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Abstract—Multiple-input multiple-output (MIMO) detection on the symbol constellation size and the number of spatially
algorithms providing soft information for a subsequent channel multiplexed data streams, but often also on the instantaneous
decoder pose significant implementation challenges due to their MIMO channel realization and the signal-to-noise ratio (SNR).

high computational complexity. In this paper, we show how . . .
sphere decoding can be used as an efficient tool to implement soft-on the other hand, the overall decoding effort is typically

output MIMO detection with flexible trade-offs between compu- Constrained by the system bandwidth, latency requirements,
tational complexity and (error rate) performance. In particular, and the quest to keep chip area and power consumption
we provide VLSI implementation results which demonstrate as low as possible. Implementing different algorithms, each
that single tree-search, sorted QR-decomposition, channel matrix optimized for a maximum allowed decoding effort and/or a

regularization, log-likelihood ratio clipping, and imposing run- - . - . : .
time constraints are the key ingredients for realizing soft-output particular system configuration, would entail considerable chip

MIMO detectors with near max_|og performance at a Ch|p area area OVerhead and in a.ddition be h|gh|y ineffiCient Since Iarge
that is only 58% higher than that of the best-known hard-output  portions of the chip would remain idle most of the time. A

sphere decoder VLSI implementation. practical MIMO receiver design should therefore be able to
Index Terms—Multiple-input multiple-output (MIMO) com- cover a wide range of complexity/performance trade-offs using
munication systems, soft-output sphere decoding, VLSI imple- a single tunable detection algorithm.
mentation, MIMO detection. Contributions: In this paper, we describe a tunable MIMO
detector based on the sphere decoder [3]-[8], with perfor-
|. INTRODUCTION mance ranging from that of hard-output successive interference

ULTIPLE-input multiple-output (MIMO) wireless sys- cancellation (SIC) [9] to that of max-log APP detection [10].
tems employ multiple antennas on both sides of theuning of the detector is achieved through log-likelihood ratio

wireless link and offer increased spectral efficiency (confkLR) clipping, channel matrix regularization, and imposing
pared to single-antenna systems) by transmitting multipt@nstraints on the maximum computational complexity of the
data streams concurrently and in the same frequency batatoder (i.e., run-time constraints). With a view towards VLSI
(spatial multiplexing). MIMO technology constitutes the basignplementation, we elaborate on, and provide refinements of,
for upcoming wireless communication standards, such tie tree-search algorithm outlined in [11] leading to what we
IEEE 802.11n and IEEE 802.16e. term the single tree-search (STS) approach. We describe how

The main challenge in the practical realization of MIMCLLR clipping as proposed in [12] can be incorporated into the
wireless systems lies in the efficient implementation of th&TS algorithm. A framework for systematically characterizing
detector which needs to separate the spatially multiplexed d#ita complexity/performance trade-offs of the resulting class of
streams. To this end, a wide range of algorithms offerirgpft-output sphere decoders is formulated. Finally, we present
various trade-offs between performance and computatiomasuitable VLSI architecture and provide reference implemen-
complexity have been developed [2]. Linear detection preation results for max-log soft-output sphere decoding with
ducing hard outputs constitutes one extreme of the comkR clipping.
plexity/performance trade-off region, while computationally Notation: Matrices are set in boldface capital letters, vectors
demanding maximum-likelihood (ML) detection algorithms inn boldface lowercase letters. The superscriptand # stand
combination with exact a posteriori probability (APP) compufor transpose and conjugate transposition, respectively. We
tation result in the opposite extreme. In general, the comparite A; ; for the entry in theith row and jth column
tational complexity of a MIMO detection algorithm dependsf the matrix A and b; for the ith entry of the vector

b =[b; by --- by ]T. Iy denotes theV x N identity matrix.
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a series of tree-search problems. In Section Ill, we reviesf the MIMO detection problem

the repeated tree-search (RTS) algorlthm proposed in [13] ML _ arg min ||y — Hs||? 3)
and introduce the STS algorithm. In Section IV, we describe ccoMT :

methods for reducing the tree-search complexity both in the . . .

RTS and the STS algorithms. A framework for evaluating thEN€ Other minimum in (2) can be written as
complexity/performance trade-.off's of the regultmg fgmny of AME = min[ly — Hs|]? @)
soft-output sphere decoders is introduced in Section V. In L
Section VI, we describe a VLSI architecture for the efficient

implementation of max-log soft-output sphere decoding Wil§here thecounter-hypothesis- denotes the binary comple-
LLR clipping. Corresponding ASIC implementation results arg,ent of thebth bit in the label of thejth entry ofsME. With

SEX;,

summarized in Section VII. We conclude in Section VIII. (3) and (4) the max-log LLRs can be written as
)\ML _ )\m CL‘ML =0
Il. SOFT-OUTPUT SPHEREDECODING L(z;p) = S K I (5)
. . : b AML _ \ML - ML _
Consider a MIMO system with/ transmit andV/z > My j:b »Tab :

receive antennas. The coded bit-stream is mapped Rmm (5) we can conclude that efficient max-log APP MIMO
Mz-dimensional transmit symbol vectosse OM7, where detection reduces to efficiently identifyisd™, \ML, andA}-

