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Abstract—Many powerful data detection algorithms employed
in multiple-input multiple-output (MIMO) communication sys-
tems, such as sphere decoding (SD) and lattice-reduction (LR)-
aided detection, were initially designed for infinite lattices. Detec-
tion in MIMO systems is, however, based on finite lattices. In this
paper, we systematically study the consequences of finite lattice-
size for the performance and complexity of MIMO detection
algorithms formulated for infinite lattices. Specifically, we find,
considering performance and complexity, that LR does not seem
to offer advantages when used in conjunction with SD.

I. INTRODUCTION

The computational complexity associated with maximum-
likelihood (ML) detection (MLD) in multiple-input multiple-
output (MIMO) communication systems poses significant
challenges for corresponding VLSI implementations [1].
Promising approaches for complexity reduction make explicit
use of the structure in the problem by transforming it into
an equivalent lattice decoding1 problem, where the underlying
lattice is finite. Some of the most prominent techniques for
efficient lattice decoding were, however, developed for infinite
lattices, e.g., sphere decoding (SD) [2] or lattice-reduction
(LR)-aided detection, e.g., [3], [4].

The goal of this paper is to investigate the fundamental
differences, in terms of complexity and performance, between
MIMO detection on finite and on infinite lattices. We show that
relaxation of the MIMO detection problem to infinite lattices
followed by LR can reduce the complexity of SD at the cost
of a significant performance loss in terms of error rate. This
performance loss is caused by symbol estimates that do not
belong to the finite lattice and hence require remapping (onto
the finite lattice). We demonstrate that (near-)ML achieving
remapping strategies entail a complexity which is comparable
to that of SD operating directly on the finite lattice, thus
rendering LR in conjunction with SD unattractive for practical
applications.

Notation: Matrices are set in boldface capital letters, vec-
tors in boldface lowercase letters. The superscripts T and H

stand for transpose and conjugate transpose, respectively.
We write Ai,j for the entry in the ith row and jth col-
umn of the matrix A, bi for the ith entry of the vec-
tor b = [ b1 b2 · · · bN ]T , and we denote the `2-norm of
b ∈ CN as ‖b‖. IN stands for the N ×N identity matrix and

This work was supported in part by the STREP project No. IST-026905
(MASCOT) within the Sixth Framework Programme (FP6) of the European
Commission.

1In the context of this paper it would be more appropriate to use the term
“lattice detection”.

1N denotes the N -dimensional all-ones vector. |O| designates
the cardinality of the set O and CZ stands for the set of
Gaussian integers, i.e., CZ = Z +

√
−1Z. The real and

imaginary part of x ∈ C is denoted by <{x} and ={x},
respectively.

II. MIMO DETECTION AS LATTICE DECODING

Consider a coherent MIMO system, i.e., the receiver has
perfect channel state information (CSI) while the transmitter
does not have CSI, with M transmit and M receive antennas2.
The bit-stream to be transmitted is mapped to M -dimensional
transmit symbol vectors s ∈ OM , where O corresponds to the
underlying scalar QAM constellation. The associated complex
baseband input-output relation is given by

y = Hs + n (1)

where H stands for the M ×M channel matrix, y is the M -
dimensional received signal vector, and n is an i.i.d. circu-
larly symmetric complex Gaussian distributed noise vector of
dimension M with variance No per complex entry. The signal-
to-noise ratio is defined as SNR = Es/No, where Es denotes
the average signal power per receive antenna.

