

VII. CONCLUSIONS

We proposed a soft-input soft-output MIMO detector based
on single tree-search sphere decoding (STS-SD) as introduced
in [7], [8]. Besides adapting the single-tree search paradigm
to account for soft-inputs, key to obtaining low complex-
ity are tightening of the tree-pruning criterion, clipping of
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the extrinsic LLRs built into the tree search, and a novel
method for incorporating compensation of self-interference
in LLRs —caused by channel-matrix regularization— into the
tree search. Finally, we proposed an LLR correction method,
which was demonstrated to achieve substantial performance
improvements at low additional computational complexity.
Our simulation results show that the SISO STS-SD algorithm
offers a wide range of performance/complexity tradeoffs and
clearly outperforms state-of-the-art SISO detectors for MIMO
systems. Finally, we note that a VLSI implementation of the
algorithm described in this paper was recently reported in [48].
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