O stands for the set of underlying complex-valued scalgsr j =1,2,..., My andb=1,2,...,Q [13]. "
constellation points witHO| = 29. Each symbol vectos is

associated with a bit-level label vectomwhere, throughout the B. Max-Log APP MIMO Detection as a Tree Search

paper, symbol vectors and their associated labels will be used ) ,
interchangeably. Slightly deviating from our notation rules, 'ransforming (3) and (4) into tree-search problems and us-

we denote the entries of asz;,, where the indiceg and ing the sphere decoqmg algorithm [3]-[8] allows to eﬁiciently
b refer to thebth bit in the label of the constellation pointc®mPute the LLRs in (5). To this end, the channel matrix
corresponding to thgth entry ofs = [, s -+ sas, ]T. The H is first QR-decomposed according = QR, where the

resulting complex baseband input-output relation is given by % * Mz matrix Q is unitary, and theMy x My upper-
riangular matrixR has real-valued positive entries on its main

y=Hs+n (1) diagonal. Left-multiplying (1) byQ” leads to the modified

. input-output relation
where H denotes theMpyz x My channel matrix andn

is an i.i.d. zero-mean proper complex Gaussian distributed y=Rs+Q"n with y=Q"y
Mpg-dimensional noise vector with variancé, per comp!ex and hence, noting tha@”n has the same statistics as to
entry. Throughout this paper, we assume that the receiver 85 cquivalent characterization aMT and \MT as
perfect knowledge of the channel matrix realization. The SN q 7:b

per receive antenna is/N,. AML = min ||y — Rs|? (6)
seOMr
ML _ : = 2
A. Computation of the Max-Log LLRs Ajp = min_ Iy — Rs||~. ()

<M
Soft-output MIMO detection requires the computation of €

LLRs, denoted ad.(-), for all bits in the labelx. In order We next define the partial symbol vectors (PSVs)
to reduce the corresponding computational complexity, &) = [ s; 5,11 --- sa;,. ]* and note that they can be ar-
employ themax-log approximatiorj10], [14] ranged in a tree that has its root just above level M and
. . leaves, on level = 1, which correspond to symbol vectass
L(xjp) = Sg;%”y —Hs|* - S?;%)”y —Hs|* (2 In the following, the label associa?ed wiw)yis denoted by
o x(. The Euclidean distance&s) = ||y — Rs|2 in (6) and
where X9 andx'(}) are the sets of symbol vectors that havé’) can be computed recursively @) = d; with the partial
the bth bit in the label of thejth scalar symbol equal to 0 andEuclidean distances (PEDs)

2

_1, respe_ctively. Note that we do _not fcake intq account a priori d = dysr + |esl?, i = Mp, Mp—1,...,1, ®)

information. The max-log approximation entails a performance

loss compared to using the exact LLRs. For the simulatighe initialization dy;.+1 = 0, and the distance increments

setup considered in Section V, this loss, in terms of SNR, (BIs)

found to be around 0.25dB over a large range of SNRs. We ) o Mr

furthermore emphasize that the LLRs in (2) are normalized by leil” = 19i — Z Rijs; ©)

the noise variancé/, in order to get rid of the factot/N, on j=i

the right hand side (RHS) of (2). This simplifies the expositioBince the dependence of the PED on the symbol vector

and does not degrade the error rate performance of the maxs only through the PS\&("), we have transformed ML

log-based soft-input Viterbi decoder considered in Section detectionand the computation of the max-log LLRs into a
For each bit, one of the two minima in (2) is given by theveighted tree-search problem: PSVs and PEDs are associated

metric \ML' = ||y — HsM"||? associated with the ML solution with nodes branchescorrespond to Dls. For brevity, we shall
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often say “the node(” to refer to the node corresponding

to the PSVs(). Each path from the root down to a leaf ML =To 11T Ml =1

corresponds to a symbol vectore ©OY7, The solution of (6) 0 ", 1

and (7) corresponds to the leaf associated with the smallest "",,,
IIVIL

metric in OMr andX( ) , respectively. The basic building !

block underlying the two tree traversal strategies described in 1

the next section is the Schnorr-Euchner (SE) sphere decoder
(SESD) with radius reduction [15], [16], briefly summarized

as follows: The search in the tree is constrained to nodes which it =0 2§ =0

lie within a radiusr aroundy and tree traversal is performed

depth-first, visiting the children of a given node in ascending A

order of their PEDs. The basic idea of radius reduction is s‘ s‘“

to start the algorithm with- = oo and to update the radius A A 0 08 of o2
according tor? — d(s) whenever a leaé has been reached. S & & &

This avoids the problem of choosing a suitable initial radius

and still leads to efficient pruning of the tree. Fig. 1. Example, assuming a BPSK-constellation, of the prepruning proce-
dure in the RTS approach. Counter-hypotheses to the ML solution are found

by forcing the sphere decoder through the dashed branches.
Ill. TREE-TRAVERSAL STRATEGIES

_Computing the LLRs in (5) requires determining the metrics

AME “which, for givenj, b, is accomplished by traversing only

] The main disadvantages of the RTS are:
] 1

ML) i) the repeated traversal of large parts of the tree which
those parts of the tree that have leavesAi, Since entails a large number of redundant computations;

this computation has to be carried out for every bit, it is jj) significantly less efficient pruning behavior when com-
immediately obvious that LLR computation results in an order ~ pyting the/\ML caused by the need to minimize over

