
Configurable High-Throughput Decoder
Architecture for Quasi-Cyclic LDPC Codes

C. Studer∗, N. Preyss, C. Roth, and A. Burg∗

∗Integrated Systems Laboratory
ETH Zurich, 8092 Zurich, Switzerland
email: {studer, apburg}@iis.ee.ethz.ch

Abstract— We describe a fully reconfigurable low-density par-
ity check (LDPC) decoder for quasi-cyclic (QC) codes. The
proposed hardware architecture is able to decode virtually any
QC-LDPC code that fits into the allocated memories while
achieving high decoding throughput. Our VLSI implementation
has been optimized for the IEEE 802.11n standard and achieves a
throughput of 780 Mbit/s with a core area of 3.39 mm2 in 0.18 µm
CMOS technology.

I. INTRODUCTION

The quality-of-service and throughput requirements of mod-
ern wireless communication systems require high-performance
error-correction schemes. Low-density parity check (LDPC)
codes [1] are promising candidates for next-generation wire-
less communication standards due to the excellent error-
correction capabilities. In particular, quasi-cyclic (QC) LDPC
codes [2], [3] offer high decoding throughput at low im-
plementation complexity, e.g., [4]–[6], and have been con-
sidered in different wireless standards, e.g., DVB-S2 [7],
IEEE 802.16 [8], and IEEE 802.11n [9]. The growing use
of QC-LDPC codes asks for a single configurable decoder
architecture that can easily be scaled (at compile time) to
different performance and complexity requirements.

Contributions: In this paper, we describe a configurable
high-throughput QC-LDPC decoder architecture based on lay-
ered message passing [10]. We present a novel technique to
trade memory consumption for (error-rate) performance at
design-time of the decoder and propose a parallel decoder
architecture that employs flexible cyclic shifters in combina-
tion with a configurable sequencer, which enables to decode
virtually any QC-LDPC code that fits into the allocated memo-
ries. This feature renders the design suitable for multi-standard
radio applications, but the specific implementation reported in
this paper has been optimized for IEEE 802.11n [9]. The ASIC
was fabricated in 0.18µm CMOS technology. We provide
power-efficiency measurement results and compare our ASIC
implementation with existing QC-LDPC decoders.

Outline: The remainder of this paper is organized as fol-
lows. Section II describes QC-LDPC codes and the employed
LDPC decoding algorithm. The configurable VLSI architec-
ture is described in Section III, corresponding implementation
results are given in Section IV, and we conclude in Section V.

II. QUASI-CYCLIC LDPC CODES AND DECODING

LDPC [1] codes are linear block codes satisfying

Hx = 0M×1 (1)

in GF(2), where x is the N -dimensional binary-valued data
vector, 0M×1 denotes an M -dimensional all-zero vector,
and H is a sparse binary-valued M ×N parity check matrix.
QC-LDPC codes are described by a Mp ×Np LDPC matrix
prototype Hp. The parity check matrix in (1) is constructed
from Hp by replacing each entry by a Z × Z cyclic-shift
matrix Pc (i.e., M = MpZ and N = NpZ), where c is equal
to the corresponding entries in Hp. The cyclic-shift matrices
are defined as Pc =

∏c

i=1 P1 (for c > 0) with
[

P1
]

i,j
=

{

1, (i mod Z) + 1 = j
0, otherwise

P0 = IZ , and P− = 0Z×Z . Note that all entries of Hp satisfy
[Hp]m,n < Z (∀m, n). For example, the rate-5/6, Z = 81
QC-LDPC matrix prototype of the IEEE 802.11n standard [9]
is defined as

.