A. Transformation to Lattices
In order to see that the MIMO detection problem is equiv-

alent to a lattice decoding problem, we start by mapping the
elements s ∈ O to elements x ∈ CZ using the transforma-
tion x = as+ c. The constants a, c ∈ R with a > 0 and c > 0
are independent of s and are chosen such that x ∈ X ⊂ CZ

with |X | = |O| and

X =
{

x ∈ CZ |(kmin ≤ <{x} ≤ kmax)

∧ (kmin ≤ ={x} ≤ kmax)
}

(2)

where kmin, kmax ∈ Z. Note that (2) can be used for square
QAM constellations to check whether x′ ∈ CZ is in X
by performing separate boundary checks for the real and
imaginary part of x′. In the case of non-square QAM constel-
lations the boundary checks take a slightly more complicated
form. The transmit vectors s ∈ OM can be mapped to
vectors x ∈ XM ⊂ (CZ)M according to

x = as + c (3)

2The restriction to the number of transmit antennas being equal to the
number of receive antennas is made for simplicity of exposition. The results
are also valid for the number of receive antennas being larger than the number
of transmit antennas.
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where c = c1M . The inverse transformation associated
with (3) is given by s = a−1(x − c). The input-output
relation (1) can now be transformed into

r = Gx + n (4)

where G = a−1H and r = y + Gc is a translated version of
the received vector y. The essence of the transformation of (1)
into (4) is that now the received vector r can be interpreted
as a lattice point u ∈ L(G) that has been translated by the
additive Gaussian noise vector n. Here,

L(G) ,

{

Gx | x ∈ XM
}

(5)

denotes the finite lattice generated by G. In the remainder
of the paper, we shall work with the input-output relation (4)
exclusively.

B. ML Detection
MLD in MIMO systems computes the estimate

ûML = DML(r) = arg min
u∈L(G)

‖r− u‖ (6)

which amounts to solving a closest-vector problem (CVP) in
the finite lattice L(G). Since each lattice point in L(G) is
associated with a transmit vector in XM according to the re-
lation u = Gx, the ML-estimate ûML obtained by solving (6)
can be transformed into3 x̂ML = G−1ûML, which upon inver-
sion of (3) yields the ML-estimate ŝML. Solving (6) through
an exhaustive search over all lattice points in L(G) typically
results in high computational complexity as |L(G)| = |X |M
may be large.

C. Relaxation and Lattice Reduction
A promising approach to reducing the computational com-

plexity associated with solving (6) is to relax the finite lattice
in (5) to the infinite lattice4

L(G) ,

{

Gx | x ∈ (CZ)M
}

(7)

and to solve a relaxed version of (6) by computing

û
ML = DML(r) = arg min

u∈L(G)

‖r− u‖ (8)

i.e., by searching over the infinite lattice generated by G. This
search can be carried out more efficiently by using algorithms
from lattice theory, e.g., SD [2] possibly in conjunction with
LR through the LLL algorithm [5]. As the resulting esti-
mate û

ML is not necessarily in L(G), remapping of û
ML onto

the finite lattice L(G) is required whenever û
ML /∈ L(G). In

the remainder of the paper, the term “MLD” always refers to
the finite-lattice MLD problem (6), whereas “relaxed MLD”
is used to refer to the infinite-lattice MLD problem (8).

3Note that we implicitly assume that G has full rank; this is satisfied, for
example, with probability 1, if the entries of G are i.i.d. circularly symmetric
complex Gaussian distributed. Furthermore, in practice G−1 does not have
to be computed explicitly as u in (6) can be replaced by Gx and the
minimization can be performed over x ∈ XM .

4In the remainder of the paper, underlined quantities always refer to the
infinite-lattice case.

The main motivation for relaxation resides in the fact that
LR can be applied only to infinite lattices. LR computes an
equivalent and “more orthogonal” basis (for the lattice L(G))
with the generator matrix B = GT, where T is an M ×M
unimodular matrix, i.e., |det(T)| = 1 with Ti,j ∈ CZ (∀i, j).
Thanks to the unimodularity of T, we have L(B) = L(G). It
is important to note that this equivalence holds only for infinite
lattices, in contrast to finite lattices where L(B) 6= L(G), in
general. We therefore conclude that relaxation to an infinite
lattice is essential for the application of LR to MIMO detec-
tion.