of magnitude increase in computational complexity compared (IMbL)
to hard-output sphere decoding. The situation is further ex- the subsetst},”"’. The underlying reason is that
acerbated by the fact that forcing the SESD into subtrees, pruning efficiency decreases significantly when forcing
when computing the minima in (7) leads to significantly less  the sphere decoder through specific branches at levels
efficient tree pruning behavior, which finally results in an  further down the tree.
overall complexity increase (over hard-output SESD) of twas noted in [17], the problem in ii) can partly be mitigated by
orders of magnitude. The STS algorithm introduced below éhanging the detection order in each run. The resulting need
key in reducing this computational complexity. for multiple QR decompositions, however, leads to an overall
In the following, we discuss two tree traversal strategiéscrease in terms of hardware complexity.
for solving (6) and (7). The first approach described below
was introduced in [13] and will be referred to as repeat .
tree search (RTS). The second algorithm builds on a tree Single Tree Search
traversal strategy outlined in [11]. With a view towards VLS| The key to more efficient (compared to RTS) tree traversal
implementation, we propose refinements of the approachi$nt0 ensure that every node in the tree is visited at most
[11] resulting in what we call the single tree-search (ST$)ce. This can be accomplished by searching for the ML
strategy. solution and all counter-hypotheses concurrently. The basic
idea behind such an approach has been outlined in [11]. In
A. Repeated Tree Search (RTS) the follqwing, yvith a view tow_ards .VLSI implementation,
we provide refinements of the idea in [11]. Specifically, we
The basic idea of the RTS algorithm described in [13] is trmulate update rules and a pruning criterion based on a
start by solving (6) (using the SESD) and to then rerun thgt containing the metriaML, the corresponding labe™L,
SESD to solve (7) for each bit (i.&9 M7 times) in the symbol ang the metrics\)'. The main idea is to search the subtree
vector. When rerunning the SESD to determig- in (7), originating from a given node only if the result can lead to
the search tree is prepruned by forcing the decoder to excluge update of at least one of the metrics in the list, i.e., either
all nodes from the search for which;, = z}-. For BPSK, \ML o gne of the\}X. In the ensuing discussion, the current
this prepruning procedure is illustrated in F|g 1. Followmg/”_ hypothesis and the corresponding metric are denoted by
the proposal in [13] and initializing the SESD with= 00 in ML gnq \ML | regpectively.
each of theQ My runs required to obtain\}", will lead to 1) |ist Administration: The algorithm is initialized with
significant computational complexity. It is therefore importanfmr _ )\ML — o (¥ j,b). Whenever a leaf with correspond-

to realize that (without compromising max-log optimality) th"r‘ng Iabelx has been reached, the decoder distinguishes be-
search radius;;, can be initialized by setting it equal to theyyeen two cases:
M

minimum value of ||y — Rs|| over alls € Xjﬁb "/ found i) If a new ML hypothesis is found, i.ed(x) < A\ME, all
during preceding tree traversals. AML for which z;;, = «}i are set toAM" followed
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by the updates\M" «— d(x) and xM" « x. In other AL @

words, for each bit in the ML hypothesis that is changed x X counter-hypotheses

in the process of the update, the metric of fbemer 0 0 0 0 )‘%1 /\%z

ML hypothesis becomes the metric of thew counter- |

hypothesis, followed by an update of the ML hypothesis. \NL \NL ITOERS

This procedure ensures that at all time$ is the metric L = Mp_ U] 7 Mr—12

associated with a valid counter-hypothesis to the curre - L2

ML hypothesis. 1 0 (I A >
i) In the case whered(x) > AMY, only the counter-

hypotheses have to be checked. For jalhnd b such

s . ML ML (%)
that z; , = ML and d(x) < A}, the decoder updates Lo i Xiia | Aicie d(s")
AME d(x). — —
b o \ML A\ML
2) Pruning criterion: The second key aspect of the STS| ! 0 ? ? 12 (N

algorithm is the following tree pruning criterion. Consider

a given nodes'” (on level i) and the corresponding partialFig. 2. Example of the STS pruning criteriod¢- = 5 and two bits per
label x(® consisting of the bitSrjyb (G=ii+1,..., Mp, symbol): The partial labex(") determines which counter-hypotheses may be
b—1,2,....0Q). Assume that the subtree originating from thgffected during the search of the subtree emanating from the current node.
node under consideration and corresponding to the abiis

G=12... 7.2‘ — 1,'b = L2,.. Q) hag npt been ex.pandedA_ LLR Clipping

yet. The pruning criterion fas() along with its subtree is com-
piled from two conditions. First, the bits in the partial lak&)
are compared with the corresponding bits in the label of t
current ML hypothesis™". All metrics \}} with z; , = 2
found in this comparison may be affected when searching
subtree ofs("). Second, the metrics®}" (j =1,2,...,i—1,

The dynamic range of LLRs is typically not bounded. How-
{yer, practical systems need to constrain the magnitude of the
LLR values to enable fixed-point implementation. Evidently
tﬂ'gs will lead to a performance degradation. A straightforward
way of ensuring that LLR values are bounded is to clip them
ﬂﬁer the detection stage so that

b=1,2,...,Q) corresponding to the counter-hypotheses i

the subtree 08! may be affected as well. In summary, the |L(2)| < Lunaxs Virb. (11)

metrics which may be affected during the search in the subtree

emanating from the nod€l”) are given by the set We emphasize that the constraint in (11) refers to the nor-
_ malized LLRs L(z;;) as defined in (2) so thal.x is a

A(X(l)) ={a} = normalizedmaximum LLR value.

