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Abstract— Beamforming (BF) for multiple-input multiple-
output (MIMO) wireless communications systems can improve
the error rate performance by spatial separation of the trans-
mitted data streams. BF requires to feed back steering matrices
from the receiver to the transmitter. The usually large amount of
feedback data asks for data reduction schemes. In this paper, we
investigate the error rate performance/feedback rate trade-off as-
sociated with steering matrix data-reduction schemes and present
a corresponding hardware-optimized compression/decompression
architecture. Our VLSI implementation achieves up to 50%
data reduction for 4× 4-dimensional steering matrices without
a significant decrease in terms of error rate performance at a
circuit complexity of only 7 k gate equivalents.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) technology offers
increased spectral efficiency, compared to single-antenna sys-
tems, by transmitting multiple data streams concurrently and in
the same frequency band [1]. Beamforming (BF) is considered
in modern wireless standards, such as IEEE 802.11n [2],
as a key technology to improve the error rate performance.
BF requires to multiply the transmit vectors with a steering
matrix. This matrix is obtained by computing the singular
value decomposition (SVD) of the MIMO channel matrix. In
practical systems, the VLSI implementations described in [3],
[4] can be used to compute the SVD for BF.

In order to obtain the steering matrix in the transmitter,
channel reciprocity or explicit feedback from the receiver
to the transmitter can be used. In practice, exploiting reci-
procity of the channel is often not possible due to strong RF
impairments or if the up- and down-link are performed in
different frequency bands. Hence, we focus on the scenario
where the SVD is computed in the receiver and the steering
matrices are fed back to the transmitter in a conventional
data stream. A significant drawback of explicit steering matrix
feedback is the potentially large amount of feedback data.
In IEEE 802.11n, for example, up to 108 complex-valued
4 × 4-dimensional steering matrices need to be transmitted.
To this end, algorithms that reduce the amount of feedback
data (referred to as compression schemes) have been proposed
in [5], [6].

Contributions: In this paper, we provide a bit-level com-
parison of three hardware-based data reduction schemes for
explicit steering matrix feedback and discuss the resulting
error rate performance/feedback rate trade-off for MIMO
systems. For the most promising compression/decompression
scheme, we describe a VLSI architecture that achieves up to
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50% data reduction with near-optimal error rate performance.
The final implementation is optimized in terms of hardware-
efficiency, resulting in a high-throughput steering matrix com-
pression/decompression unit that requires low silicon area.

Outline: The remainder of this paper is organized as
follows. Sec. II introduces the MIMO system model with
beamforming and describes three steering matrix feed-
back data reduction schemes. The corresponding compres-
sion/decompression architecture is described in Sec. III,
hardware-efficiency optimizations and VLSI implementation
results are given in Sec. IV, and we conclude in Sec. V.

II. BEAMFORMING AND STEERING MATRIX FEEDBACK

Consider a MIMO system with MT transmit and MR re-
ceive antennas. The baseband-equivalent input-output relation
corresponds to y = Hs + n, where s is the MT -dimensional
transmit vector, H the MR×MT -dimensional channel matrix,
n the MR-dimensional additive Gaussian noise vector, and the
MR-dimensional receive vector is denoted by y. One method
to perform BF [7] is to transmit s̃ = Vs, where V corresponds
to the MT × MT -dimensional steering matrix. This matrix
is obtained by computing the singular value decomposition
(SVD) [8] of the channel matrix1

H = UΣVH (1)

where U and V are complex-valued unitary matrices and
U is of dimension MR × MR. The real-valued MR × MT -
dimensional matrix Σ contains r = min{MR,MT } ordered
singular values on its main diagonal. We assume that the
receiver computes the steering matrix and explicitly feeds a
data-reduced version back to the transmitter.