A. Decoding of LDPC Codes
The parity check in (1) can be represented as a bipar-

tite graph consisting of N variable nodes and M check
nodes. Variable nodes are associated with transmitted bits xn

(n = 1, 2, . . . , N). The mth parity check node is connected
to the nth variable node if [H]m,n = 1. LDPC decoding
can be represented as message passing (MP) on the bipartite
graph [11]. The standard MP schedule consists of two phases
and is also known as flooding MP [10]. In the first phase, all
messages from the variable to the check nodes (denoted by Q-
messages) are computed with the aid of log-likelihood ratios
(LLRs)

Ln , log

(

P[xn = 0|y]

P[xn = 1|y]

)

, n = 1, 2, . . . , N (2)

where y denotes the channel observation. In the second phase,
all messages from the check to the variable nodes (denoted by
R-messages) are computed. Both phases are repeated until (1)
is satisfied (i.e., the algorithm converges to a valid code-word)

1

or a maximum number of iterations I has been reached. Note
that flooding MP is frequently used in the literature, e.g., [12],
[13], but has three major disadvantages: i) both phases require
a different set of arithmetic operations, ii) both message types
(Q and R) as well as the input LLRs (2) need to be stored,
and iii) the convergence behavior is relatively slow [10].

B. Layered Offset Min-Sum LDPC Decoding
The decoding algorithm used in this paper avoids the

drawbacks of flooding MP and is based on layered LDPC
decoding [10], [14] with offset min-sum (OMS) MP [15].
Furthermore, the implemented decoding algorithm exploits the
value-reuse properties of OMS as described in [5], [6] and
employs a novel technique called message clipping (MC),
which allows to trade memory requirements for (error-rate)
performance.

The algorithm described in the following is summarized
in Alg. 1. Note that layered QC-LDPC decoding only requires
memory for two message types [10], [14], denoted by the
Z-dimensional vectors qi

n (i.e., the Q-values at the variable
nodes) and the R-messages from check to variable nodes ri

m,n.
All vector operations in Alg. 1 are performed element-wise,
except for the cyclic shifts (i.e., all matrix-vector multiplica-
tions).

Initialization: On lines 1-2 of Alg. 1, the q0
n (∀n) values are

initialized by the LLRs (2) and all messages r0
m,n (∀m, n) are

set to zero. Note that no separate storage for the input LLRs is
needed for layered LDPC decoding. The algorithm performs
a maximum number of I iterations (lines 3-19) and operates
row-wise (for each row m of Hp). Message computation is
then performed iteratively for the columns n ∈ Nm of Hp for
which

[

Hp

]

m,n
6= ′−′ (see line 6 and 12 Alg. 1), i.e.,

Nm =
{

n ∈ Z |
[

Hp

]

m,n
6= ′−′

}

. (3)

Message computation of layered MP can be divided into two
phases: the first is called MIN phase (lines 6-11) and the
second is called SEL phase (lines 12-17).

MIN Phase: The ri−1
m,n-message is subtracted from a

cyclically-shifted version (by c =
[

Hp

]

m,n
) of qi−1

n and
stored in a temporary vector tn (cf. line 6). OMS [15] and
its value-reuse properties [5], [6] only require to compute
the minimum m1 and the second minimum m2 for each
entry of tn (∀n). Both minima are being computed iteratively
as shown on lines 8 and 9, where the minimum on line 8
returns the minimum of m1 or tn, a temporary vector x which
contains the values not corresponding to the minimum (i.e., the
second-lowest values), and an index vector where [v]k is set
to the current index n if a new minimum (i.e., corresponding
to [tn]k) has been found. The vector s contains Z signs, which
are used in the SEL phase.

SEL Phase: In this phase, the new Q and R messages are
computed iteratively for n = 1, 2, . . . , Nb. To this end, the
temporary vector tn = Pcqk−1

n − rk−1
m,n is computed first

(line 14). Then, the sel-function (line 14) compares each of
the Z indices [v]k (for k = 1, 2, . . . , Z) with n and yields
the corresponding entry of [m1]k if vk = n and [m2]k

otherwise. The new ri
m,n-vector is computed by using OMS

MP [15] (cf. line 15) with β = β · IZ×1, where only one
offset value β is used for all Z entries. The new qi

m,n vector
is computed on line 17 and cyclically shifted using the inverse
rotation c′ = Z − c, such that PcPc′

= IZ×Z .