ML | [ - —NT a) LLR Clipping for RTS:It has been noted in [12]
- {)‘j’b (20b=12....Q) A(zjp = x%’L)} that (11) can be built into the RTS algorithm as a constraint
{A?A?\j <ib=1,2,. 7Q}. leading to a reduction in search complexity. The basic idea
’ is to recognize that (5) together with (11) results in an upper
The nodes® along with its subtree is pruned if its PEDbound on the radius;, (as illustrated in Fig. 3). To this end,
d(s(i)) satisfies r;j IS initialized as described in Section 1lI-A followed by an
immediate update according to
d(s(i) > max a. (10)
(LzEA(x(i))
This pruning criterion (illustrated in Fig. 2) ensures that Which ensures that (11) is satisfied. Note that as a consequence

given node and the entire subtree originating from that no@& (12), metrics associated with counter-hypotheses for which
are explored only if this could lead to an update of eithéf  no valid lattice point is found equal™™ + Lyax. o

or of at least one of tha k. Note that\M" does not appear b) LLR Clipping for STSLLR clipping can be built into

in A(X(i)) as \ML /\?/[?' v 4,b). the STS algorithm by simply applying the update

)\i\jl? — min{ ;V’?, /\ML + Lmax} ) v.], b (13)

Tjb < Mmin {rj’b, AME Lmax} (12)

IV. METHODS FORCOMPLEXITY REDUCTION

So far, we discussed strategies which solve (2) exactly aaffer carrying out the steps in Case i) of the list administration
hence do not compromise performance of the max-log ARPocedure described in Section IlI-B. The remaining steps of
decoder. The goal of this section is to describe methods, agtie STS algorithm are not affected.
with a view towards VLSI implementation, that allow to trade- Both in the RTS and the STS algorithm, b, = oo, we
off decoder complexity with (error rate) performance. obviously get the exact max-log LLRs, whereas ff.. = 0,

The complexity measure employed throughout this papenie obtain hard-output SESD performance as the decoder
the number of nodes (including the leaves, but excluding toetput isx™, \ML and L(z; ;) = 0 for all j andb. Smaller
root) visited by the decoder. In Section VI, we show that thigalues of L, lead to more aggressive pruning of the tree
simple complexity measure provides a good indication for tled hence to reduced search complexity. We shall see in
complexity of a corresponding VLSI implementation. Section V that as we reduck,,.,, the decoder performance
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Note that even thougl® is unitary, Q; will, in general,
o o not be unitary, which is the reason for the LLRs in (15) being
an approximation to the exact (max-log) LLRs in (2). The
o o basic idea underlying this approximation is to perform the QR-
decomposition on the regularized channel matrix and to apply
o) the result to the physical channel matrix. In the following, we
provide a qualitative discussion of the error incurred by this
© procedure. We start by noting that, as a consequence of (14),
we have

(e} (©)
Fig. 3. LLR clipping reduces the search radiusri@ax = AM™ + Lyax y=Rs+n (16)

around the received poiy. with the effective noise-plus-(self)-interference (NPI) vector

n=—-aQls+ Qin.
degrades gracefully, eventually resulting in hard-output ML o )
performance. The parametér,,, can therefore be used toEQ- (16) shows that the approximation in (15) amounts
efficiently adjust the detection complexity/performance tradé@ Pretending that is i.i.d. circularly symmetric complex
off. We conclude by noting that LLR clipping as describe@aussian thereby neglecting thatri) depends o, ii) the
above goes beyond the initial motivation of constraining tHelf-interference term-aQ4’s is not Gaussian (as we are

word-width used to represent LLR values in binary logic. USing finite constellations), and iiif, is, in general, not
unitary which results inQ!’n not being i.i.d. Nevertheless,

) o computing the covariance matrix a@f, by averaging oven
B. Sorting and Regularization ands, allows to identify good choices for the regularization
Sorting: A common approach to reduce complexity irparametera. Assuming, for simplicity of exposition, that
sphere decoding without compromising performance is ®iss] = ﬁTIMT, straightforward manipulations reveal that
adapt the detection order of the spatial streams to the instanta- . of?
neous channel realization by performing a QR-decompositio, ~ 1~ ~g7 _ HY 2 ¢
on HP (rather thanH), where P is a suitably chosen K = E[an"] = (RR ) o <MT B °> + Nolary -
My x My permutation matrix. More efficient pruning of
the search tree is obtained if sorting is performed such thegttinga = +v/N, My corresponds to an MMSE regular-
“stronger streams” (in terms of effective SNR) correspondation [19], results inK = NI, and yields a good per-
to levels closer to the root, i.e., iP is chosen such that formance/complexity trade-off. We emphasize, however, that
the main diagonal entries d& in HP = QR are sorted in settinga = ++/N, M7 will not render the effective NPI vector
ascending order. Solving this problem exactly would result # Gaussian. In the remainder of the paper, we denote the QR-
prohibitive complexity. A heuristic algorithm resulting in adecomposition in (14) withy = /N, M7 as MMSE-SQRD.
good complexity/performance trade-off was proposed in [1g]n important practical aspect of MMSE-SQRD results from
and will be referred to as sorted QR-decomposition (SQRIﬂ)e fact that the noise variandg, has to be estimated. We
in the following. found that, in general, even slight overestimationof will
Regularization:Poorly conditioned channel realizatiois !€ad to a noticeable performance degradation, whereas slight
lead to high search complexity due to the low effective SNRnderestimation does not seem to constitute a problem.
on one or more of the effective spatial streams. An efficient
way to counter this problem is to operate orregularized C. Run-Time Constraints
channel matrix by computing the (sorted) QR-decomposition

of The computational complexity (required to find the ML

solution and the LLR values) of the algorithms discussed
[ H }PQR (14) so far depends on the realization of the random channel
alnr, matrix as well as on the noise realization. Consequently, the
decoder throughput is variable, which constitutes a problem
in many practical application scenarios. Moreover, the worst-
T  case complexity corresponds to an exhaustive search. In order
My x Mr. Partitioning Q according toQ = [Qip QQT] » to meet the practically important requirement of a fixed
whereQ; is of dimensionMr x My andQs is of dimension throughput, the algorithm run-time must be constrained. This,
M7z x Mr, the max-log LLRs in (2) can be approximated ag turn, leads to a constraint on the maximum detection effort
C o~ U N S or, equivalently, a constraint on the maximum number of
L(xj’b) = gg%”y — R3|" - ~mu§11>”y - R3] (15) nodes the sphere decoder is allowed to visit. Clearly, this
o o will, in general, prevent the detector from achieving ML or
wherey = Qfy ands = Ps. The LLRs in (15) need to be max-log APP performance. It is therefore important to find
reordered at the end of the detection process to account #oway of imposing run-time constraints while keeping the
the permutation induced hi. resulting performance degradation at a minimum. Moreover,