A. Steering Matrix Quantization
A straightforward way to reduce the amount of steering

matrix data is to quantize the real and imaginary parts of
V. Since steering matrices are unitary, all entries of V
satisfy max

{
|<(Vi,j)|, |=(Vi,j)|

}
≤ 1 (∀i, j) and hence, each

complex-valued entry of V can safely be quantized in two’s-
complement fixed-point format by using a sign bit and Bq−1
fraction bits for each real and imaginary part. This straight-
forward quantization scheme requires a total number of

Sv = Bq2MT
2 (2)

bits per steering matrix. Note that the choice of Bq determines
the error rate performance of BF (see Sec. II-D).

1In the following, the superscripts T and H stand for transposition and
conjugate transposition, respectively.



B. Unique Steering Matrix Quantization

We emphasize that U and the steering matrix V in (1) are
not unique. The application of a column-wise phase rotation
applied to both unitary matrices with a M ×M -dimensional
diagonal matrix

Dl(θ) = diag
(
1, . . . , 1︸ ︷︷ ︸

l−1

, ejθ, 1, . . . , 1︸ ︷︷ ︸
M−l−2

)
M ∈ {MR,MT }

and by computing Ũ = UDl(θ) and Ṽ = VDl(θ) for
1 ≥ l ≥ MT , ensures that ŨΣṼH = UΣVH corresponds
to another valid SVD of H. Hence, an appropriate choice of
phase rotations Dl(θl) for l = 1, 2, . . . ,MT can be exploited
to obtain a unique steering matrix

Vu = V
MT∏
l=1

Dl(θl) (3)

such that the last row of Vu only contains real-valued non-
negative entries. Storage of the unique steering matrix only
requires

Su = Bq

(
2MT

2 −MT

)
−MT (4)

bits, since all imaginary parts in the last row are zero and the
MT sign bits of the corresponding real-valued entries can be
neglected. We emphasize that (4) is lower than (2), especially
for a small number of transmit antennas. Note however, the
process of computing an unique steering matrix (3) requires
dedicated signal processing hardware (see Sec. III).

C. Steering Matrix Compression and Decompression

In order to further reduce the amount of data per steering
matrix, more advanced data-reduction schemes (referred to as
compression) have been proposed in [5], [6]. The key idea
of steering matrix compression is to decompose a unitary
matrix into a sequence of rotation angles required to perform
a Givens-rotation-based QR decomposition of Vu. The corre-
sponding sequence of angles is obtained by choosing φkl and
θkl such that2

1∏
k=MT−1

(
MT∏

l=k+1

Gkl (φkl)
MT−1∏

l=k

Dl(θkl)

)
Vu = IMT

(5)

where IM is a M ×M -dimensional identity matrix and

Gkl(φ) =


Ik−1 0 0 0 0

0 cos(φ) 0 sin(φ) 0
0 0 Il−k−1 0 0
0 − sin(φ) 0 cos(φ) 0
0 0 0 0 IMT−l


is the MT ×MT -dimensional Givens rotation matrix [8]. The
angles θkl in (5) are used to rotate complex-valued entries of
Vu to the real-axis and φkl are used to zero out the lower-
triangular part of the unique steering matrix.

Exact reconstruction (referred to as decompression) of Vu

is achieved by computing the inverse process of compression,
using the same angles as obtained in (5). The unique steering

2Note that matrix-multiplication with the Pi-notation is defined from left
to right, i.e.,

Q3
z=1 Xz = X1X2X3.
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Fig. 1. Performance/feedback rate trade-off of steering matrix data-reduction
schemes. The numbers next to the curves correspond to Bq for quantization-
only schemes and Ba corresponds to steering matrix compression with the
reference (floating-point) algorithm and to the hardware described in Sec. IV.

matrix is completely defined by (MT − 1)MT rotation angles
φkl and θkl and requires

Sc = Ba(MT − 1)MT (6)

bits for each compressed steering matrix. Ba corresponds to
the number of bits per quantized angle. Since all angles are in
the range [−π, π), scaling by 1/π converts the angular range
to [−1, 1), which allows a convenient quantization in signed
two’s complement format with a total number of Ba bits. For
brevity of exposition, we consider equal quantization for φkl

and θkl in the following.