C. Message Clipping
Since layered LDPC decoding performs updates of

the qi
m,n-vector using the results of the previous iteration

(cf. line 16), the dynamic range of the Q-messages is, in
general, very large. In order to reduce the amount of bits
required to store all qi

m,n-vectors (∀n, m), the maximum
magnitude of the Q-values can be clipped. Unfortunately, this
straightforward approach yields poor error-rate performance.
In order to combat this problem, we propose a novel approach
referred to as message clipping (MC) in the following. Instead
of clipping the Q-values, the R-messages are clipped (on line
15) according to

clip(r, t) = max
{

min{r, Qmax − t},−Qmax − t
}

which ensures that that
∣

∣[qi
n]k

∣

∣ ≤ Qmax (∀n, k) and Qmax

denotes the MC parameter. This approach offers a trade-off
between memory consumption (to store the Q-messages) and
error-rate performance (corresponding simulation results are
shown in Section III-E).

III. VLSI ARCHITECTURE

An overview of the configurable QC-LDPC decoder ar-
chitecture is shown in Fig. 1. The architecture consists of
two memories, i.e., one for the Q-values and one for the R-
messages, a cyclic shifter (CS), and a pool of node compu-
tation units (NCUs). To enable reconfigurability for different
LDPC matrix prototypes, the architecture contains a config-
urable control unit and a sequence (SEQ) memory.

Algorithm 1 QC L-OMS LDPC decoder with MC
1: r0

m,n ← 0Z×1, n = 1, 2, . . . , Nb, m = 1, 2, . . . , Mb

2: q0
n ←

[

L(n−1)Z+1 L(n−1)Z+2 · · · LnZ

]T , ∀n
3: for i = 1, 2, . . . , I do
4: for m = 1, 2, . . . , Mb do
5: m1 ←∞· IZ×1, m2 ←∞· IZ×1, s← IZ×1

6: for n ∈ Nm do
7: c =

[

Hp

]

m,n
, tn ← Pcqi−1

n − ri−1
m,n

8: [m1,x,v]← min
{

m1, |tn|
}

9: m2 ← min{m2,x}
10: s← s · sign(t)
11: end for
12: for n ∈ Nm do
13: c =

[

Hp

]

m,n
, tn ← Pcqi−1

n − ri−1
m,n

14: m← sel(m1,m2,v, n)
15: ri

m,n ← clip
(

s · sign
(

tn

)

· max
{

m− β, 0
}

, tn

)

16: qi
n ← Pc′

(

tn + ri
m,n

)

, c′ = Z −
[

Hp

]

m,n

17: end for
18: end for
19: end for

2

Fig. 1. Configurable QC-LDPC decoder architecture overview.

In order to maximize the throughput, the decoder operates
on Z elements in a parallel manner (using Z NCUs). The
architecture computes one entry of Hp per clock cycle, so
that at most Nb clock cycles are required per row of the
LDPC matrix prototype. The throughput is further increased
by parallel computation of the MIN and SEL phases (line 6-12
and 12-17, respectively) of Alg. 1. This parallel computation
requires that the MIN and SEL phases do not access the same
data at the same time. To avoid memory access conflicts, the
MIN phase is performed on row m + 1, whereas the SEL
phase operates on row m. Furthermore, the SEL phase never
accesses the nth column before it will be used in the MIN
phase, to maintain convergence of layered LDPC decoding.
These memory access constraints are enforced by the control
unit (see Section III-D).

A. Node Computation Units
To enable parallel computation of the SEL and MIN phases,

each of the Z NCUs is divided into a SEL unit and MIN unit
by an intermediate pipeline stage as shown in Fig. 2.

MIN Unit: The kth MIN unit (k = 1, 2, . . . , Z) iteratively
computes [m1]k, [m2]k, [v]k , and [s]k for all n ∈ Nm+1

on row m + 1 (cf. lines 5-11 of Alg. 1) by using the inputs
[

ri−1
m+1,n

]

k
and

[

Pcqi−1
n

]

k
. When the MIN phase of row m+1

has finished, both minima (i.e., m1 and m2), the index
vector v, and the sign-vector s are passed from the MIN to
the SEL units.