whereq is a suitably chosen regularization parame@ris a
unitary (Mr + Mr) x Mp matrix andR is of dimension
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450373 oos \ \ \ (FER) at a prescribed throughput. The quality of the receiver
200|_64% bes : ig’ Eitg-g‘l‘ || implgmentation_ can then be measured by the_ minimum SNR
m . STS, FER=0.04 required to a}ch|eve this target FER at th(_e specified throughput.
2 3507 $oa —.s-.sTs FEr=001 || Inthe following, we assess the complexity/performance trade-
2 K a —— LSD [10], FER=0.04 offs of the receiver concepts described in Sections Ill and IV
3 300 g —a—LSD[10], FER=001 | | by plotting the average (over independent channel and noise
2 250 ‘w0l 1"'001 realizations) number of visited nodes as a function of this
2 ot '32‘t minimum SNR. Since the number of visited nodes is related to
5200 50,05 008 the required chip area per throughput [16], the corresponding
E o l‘( :‘"" ----------- results allow to associate a reduction in hardware complexity
S 04¢ 16 °~4?‘% 0.025] gy | @225 00125 (e.g., chip area) to an SNR penalty.
100 ! 5o, N 00125 2 All simulation results below are for a rat® = 1/2
g 50 0-20\. \"\ & P~ 1, (generator polynomial$133, 171,] and constraint lengtiT)
o] wm‘ﬁ;\r\g convolutionally encoded MIMO-OFDM system [21] with
0 005 [0025” [~tiof25 6825 ~ T *0.0128] My = Mp = 4, 16-QAM constellation (using Gray mapping),

155 16 16.5 17 17.5 18 18.5 19

Minimum required SNR [dB] for a given FER N = 64 tones, and soft-input Viterbi decoding [22]. Note that

for L,.x = 0, one has to employ a hard-input Viterbi decoder.
Fig. 4. Comparison of repeated tree search (RTS), single tree search (Sf¥e frame consists d024 randomly interleaved (across space
and the list sphﬁre decgder (LSD) 6;]8 proposed in [10%a1a“ ;Jsing SQRihd frequency) bits and corresponds to one OFDM symbol. A
preprocessing. The numbers next to the curves correspohg, t@ for RTS : : : :
and STS and 1o the list size in the case of the LSD. TGn t_ype C channel _model [23] is used and in all simulations,
SNR is the per receive antenna SNR.

in practice, it is highly desirable to have a smooth performange comparison of Tree-Search Strategies
degradation as the run-time constraint becomes more stringent..
9 9 hg. 4 compares the performance of RTS and STS max-

In the following, we restrict ourselves to the STS algorithm). .
. . e .. .log APP decoders, and the list sphere decoder (LSD) [10]
A straightforward way of enforcing a run-time constraint |sl:1) . different target FERs and different values bof.... In the

terminate the search, on a symbol vector by symbol vectd) . o .
basis, after a maximum number of visited nodes. The ST&>¢ of the LSD, changing the list size allows to adjust the

decoder then returns the best solution found so far, i.e., t% mhpleél_P/S/pelrfor_rtr;]ange trade—toff. toerf the RTS strat
current ML and counter-hypotheses. A better solution is to N algonithm 15 seen 1o outperiorm the strategy

impose an aggregate run-time constraint D, visited n _trirm.s 0: avera;gte_ Cor?ﬁfx'ﬁ/sgy a faptor of 4 1o 8. d loai
nodes for an entire block ofV symbol vectors [20]. The € implementation of the requires memory and logic

maximum number of visited nodes allocated to the detection].c(?ir the admlnl_stratlon of the candidate list, not acpountgq for
this comparison. Fig. 4 shows that even when this additional

he kth | f | h if mpart nat € ;
the kth symbol vector can, for example, be chosen accordlc%mplexny is ignored, the STS is still superior to the LSD.

to th i -first (MF h li trat ) . -
0 the maximum-first (MF) scheduling strategy as Under stringent complexity constraints the STS shows SNR

k-1 advantages over the LSD of up to 1.5 dB.
Diax(k) = NDayg — > D(i) — (N —k)Mz  (17)
= B. Impact of Sorting and Regularization
for k=1,2,..., N whereD(i) denotes the actual number of
visited nodes for theth symbol vector. The concept behindIh
(17) is that decoding a given symbol vector is allowed tg
consume all of the remaining run-time within the blockéf
symbol vectors up to a safety margin @V — k)M visited

Fig. 5 compares the impact of sorting and regularization on
e complexity/performance trade-off of the STS algorithm.
pecifically, we show the trade-off curves corresponding to
SQRD, MMSE-SQRD, and standard (unsorted) QRD at a

nodes. This margin allows to find at least the hard-output S}erget_ FER of 0'0.1' It_can be seen that the |mprovem_ent
solution for all remaining symbol vectors. Settihg,, = M- résulting from sorting (i.e., SQRD vs. QRD) becomes sig-
o gsy : ve — T ificant for stringent (but realistic) complexity constraints.
maximizes the throughput, but redupes the performancg Irlarther improvements, in the low-complexity regime, are
that of hard-output SIC. We emphasize that, under run_tlr%%tained from regular’ization using MMSE-SQRD In, the
constraints, there may be LLRs at the end of the decodi )

process that have not been updated from their initial value %%h-co_mp!exny regime, '_[he pe_rforr_nance _penalty incurred by
s and hence need to be setg,... regularization (see the discussion in Section IV-B) eventually

renders MMSE-SQRD inferior to SQRD.