D. Performance/Feedback Rate Trade-Off

Compared to the quantization-only methods (2) and (4),
steering matrix compression (6) can reduce the amount of bits
per steering matrix by approximately Ba/(2Bq) for a large
number of transmit antennas. The exact compression ratio is
dependent on Ba and Bq, which have a strong impact on
the error rate performance of the system. The performance
impact of quantization and compression on the bit error rate
(BER) is assessed by system simulations3. Fig. 1 shows the
minimum SNR to achieve a target BER of 10−4 dependent on
the number of bits required per steering matrix.

The resulting trade-off between SNR operating point and
feedback rate shows that quantization of the unique steering
matrix Vu reduces the storage requirements up to 25% com-
pared to straightforward quantization of V. Steering matrix
compression further reduces the amount of feedback data by
25% to 50% depending on the SNR operating point. Only
6 bits per angle are sufficient to achieve near-optimal BER
performance and requires 72 bits per 4×4-dimensional steering
matrix. For the quantization-only schemes, Bq = 5 attains
near-optimal performance, resulting in 160 bits and 136 bits

3We consider a coded (rate 1/2 convolutional code with constraint length
7, generator polynomials [133o 171o], random interleaving) MIMO-OFDM
system [7] with MR = MT = 4, 16-QAM (Gray mapping), 64 tones, and a
linear soft-output MMSE detector. One code-block corresponds to 1024 bits,
a TGn type C [9] channel model is used, and perfect channel state information
at the transmitter and receiver is assumed.
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Fig. 2. Compression/decompression architecture for 4×4 steering matrices.

per matrix for quantization of V and quantization of Vu,
respectively. Note that setting Bq = 1 results in a strong error
floor since highly-quantized steering matrices are rank-reduced
with high probability.

III. VLSI ARCHITECTURE

To assess the signal processing overhead required to perform
compression and decompression, a dedicated VLSI archi-
tecture is described in the following. In practice, steering
matrix compression is only required in the receiver and
decompression only in the transmitter. However, both tasks
require the same amount of memory and a similar set of
arithmetic operations. Thus, we present a single architecture
that is capable to perform compression and decompression and
is also able to compute the unique steering matrix.

The proposed architecture is depicted in Fig. 2 and con-
tains a complex-valued 4 × 4-dimensional matrix memory
and storage for 12 rotation angles. Latch arrays have been
used to reduce the area of both memories, since the smallest
available RAM macro cell was significantly larger. Further
area reduction of the compression/decompression architecture
is achieved by time-sharing of two coupled arithmetic units.

A. Vectoring/Rotation CORDIC with Enhanced Range

Steering matrix compression, decompression (5), and com-
puting the unique matrix (3) requires two-dimensional ro-
tations. CORDICs are a suitable tool to efficiently perform
rotations in hardware [11] by decomposing two-dimensional
rotations of a real-valued input vector v = [x y]T in R micro
rotations according to

Ci(di) = κi

(
1 −di2−(i−1)

di2−(i−1) 1

)
i = 1, 2, . . . , R

where κi = 1/
√

1 + 2−2(i−1). The total CORDIC rotation
corresponds to v′ =

∏1
i=R Ci(di)v, which is determined by

the sequence di ∈ {−1,+1} for i = 1, 2, . . . , R. Note that the
architecture depicted in Fig. 3 only contains hardware-friendly
arithmetic right shifts (ASRs), additions, subtractions, and two
multiplications with the constant κ =

∏1
i=R κi. Unfortunately,

the range of achievable rotation angles approximately corre-
sponds to [−1.74,+1.74) radians and hence, the CORDIC
needs to be modified in order to support all rotation angles.