SEL Unit: The SEL units iteratively compute the new
clipped output messages ri

m,n and t + ri
m,n as shown on

lines 12-17 of Alg. 1 using m1, m2, v, and s from the
MIN unit and ri−1

m+1,n as well as Pcqi−1
n from the R- and

Q-memory, respectively.
Partial Parity Check: During computation of the new

Q-values and R-messages, each SEL unit performs a par-
tial parity check (PPC) of (1), i.e., the SEL units check
whether hT

m′ x̂ = 0, where hT
m′ stands for the m′th row (for

m′ = 1, 2, . . . , M) of H in (1) and x̂ corresponds to the
binary-valued estimates obtained from the sign-bits of qi

n

(for n ∈ Nm). After processing all m′ rows of H, the

Fig. 2. Architectural details and decoding schedule of the QC-LDPC decoder
for Z = 2 and Nb = Mb = 2.

decoding procedure is terminated prematurely if all PPCs are
satisfied. It is important to note that combining all PPCs does,
in general, not correspond to the parity check in (1), since
the evaluation of the PPCs are done sequentially and some
estimates (since they result from the qi

n-values) might change
during computation of all rows. We emphasize, however, that
the proposed approach never terminates the decoder if (1) is
not satisfied, but situations occur, where (1) is satisfied but
the combination of all PPCs is not. Hence, the presented
approach is slightly sub-optimal (in terms of number of
decoding iterations) but the average number of iterations is
still reduced significantly for medium to high SNRs, which
leads to an improvement in terms of energy-efficiency in
these SNR regimes (corresponding measurement results are
provided in Section IV-B).

B. Cyclic Shifter
Cyclic shifts according to the entries of Hp are required

when the MIN and SEL units read data from the Q-memory
and when the SEL unit writes new data to the Q-memory
(see Fig. 2). These cyclic shifts are performed in the CS
unit, which consists of three subset cyclic shifters (SCSs).
Since Z ≤ Zmax (where Zmax denotes the maximum sub-
block size supported by the architecture) can be different for
each LDPC matrix prototype (i.e., depending on the code-
block size) a flexible unit is required that is able to perform
an arbitrary cyclic shift 0 ≤ c < Z. Several architectures that
perform cyclic shifts of a subset of Zmax have been described
in the literature. A corresponding survey can be found in [16].
However, most of the proposed architectures lead to either
irregular structures, result in large circuit and interconnection
area, or are only suited for a small number of different Z-
values.

In order to attain reconfigurability of the QC-LDPC decoder,
we designed a simple and efficient subset cyclic shifter (SCS)
that is able to perform shifts for any subset of Zmax by an
arbitrary shift amount 0 ≤ c < Z. The SCS architecture is
depicted in Fig. 3. Each SCS consists of a shifter control

3

Fig. 3. Subset cyclic shifter architecture a) overview, b) barrel rotator (BR),
and c) operation principle for Zmax = 8, Z = 6, and c = 1.

(SC) unit, two barrel rotators (denoted by BR 1 and BR 2),
and an output multiplexer stage. The first barrel rotator (BR 1)
performs a cyclic left-shift by c1 = Zmax−Z + c, while BR 2
left-shifts the input by c2 = c. The shift amounts c1 and c2

are computed in the SC unit. The output multiplexer stage
selects the outputs 1, 2, . . . , Z − c from BR 2 and the outputs
Z − c + 1, Z − c + 2, . . . , Z from BR 1.

The key advantages of the proposed SCS are i) the low
circuit area and ii) its fast operation. The total number of 2-to-1
multiplexers required in each SCS corresponds to

Bq

(

2Zmaxdlog2(Zmax)e+ Zmax

)

where Bq denotes the number of bits required for
each entry of q. Furthermore, each SCS only consists
of dlog2(Zmax)e+ 1 multiplexer stages, which, thanks to its
regular structure, enables pipelining.