V. PERFORMANCHCOMPLEXITY TRADE-OFFS _—
C. LLR Clipping

System engineers typically face the problem of designing Both Fig. 4 and Fig. 5 show that, as discussed in Sec-

a receiver that achieves a prescribed target frame error rﬁ.})% IV-A, adjusting the LLR clipping levelL allows
il max

1jn an OFDM-based MIMO systerdy would, for example, be the number [0 SWEEP an entire family of sphere decoders ranging from
of OFDM tones. the exact max-log APP SESO.{(.. = oo) to hard-output
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Fig. 5. Comparison of unsorted QRD, SQRD and MMSE-SQRD prepré+ig. 6. Impact of imposing run-time constraints with maximum-first
cessing applied to STS. The numbers next to the curves correspdngata  scheduling on STS SESD with MMSE-SQRD preprocessing.
For Lmax = 0, the performance equals that of hard-output SESD.

SESD ([.max = 0). It is interesting to observe that aggressiva. A Brief Review of the ONPC Architecture in [16]

clipping according t0Lmax = 0.2 yields close to max-  The vLS| architecture proposed in [16] employs two func-
log APP performance. Increasing the LLR clipping levekonal units:
beyond this value increases complexity without a noticeablepsetric Computation Unit (MCU):The MCU handles the
performance improvement. Furthermore, we observe that {#@yard iteration in the search tree by identifying the starting-
decoder performance degrades gracefully as we decfease point for the SE enumeration (i.e., the current node’s child
thereby reducing the average search complexity. In SUmMmagyat has the smallest PED) using the direct-QAM enumeration
the LLR clipping level can be used to conveniently adjust thqqorithm initially proposed in [10] and slightly modified
decoderat runtimeto a given complexity constraint. in [16]. The basic idea behind this enumeration method for
QAM constellations is as follows: The QAM constellation
is first decomposed into subsets of constellation points that
In Fig. 6, we demonstrate the impact of imposing a run-timigave the same modulus, referred to as phase-shift keying
constraint according to a maximum of D, visited nodes (PSK) subsets. Within each of these PSK subsets, the child
for a frame of N = 64 symbol vectors using the strategyassociated with the smallest PED can be identified based on
described in Section IV-C. The resulting curves essentialiije phase ob; = ﬂi*ZjM:TiH R; js; only. The corresponding
consist of two regions: minimum PEDs (one for each subset) are then computed
« If the LLR clipping level Ly, is high (corresponding to and compared. The minimum PED across subsets identifies
high average search complexity), the run-time constrainéite starting point for the SE enumeration. If the resulting
detector is not able to compute accurate LLR valueshild neither corresponds to a leaf nor qualifies for pruning,
which results in (very) poor performance, unldss,, is the decoder proceeds in forward direction by declaring this
large. ForD,,, = 128, the performance is, indeed, verychild as the next parent node to be examined by the MCU
close to that of the unconstrained max-log APP SESD(cf. O in Fig. 7).
o For small Ly,.x, the performance is dominated by the Metric Enumeration Unit (MEU): The MEU maintains a
impact of clipping rather than by the impact of the runkist of preferred children, one for each node between the root
time constraint. and the parent of the node whose children are currently under
In summary, we can conclude that for a given run-time coexamination by the MCU. To this end, the MEU follows the
straint there exists an optimum LLR clipping level, in the senddCU on its path through the tree with one cycle delay. While
of minimizing the SNR required to achieve a certain targ#ite MCU visits a node, the MEU considers this node’s siblings

FER. It is therefore important to choose the LLR clippingnd identifies the one that should be visited next according to
level in accordance with the average run-time constraint. the SE criterion. This sibling is found by applying the direct-
QAM enumeration principle described above, where within

VI. VLSI ARCHITECTURE FORMAX-LOG STS each PSK subset the next (according to the SE criterion)
SOFT-OUTPUT SPHEREDECODING candidate follows immediately by zig-zag enumeration along

Since the proposed max-log STS SESD VLSI implemetthe circle. The decision on the preferred child across subsets

tation is based on the one-node-per-cycle (ONPC) VL$&iust again be made by explicit computation and comparison

architecture developed in [16] for hard-output SESD, we stayt the smallest PEDs of the individual PSK subsets.

our discussion by briefly reviewing relevant aspects of [16]. When the forward iteration stalls, either because the child

D. Run-time Constraints
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(MEU ¥ | ) the hard-output SESD considers only one child, namely the

Ca;:f?r]&eﬁ ihill)d:e‘;ds 4 [le;fgmn] one associated with the smallest PED. Th_e STS algorithm,
V3 howc_aver, has to compute _the PEDs of aII_ children _that do not
qualify for pruning according to the criterion (10) since these
Vo Schuors- children may lead to updates of the metric§. To perform
< T 7 enumeration this leaf enumeratiorprocedure, the STS decoder must revisit
g — the current node at leveél= 2, which requires additional clock
Q! & cycles and a leaf enumeration unit shown in Fig. 7. This unit
Forward/ X @ does, however, not require an additional arithmetic unit for the
PED computation as it can reuse the PED computation unit in
N the MCU (cf. O in Fig. 7).