Vectoring Mode: In this mode, the rotation sequence di

is computed for i = 1, 2, . . . , R, such that for the input
vector [x y]T , the output corresponds to x′ ≈ ±

√
x2 + y2

and y′ ≈ 0. The required sequence can be extracted by
choosing di = −sign (yi) sign (xi) for each step i and by
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Fig. 3. Enhanced vectoring/rotation CORDIC on the left with the master/slave
angular unit (AU) on the right. Multiple instantiation of the shaded boxes un-
roll the CORDIC/AU and can improve the hardware-efficiency (see Sec. IV).

setting the add/subtract mode in AS1 and AS2 (see Fig. 3)
accordingly [10].

We emphasize that a real-valued positive output of x′ in
vectoring mode is essential for the computation of the unique
steering matrix and for decompression (see Sec. III-B). To this
end, the range of achievable rotation angles has been enhanced
by performing an additional ±π/2 rad rotation

C0(d0) =
(

0 −d0

d0 0

)
with d0 ∈ {−1,+1}

prior to the first micro rotation of the CORDIC. Choosing
d0 = −sign (y0) renders the output in vectoring mode non-
negative, i.e., x′ ≈ +

√
x2 + y2 and y′ ≈ 0. We emphasize

that this modification enhances the range of achievable rotation
angles to approximately [−3.31,+3.31) radians at the cost of
one additional micro-rotation step and two multiplexers at the
input of AS1 and AS2 as shown in Fig. 3.

Rotation Mode: In this mode, the CORDIC in Fig. 3 is
reused to perform a two-dimensional rotation of [x y]T in the
enhanced angular range, corresponding to a given di sequence
for i = 0, 1, . . . , R.

B. Angular Master/Slave Unit
Steering matrix compression and decompression requires

the extraction of rotation angles from Givens rotations and
the rotation of vectors by the angles θkl and φkl, respectively.
To perform both tasks, a master/slave angular unit (AU) has
been designed (see Fig. 3) and is connected to the enhanced
CORDIC architecture described in Sec. III-A.

Slave Mode: In this mode, the AU computes the rotation
angle corresponding to the current rotation performed in the
CORDIC in vectoring mode. Note that each micro rotation i
of the enhanced CORDIC corresponds to the following angles

λi =
{
±π/2 i = 0
± arctan

(
2−(i−1)

)
i = 1, 2, . . . , R.

(7)

Initializing γ−1 = 0 and computing γi = γi−1−diλi for each
micro rotation i yields the corresponding output angle γR. As
depicted in Fig. 3, the computation of γR only requires an
add/subtract unit (AS3) and a look-up table (Angle LUT) to
store the R+1 angles given in (7). Note that the angles in the
LUT are scaled according to γ̃i = γi/π such that the resulting
angles are in the range [−1, 1), which allows for convenient
representation in two’s complement fixed-point format.



TABLE I
VLSI IMPLEMENTATION RESULTS OF THE STEERING MATRIX

UNIQUIFY/COMPRESSION/DECOMPRESSION UNIT

Unroll Factor 1 2 3 6
Areaa [kGE] 5.7 6.7 6.8 7.0
Max. clock freq. [MHz] 208 231 215 191
HW-efficiencyb [kGE µs] 9.8 5.7 4.5 3.1
Uniquify time [ µs] 0.61 0.34 0.29 0.24
Comp. or Decomp. [ µs] 1.73 0.84 0.64 0.44
Uniquify and Comp. [ µs] 2.22 1.06 0.80 0.53

aOne GE corresponds to the area of a two-input drive-one NAND gate.
bHardware (HW) efficiency is measured in gate equivalents (GEs) times the
time required to compress a 4× 4-dimensional unique steering matrix.