C. Memories for Q and R
Since the Q-memory and the R-memory require two write

operations and one read operation per clock cycle for all Z
messages, the memories have been designed such that one
(read or write) address corresponds to Zmax messages. To
increase the memory bandwidth without (significantly) in-
creasing the area, we used a double-clocking strategy, i.e.,
both memories operate at twice the clock frequency of the
remaining logic, i.e., fmem = 2fclk. Since the timing charac-
teristics of the memories available in our process technology
are sufficiently fast, this double-clocking approach offers a
two-fold increase in terms of memory bandwidth without
leading to a significant area overhead.

D. Control Unit
The control unit consists of the SEQ memory and a simple

controller, which generates all control signals for the decoder
architecture. During the initialization phase of the LDPC
decoder, the control unit can be configured with the OMS
scaling parameter β, the sub-block size Z, and the maxi-
mum number of iterations I . Additionally, a control sequence
needs to be loaded into the sequence (SEQ) memory prior
to decoding. This control sequence contains all necessary
information on Hp in combination with the decoding schedule
(i.e., memory addresses, cyclic shifts etc.). During operation,

0.5 1 1.5 2 2.5 3 3.5 4
10

-4

10
-3

10
-2

10
-1

10
0

SNR [dB]

F
E

R

SPA (fp)

OMS (fp)

OMS 7bit

OMS 5bit

Fig. 4. Frame error rate (FER) comparison using the R = 1/2, Z = 81

code [9] in an AWGN channel.

the control words are being translated to corresponding signals
and addresses. The key advantages of the proposed approach
is that the decoder remains fully configurable, i.e., all possi-
ble QC-LDPC matrices that fit into the allocated memories
can be processed, and the complexity of the control unit is
significantly reduced.

The process of transforming Hp into a control sequence
is done off-line. Each sequence consists of L control words
using Bs bit. Note that only the information for one iteration
is stored in the control sequence. The number of clock cycles
required for one iteration corresponds to L, which determines
the throughput of the LDPC decoder for a particular Hp.
Obtaining a short sequence is therefore a major goal of the
sequence construction. The length of a sequence is determined
by the number of entries in the LDPC matrix prototype Hp that
are not equal to ’-’ and by the constraint that columns used by
the SEL unit operating on row m and the MIN unit operating
on row m + 1 must always be accessed first by the MIN unit
(cf. Section III). The decoder is able to process the columns
of Hp in an arbitrary ordering (as it is done in [6]), which can
be exploited (during sequence construction) to reduce L.

E. Optimization for IEEE 802.11n
So far, the configurable QC-LDPC decoder architecture has

been described independent of a particular standard. The steps
described in the following have been performed to optimize the
architecture for IEEE 802.11n [9], which is used for setting
the design parameters for the ASIC implementation shown
in Section IV.

Architectural Optimizations: The decoder has been de-
signed to support at least all QC-LDPC matrix prototypes
of IEEE 802.11n [9] while achieving a decoding throughput
higher than 600 Mbit/s. To this end, we instantiated Zmax = 81
NCUs, since the standard only requires Z ∈ {27, 54, 81}.
To reduce the power consumption, we divided the NCU
pool into three blocks consisting of 27 NCUs. Each of the
three NCU blocks can be switched off using clock gating,
which is used to reduce the power consumption for the
modes Z ∈ {27, 54}. Corresponding power measurement
results are shown in Section IV-B.

4

R
 m

e
m

o
ry

Q memory

ctrl

NCU
pool

cyclic
shifter

Fig. 5. Die photo of the QC-LDPC decoder in 0.18 µm CMOS technology.
Note that there is unused circuit area on both sides of the ASIC.