2) List Administration and Tree Pruningn addition to the
modifications in the MCU described above, the STS algorithm
requires the following two additional units:

List-Administration Unit (LAU): The LAU is responsible
( PED computation ) 3 |l J  for maintaining and updating the list containing', \ML,

- ~ and theA?be. The corresponding unit is active during the leaf-
9 Tree pruning ) enumeration process described above. Since the update rules
\ MCW implemented by the LAU (see Section IlI-B1) require only a
small number of logic operations, the silicon area of this unit
4 Update counter- ]:; Update ]\ is small (see Table Il) and is dominated by the storage space
Bypotheses ME hypothesis required for the metrica™™ and A}.

T I Pruning Criterion Unit (PCU): The PCU is responsible

’\?,Ib cache: < AML - ML < ) ) )
MypQ words cache for computing the reference metrics, i.e., the RHS of (10),
\J—LLLI — ——] LAU) required to implement the corresponding pruning criterion.
O s = = ) ™\ From a VLSI implementation perspective, the reference metric
( — ) on level i depending on the partial label”) constitutes a
Compute major problem. More specifically, this dependence causes the
RHS of (18) criterion for pruning the child of a parent node on level
\ i+ 1 to depend on the partial lab&l® of that child. This,
<= PCU J in turn, implies that enumeration of the children on level
¢ in ascending order of their PEDs according to the SE
Fig. 7. Block diagram of the proposed VLS| architecture for the soft-outpgriterion can not be applied, which results in the need for
STS SESD. Additional units, compared to the hard-output SESD descrifgghastive-search enumeration and is thus ill-suited for VLSI
'n [16], are highlighted. implementation [16]. An adjustment of the pruning criterion
in (10) solves this problem. To this end, we define

identified by the MCU corresponds to a leaf or must be pruneg(x(iﬂ)) — (b} =
the MEU provides a new parent node to the MCU in the A

( .
» Tree pruning
N

/ Schnorr-Euchner
initialization
Leaf@

enumeration

Leaf
enumeration
unit

next clock cycle (cfd in Fig. 7). This parent node is chosen — { W (j >ib=1,2,.. .’Q) Az = beL)}
by the MEU, following the depth-first paradigm, from those o ’ 7
members of the list of preferred children which do not qualify U {)\%L |j<ib=1.2..., Q}
for pruning.
and prune the node(® along with its subtree ifd(s“)>
B. VLSI Architecture for STS SESD satisfies
The block diagram of the proposed max-log STS SESD d(S(i)) >  max b. (18)

VLSI implementation is shown in Fig. 7. Compared to the ar- beB(x(+1)

chitecture for hard-output SESD described in [16], changes i8te that the RHS of the modified pruning criterion (18)
made in the MCU and two additional units are required, OQ?epends on the partial labet(+1) rather than onx(®.

for list administration as described in Section 11I-B1 and onéonsequently the enumeration of the children of a node on
for the implementation of the pruning criterion as describgd, q| ; ) can' be carried out using the SE criterion.
in Section III-B2. We shall next describe the specifics of these

changes.

1) ?Architectural Changes in the MCUErom a high-level C. Impact of List Administration and Tree Pruning on Com-
architectural perspective, there is one fundamental differerREXItY
between tree-traversal for hard-output SESD and for the STSNMe argued throughout the paper that, for a ONPC archi-
algorithm: When the node currently examined by the MClécture, the number of visited nodes is equal to the number
is on the level just above the leaves (i.e., on levet 2), of clock cycles required for decoding thus reflecting the true
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counter-hypotheses will result in different sets of allowed

Fig. 8. ~Average number of visited nodes of the STS algorithm comparedynste|lation points, which induces an irregularity that results
with the average number of clock cycles of the corresponding VLSI implemen-

tation (with MMSE-SQRD preprocessing). The numbers next to the curvéd an .increase in hardware CompleXitY- The problem can
correspond to LLR clipping levels. be mitigated to a certain extent by adjusting the mapping.

However, this, in general, results in a (bit error rate) per-
N ] ] formance degradation. Alternatively using exhaustive search
silicon complexity of the algorithm. However, for the proposed, ,meration. as described in [16], to compaté’ and the
STS architecture the number of clock cycles will be larger th%unter-hypothesesm is not a viable option as it results in

.. . . o ]71? 1 : . -
the number of visited nodes shown in the numerical resullyniicant overhead in terms of chip area and in an increase

in Section V, for two reasons: First, modifying the pruning,'yhe jength of the critical path. For a quantitative analysis of
criterion (10) to result in (18) leads to less efficient pruninge jmpact of exhaustive-search enumeration (in hard-output
as SESD) the interested reader is referred to [16].

max b > max aj.

(i+1) i
b EB(x(+D) aeA(x®) VIl. ASIC | MPLEMENTATION RESULTS

The corresponding complexity increase is, however, signif-|n order to assess the true silicon complexity (chip area
icantly smaller than what would be incurred if exhaustivgnd achievable clock frequency) of the proposed STS-based
search enumeration on (10) would be applied. The secoggkt-output SESD, we implemented the VLSI architecture de-
reason for the number of clock cycles being higher than tgrihed in the previous section in 0.2 CMOS technology
number of visited nodes is that every time the leaf-enumeratiggy 5 MIMO system with My = My =4 using 16-QAM
process is performed, one additional cycle is consumed dydulation. The resulting chip layout is shown in Fig. 10. The
detect the end of the enumeration process. Consequently, d88jgn parameters of the decoder are summarized in Table |
proposed VLSI architecture no longer strictly follows theyhich, for reference, also contains the design parameters of
ONPC paradigm. The results in Fig. 8 show, however, that tB@ ¢2_-norm hard-output SESD, following the design princi-
impact of the two effects discussed above leads to the number

of clock cycles being only slightly higher than the number of

visited nodes. TABLE |

DESIGN PARAMETERS OF HARBOUTPUT SESDAND SOFT-OUTPUTSTS
ASICs IN 0.25um CMOS TECHNOLOGY

D. Architectural Considerations for RTS |

. . _ _ _ _ [ Hard-output SESD[ Soft-output STS]
In this section, we would like to discuss architectural consid-