Master Mode: The AU in master mode is only used in
the steering matrix decompression phase. The purpose of this
mode is to extract the corresponding micro-rotation sequence
di (i = 0, 1, . . . , R) for a given input angle, i.e., for either
θ or φ. Simultaneously, the same rotation is performed in
the CORDIC. Since the angles in the LUT (7) are stored
in decreasing order, the micro-rotation sequence di can be
derived by initializing γ−1 with either θ or φ and by computing

di = sign (γi−1) and γi = γi−1 − diλi (8)

in each micro-rotation i = 0, 1, . . . , R. We emphasize that
computing (8) in the AU does not require any additional
hardware (cf. Fig. 3) and is only possible due to enhancement
of the CORDIC’s angular range as described in Sec. III-A.

IV. IMPLEMENTATION RESULTS

The implementation results given in Tbl. I correspond to
post-synthesis figures for 0.18 µm (1P/6M) CMOS technology.
All implementations are able to compute the unique steering
matrix and perform compression and decompression of 4× 4-
dimensional steering matrices.

Arithmetic Precision Optimization: The fixed-point preci-
sion has been optimized to reduce circuit area and processing
time. Simulations have shown that 8 bits per real and per
imaginary part of V and 7 bits to represent θkl and φkl are
sufficient. The internal signals (cf. Fig. 3) of the CORDIC
use 10 bits and the AU-internal signals γi and λi use 8 bits.
Furthermore, six micro-rotation steps (R = 5) are sufficient.
The error rate performance of this hardware implementation
is given in Fig. 1 and shows a tolerable performance loss
compared to the floating-point reference algorithm.

Impact of the Unroll Factor: Further hardware-efficiency
optimization is achieved by unrolling the CORDIC/AU. Tbl. I
shows the final implementation results and illustrates the
impact of the unroll factor (UF) to hardware-efficiency. No
unrolling results in the smallest but least-efficient architecture.
However, up to a threefold hardware-efficiency gain can be
achieved by unrolling of the CORDIC/AU. The most efficient
variant corresponds to that with an UF of six and achieves the
fastest processing times among all other architectures.

Comparison with Steering Matrix Computation: A practical
system that employs beamforming with data-reduced feedback
needs to perform a SVD of the channel matrix in order to
obtain the steering matrix. Tbl. II compares the effort (in
terms of area and processing time) required to compute the
steering matrix on MDU-I [3] and on the steering matrix

TABLE II
COMPARISON OF STEERING MATRIX COMPUTATION UNITS WITH THE

OPTIMIZED UF 6 UNIQUIFY/COMPRESSION/DECOMPRESSION UNIT

MDU-I [3] This Work Total
Area [kGE] 42.3 (86%) 7.0 (14%) 49.3 (100%)
Timec [ µs] 11.6 (96%) 0.53 (4%) 12.1 (100%)

cCorresponds to the SVD computation time using MDU-I [3] and to the
uniquify and compression time using the UF 6 implementation of this work.

SMCU [4] This Work Total
Area [kGE] 42.3 (86%) 7.0 (14%) 49.3 (100%)
Timed [ µs] 3.3 (86%) 0.53 (14%) 3.83 (100%)

dCorresponds to the steering matrix computation time of the SMCU described
in [4] and to the uniquify/compression time of our UF 6 architecture.

computation unit (SMCU) [4] with the efficiency-optimized
(UF 6) steering matrix compression/decompression unit of this
work. Compression only requires 14% of the total silicon area
and 4% or 14% of the total computation time compared to the
time required by the MDU-I or the SMCU, respectively. Thus,
our compression/decompression architecture is a valuable add-
on to steering matrix computation units.

V. CONCLUSION

In this paper, we compared three different schemes for steer-
ing matrix data-reduction suitable for MIMO systems with
beamforming. Investigation of the corresponding error rate
performance/feedback rate trade-off have shown that sophisti-
cated compression/decompression algorithms can achieve up
to 50% data-reduction compared to straightforward quanti-
zation schemes. Furthermore, our VLSI implementation of
steering matrix compression/decompression has proved to be
suitable for MIMO systems with beamforming and performs
all required signal-processing tasks in a hardware-efficient way
with near-optimal error rate performance.
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