Numeric Precision Optimization: Since IEEE 802.11n sup-
ports many different modulation and coding schemes, the
numeric precision requirements have been evaluated using
frame error rate (FER) simulations in an AWGN channel.
Fig. 4 compares the FER of layered message passing using the
floating-point (fp) sum-product algorithm (SPA) with layered
OMS (β = 0.15). Note that OMS only loses approximately
0.2 dB to the SPA. The impact of MC is shown by using
7 bits and 5 bits. Note that both OMS simulations include early
termination based on the PPCs described in Section III-A. MC
to 5 bits leads to a 0.45dB SNR loss compared to MC using
7 bits (at 10−3 FER) but reduces the amount of bits required
in the Q-memory by 28%. Thus, we decided to limit the Q-
values to Bq = 5 bit. The R-messages require Br = 5 bit and
the input LLRs have been quantized to 5 bit according to [15].
The curve associated with OMS 5 bit in Fig. 4 corresponds to
the FER performance of the final implementation.

Q- and R-Memory Design: IEEE 802.11n requires at
most Nb,maxZmax = 24 · 81 Q-values and the R-memory
requires at most 88 · 81 R-messages, where 88 corresponds
to the maximum number of sub-blocks not equal to ’-’ in
IEEE 802.11n [9]. Therefore, we instantiated eight 64× 102
single-port SRAMs (total 52’224 bit) for the R-memory and
three 32× 135 two-port SRAMs (total 12’960 bit) for the Q-
memory. The number of bits per sequence word is Bs = 42bit
and memory for a maximum of 128 sequence words has been
allocated.

IV. IMPLEMENTATION RESULTS

Fig. 5 shows a die photo of the fabricated QC-LDPC de-
coder ASIC in 0.18µm (1P/6M) CMOS technology. The ASIC
has been characterized using speed and power measurements.
The key figures of the QC-LDPC decoder implementation
are summarized in Tbl. IV. The implementation requires
3.39 mm2 core area and achieves 208 MHz and 416 MHz
for the slow logic clock and for the fast memory clock,
respectively. Tbl. I shows a detailed area breakdown of the
QC-LDPC decoder. It can clearly be observed that most of the
circuit area is occupied by the Q- and R-memories. The NCU
Pool and the cyclic shifter require approximately a third of the
decoder’s area and the circuit complexity of the configurable
control unit is low.

TABLE I
DETAILED AREA BREAKDOWN

Unit mm2 kGEa %
Control unit 0.10 10.3 3.0
NCU pool 0.59 60.8 17.4
Q memory 0.83 85.6 24.5
R memory 1.16 119.6 34.2
Cyclic shifter 0.45 46.4 13.3
Miscellaneousb 0.26 26.8 7.6
Total 3.39 349.5 100

aOne gate equivalent (GE) corresponds to the area of a two-input drive-one
NAND gate of size 9.7 µm2.
bDenotes remaining logic, i.e., pipeline registers, logic required for the
input/output interface, etc.

TABLE II
SEQUENCE LENGTH L AND THROUGHPUT Θ

Z Rate L Θ [Mbit/s]

27
1/2 94 134
2/3 88 190
3/4 89 212
5/6 95 222

54
1/2 88 286
2/3 90 373
3/4 90 419
5/6 89 471

81
1/2 91 415
2/3 89 565
3/4 86 656
5/6 80 780

A. Sequence Lengths and Throughput
Tbl. II shows the sequence lengths for all possible codes

in IEEE 802.11n [9] as well as the resulting throughput
for fclk = 208MHz using a maximum of I = 5 iterations.
The throughput of the decoder can be computed as

Θ =
Z ·Nb ·R

L · I + 32
fclk

where 32 additional clock cycles are required to load and
flush the pipeline. The maximum achievable throughput for
the R = 5/6, Z = 81 code corresponds to 780 Mbit/s and
exceeds the throughput requirements of IEEE 802.11n.

B. Energy-Efficiency Measurements
Tbl. III shows energy-per-data-bit measurement results of

the implemented ASIC. The impact of early-termination using
PPCs, as well as the impact of clock gating is shown at
different SNRs for different R = 1/2 codes [9]. For higher
SNRs, the energy-efficiency improves significantly, since it
becomes more likely that the PPCs are satisfied after a few
iterations. For small block sizes (i.e., Z = 27), the power
consumption can be dramatically reduced if clock gating is
used, since part of the NCUs can be disabled during decoding
of the smaller block-sizes (i.e., for Z = {27, 54}). Note that
for Z = 27, clock-gating combined with the PPCs improves
the energy-efficiency up to 63% at high SNRs, whereas in
the low-SNR regime, still up to 48% improvement can be
achieved.