. . . - Gate equivalents 34.4kGE 56.8 kGE
erations for possible implementations of the RTS strategy. AS e area T2mn? Tomn?
described in Section IlI-A, the RTS approach corresponds t0[\ax. clock frequendy 73MHz 71MHz
repeated runs of a hard-output SESD which, in principle, can | aT-product 0.164um?2s 0.268um?s

be implemented efficiently using the ONPC VLSI architecture

introduced in [16] However forcing the decoder to Searc“hTo provide technology-independent area characterization, the number of
) T ! gate equivalents (GEs) is specified. One GE corresponds to the area of a two-

only over the setX;,”’/ when computing the counter- MPut drive-one NAND gate.

SV b
ML ; ;
hypotheseskj b requires to constrain the search to a SUbsgnalysis and are representative for the manufactured ASIC within an accuracy

of admissible constellation points, which, moreover depenrgla few percent.
on the (bItS to SymbOI) mapping. Consequently’ as deplctgqhe area-timing (AT) product of a VLSI circuit is a measure for its true

in Fig. 9, straightforward zig-zag enumeration can no longeiicon complexity. It is given by the product of the chip area divided by the
be applied. In addition, as demonstrated in Fig. 9, differemgaximum allowed clock frequency.

E’he results on clock frequency are extracted from a post-layout static timing
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TABLE Il i T T T
DETAILED CHIP AREA BREAKDOWN OF THE DIFFERENT FUNCTIONAL 100H —o—soft-output STS hard-output /5
UNITS IN A HARD-OUTPUT SESDAND IN A SOFT-OUTPUTSTS SESD goll * hard-output SESD performance
Hard-output SESD Soft-output STS 80
Area [KGE] | Area [%] || Area [KGE] | Area [%]
Mem. (y, R) 46 13.4 45 7.9 g 70
MCU 16.6 48.3 18.5 32.6 a /0.0’125
MEU 11.9 346 10.9 19.2 = 60 g
Output buffer 0.8 23 5.0 838 5 5 10025 I
Control logic 0.5 1.6 0.5 0.9 £ " I
LAU 8.4 14.7 2 40
PCU - - 6.4 11.3 E 005 \ I
LLR Comp. 2.6 4.6 F 30 - —
[ Total [ 344 | 100 | 568 | 100 | 20 94 ———T LLR clipping lgvel

. 0
ples employed for thé>°-norm hard-output SESD described 165 17 175 18 185 19 195 20
in [16]. Minimum required SNR [dB] for FER=0.01

Hardware Complexity:We can see from Table | that the_. -
chip area required by the soft-output STS SESD is only 58} reference hard-output SESD VLSI mplementation with MMSE-SORD
higher than that required by a correspondiffgnorm hard- preprocessing.

output SESD. The detailed area breakdown in Table Il shows

that most of the area increase results from the LAU, the PCU,

and the arithmetic unit that computes the LLRs. Further ar&&ESD and the soft-output STS described in Section VI in terms
increase is due to the need to store the LLRs in the outmftthe throughput

buffer of the ASIC. The additional Schnorr-Euchner enumera-

tion unit in the MCU required for leaf enumeration adds only 0= RQMy Jeue  [bit/s]

1.9 kGEs to the overall area. The soft-output STS SESD ASIC E[C]

shows only slightly lower maximum clock frequency than th%easured innformationbits per second as a function of the

only negligble redustion in maximum dlock frequency 1 tal TIMUM reauired SR to achieve a FER of 001. Here,
y negig 9 y 1k is the maximum clock frequency of the circuit under

mostbof lihe adf? |t|r(])nal _I(_)gch: requ: ired db%/ thehSTSI_ SlESI?I ASIconsideration anéL[C] denotes the average (over channel and
canh N epF off t el crlltlfca path and has thus little in UeNGise realizations) number of clock cycles required to detect
on the m.aX|mum cloc requency. . a symbol vector. Note that the dedicated hard-output SESD
Detection Throughput:Fig. 11 shows the complexity/ ., jementation achieves a slightly higher throughput than the
performance trade-off of the referenéé-norm hard-output STS SESD implementation WM. ..., — 0. This is due to the
slightly higher maximum clock frequency of the corresponding

hard-output SESD (see Table I).

VIII. CONCLUSIONS

Sphere decoding is a suitable tool to implement MIMO
detection with variable complexity/performance trade-off. In
particular, adjusting the LLR clipping level and imposing
maximum run-time constraints is an efficient way of realizing
an entire family of decoders with (error rate) performance
ranging from exact max-log soft-output to hard-output SIC.
The keys to achieving low hardware complexity are the single
tree-search strategy described in Section IlI-B, MMSE-SQRD
preprocessing, LLR clipping, and run-time constraints with
maximum-first scheduling. Our VLSI implementation results
indicate that the silicon area required by a soft-output STS
SESD is only about 58% higher than the area required for
a corresponding?-norm hard-output SESD implementation.
This paves the way for a VLS| implementation of iterative
MIMO detection based on sphere decoding.

Fig. 10. Layout of an STS-based soft-output SESD ASIC in QiBSCMOS 2Recall that forLy,ax = 0, the (error rate) performance of the STS SESD
technology. algorithm corresponds to that of a hard-output SESD.
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