5

TABLE III
ENERGY-EFFICIENCY MEASUREMENTS FOR RATE-1/2 CODES

Z SNR no power save clk–gate clk–gate & PPC
nJ/bit % nJ/bit % nJ/bit %

27
1 11.5 100 6.0 52 6.0 52
3 11.9 100 6.2 52 5.6 47
7 11.6 100 6.1 53 3.1 27

54
1 5.6 100 4.4 79 4.4 79
3 5.8 100 4.5 79 4.2 73
7 5.6 100 4.4 79 2.2 40

81
1 3.8 100 3.8 100 3.8 100
3 4.0 100 4.0 100 3.7 92
7 3.9 100 3.9 100 1.9 49

TABLE IV
COMPARISON OF LDPC DECODERS FOR IEEE 802.11N

This work [6] [4]a [17]b

Technology [nm] 180 130 130 65
Core area [mm2] 3.39 1.85 1.9 0.74
Memory area [mm2] 1.99 1.04 – 0.26
Cell area [kGE] 144.3c 99.9 195 217
Max. clock freq. [MHz] 208 500 400 240
Max. throughput [Mbps] 780 1618 1000d 410

aCorresponding to the pipelined version [4].
bCorresponding to the K = 4, Nc2v = 5, and NSO = 8 decoder [17].
cThe memory area has been excluded (cf. Tbl. I).
dThe maximum throughput is given for 2.2 dB SNR.

C. Comparison
In Tbl. IV,the presented implementation is compared with

dedicated QC-LDPC decoders for IEEE 802.11n, i.e., the
designs of Gunnam et al. [6], Sun et al. [4], and Rovini et
al. [17]. Due to differences in process technologies, fair
area, speed, and power comparisons are difficult to state.
The circuit complexity and memory area of all four designs
is comparable when considering technology scaling. Note
that the implementation described in this paper achieves the
lowest clock frequency, which is mainly due to the process
technology and the detrimental input/output timing of the
off-chip drivers. Nevertheless, our implementation achieves a
throughput of up to 780 Mbps, which is sufficient to fulfill
the requirements of the standard. Additionally, the achieved
throughput is comparable to that of [4] and even higher than
that of [17]. Therefore, we can conclude that configurability of
our architecture does not come at a (significant) performance
penalty.

V. CONCLUSION

We presented a fully reconfigurable LDPC decoder archi-
tecture for quasi-cyclic codes based on layered offset-min-sum
message passing. Thanks to the subset cyclic shifter and the
reconfigurable control unit, the proposed architecture is able to
decode virtually any QC-LDPC code that fits into the allocated
memories. The memory requirements have been significantly
reduced by clipping of the decoder-internal messages, which
has shown to enable a trade-off between error rate performance
and circuit area at design-time. The QC-LDPC decoder has
been optimized for IEEE 802.11n and fabricated in 0.18µm

CMOS technology. Measurement results and comparison with
dedicated LDPC decoders for IEEE 802.11n demonstrate that
the flexibility of our architecture not necessarily leads to a
significant performance penalty in terms of area, throughput,
and energy-efficiency.

ACKNOWLEDGMENT

The authors want to thank M. Braendli for his support
during the back-end design. Furthermore, we would like to
thank Prof. W. Fichtner, Dr. N. Felber, and Dr. H. Kaeslin
for their support during design and testing of the QC-LDPC
decoder ASIC.

REFERENCES

[1] R. G. Gallager, “Low density parity check codes,” Trans. of the IRE
Professional Group on Inf. Theory, vol. IT-8, pp. 21–28, Jan. 1962.

[2] M. P. C. Fossorier, “Quasi-cyclic low-density parity-check codes from
circulant permutation matrices,” IEEE Trans. on Inf. Theory, vol. 50,
no. 8, pp. 1788–1793, Aug. 2004.

[3] H. Zhong and T. Zhang, “Block-LDPC: a practical LDPC coding system
design approach,” IEEE Trans. on Circuits and Systems I, vol. 52, no. 4,
pp. 766–775, Apr. 2005.

[4] Y. Sun, M. Karkooti, and J. R. Cavallaro, “High throughput, parallel,
scalable LDPC encoder/decoder architecture for OFDM systems,” in
Proc. IEEE Dallas/CAS Workshop on Design, Applications, Integration
and Software, Oct. 2006, pp. 39–42.

[5] K. K. Gunnam, G. S. Choi, W. Wang, E. Kim, and M. B. Yeary, “De-
coding of quasi-cyclic LDPC codes using an on-the-fly computation,” in
Proc. Fortieth Asilomar Conference on Signals, Systems and Computers,
Oct. 2006, pp. 1192–1199.

[6] K. K. Gunnam, G. S. Choi, W. Wang, and M. B. Yeary, “Multi-rate
layered decoder architecture for block ldpc codes of the ieee 802.11n
wireless standard,” in Proc. IEEE International Symposium on Circuits
and Systems, May 2007, pp. 1645–1648.

[7] Digital Video Broadcasting (DVB) User guidelines for the second gen-
eration system for Broadcasting, Interactive Services, News Gathering
and other broadband satellite applications (DVB-S2), ETSI TR 102 376,
Feb. 2005.

[8] IEEE P802.16e, Part 16, “Air Interface for Fixed and Mobile Broadband
Wireless Access Systems,” Amendment 2: Physical and Medium Access
Control Layers for Combined Fixed and Mobile Operation in Licensed
Bands, and Corrigendum 1, Feb. 2006.

[9] IEEE P802.11n/D5.02, Part 11, “Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) specifications: Enhancements for
Higher Throughput”, July 2008.

[10] S. Sharon, J. Litsyn, and J. Goldberger, “An efficient message-passing
schedule for LDPC decoding,” in Proc. 23rd IEEE Convention of
Electrical and Electronics Engineers in Israel, Sept. 2004, pp. 223–226.

[11] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and
the sum-product algorithm,” IEEE Trans. on Inf. Theory, vol. 47, no. 2,
pp. 498–519, Feb. 2001.

[12] A. J. Blanksby and C. J. Howland, “A 690-mW 1-Gb/s 1024-b, rate-1/2
low-density parity-check code decoder,” vol. 37, no. 3, pp. 404–412,
Mar. 2002.

[13] X.-Y. Shih, C.-Z. Zhan, C.-H. Lin, and A.-Y. Wu, “An 8.29mm2 52mW
multi-mode LDPC decoder design for mobile WiMAX system in 0.13um
CMOS process,” vol. 43, no. 3, pp. 672–683, Mar. 2008.

[14] S. Sharon, J. Litsyn, and J. Goldberger, “Efficient serial message-passing
schedulers for LDPC decoding,” IEEE Trans. on Inf. Theory, vol. 53,
no. 11, pp. 4076–4091, Nov. 2007.

[15] J. Chen, A. Dholakia, E. Eleftheriou, M. P. C. Fossorier, and X.-Y.
Hu, “Reduced-complexity decoding of LDPC codes,” IEEE Trans. on
Comm., vol. 53, no. 7, pp. 1288–1299, Aug. 2005.

[16] C.-H. Liu, C.-C. Lin, H.-C. Chang, C.-Y. Lee, and Y. Hsua, “Multi-mode
message passing switch networks applied for QC-LDPC decoder,” in
IEEE International Symposium on Circuits and Systems, May 2008, pp.
752–755.

[17] M. Rovini, G. Gentile, F. Rossi, and L. Fanucci, “A scalable decoder ar-
chitecture for IEEE 802.11n LDPC codes,” in Proc. IEEE GLOBECOM,
Nov. 2007, pp. 3270–3274.

6