We emphasize that LR, in general, reduces the complexity
of a subsequent SD step and results in (often significant)
performance improvements when followed by sub-optimal
detectors. In particular, in [6] it is shown that LR followed
by linear detection achieves full diversity.

D. Schnorr-Euchner Sphere Decoding
SD was initially designed for the efficient solution of CVPs

on infinite lattices [2], but has also proven very efficient
for MLD [7], [8]. In the following, we briefly review the
main ingredients of Schnorr-Euchner SD (SESD) with radius
reduction for the finite-lattice case [9].

The algorithm starts by performing a QR decomposition
(QRD) of G according to G = QR, where the M × M
matrix Q is unitary and the upper-triangular M×M matrix R

has real-valued non-negative entries on its main diagonal. Left-
multiplying (4) by QH leads to the modified input-output
relation r̃ = Rx + ñ, where r̃ = QHr and ñ = QHn

is again (thanks to Q being unitary) i.i.d. circularly sym-
metric complex Gaussian distributed with variance No per
complex entry. We arrange the partial symbol vectors (PSVs)
x(i) = [ xi xi+1 · · · xM ]T in a tree that has its root just above
level i = M and leaves on level i = 1; the leaves correspond
to vectors x ∈ XM . Each PSV is associated with a partial
distance (PD) according to

d
(

x(i)
)

=
∥

∥r̃(i) −Rix
(i)
∥

∥, i = 1, 2, . . . , M (9)

where r̃(i) = [ r̃i r̃i+1 · · · r̃M ]T and Ri contains the lower-
right (M − i + 1) × (M − i + 1)-dimensional sub-block
of R. The MLD problem has therefore been transformed into
a weighted tree-search problem, where PSVs and PDs are
associated with nodes in the tree. For brevity, we shall often
say “the node x(i)” meaning the node corresponding to the
PSV x(i). Each path through the tree (from the root node down
to a leaf node) corresponds to a symbol vector x ∈ XM . Note
that in the infinite-lattice case, the tree-search problem needs
to be relaxed to vectors x ∈ (CZ)M . The solution of (6) is
given by the leaf associated with the smallest metric.

The essence of SD is to constrain the search in the tree
through a sphere constraint (SC), realized by searching only
those nodes that satisfy d

(

x(i)
)

≤ r, where r is the search
radius associated with a hypersphere centered in the received
point. SESD refers to conducting the tree search in a depth-
first manner and visiting the children of a given node in
ascending order of their PDs [9]. Since the PDs d

(

x(i)
)

are non-decreasing as a function of i = M, M − 1, . . . , 1,
a node x(i) violating the SC can be pruned along with
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the entire subtree emanating from that node. The algorithm
initializes r =∞ and performs the update r ← d(x) whenever
a valid leaf node x has been found. This approach is known
in the literature as radius reduction [1], [9].

The complexity measure employed in this paper is given
by the number of nodes visited by SESD in the tree search,
including the leaf nodes, but excluding the root node. This
complexity measure is directly related to the VLSI imple-
mentation complexity for the finite-lattice case5 [1]. The
complexity required for preprocessing (i.e., QRD or LR) will
be ignored throughout the paper. We note, however, that in
latency-critical applications, the preprocessing complexity can
be critical.

In the remainder of the paper, “SESD”, “relaxed SESD”,
and “LR-aided SESD” refer to SESD on finite lattices, on
infinite lattices, and to LR followed by SESD on infinite
lattices, respectively.

III. COMPLEXITY OF SESD AND OF RELAXED SESD
We next analyze the differences in the complexity behavior

of SESD and of relaxed SESD.

A. Low-SNR Regime
Finite-lattice case: SESD visits a node x(i) if the SC

d
(

x(i)
)

≤ r is satisfied. Since the minimum search radius
of SESD (guaranteeing that the corresponding hypersphere
contains at least one lattice point) is given by the Euclidean
distance between the received vector and the ML solution, we
can conclude that SESD visits at least all nodes x(i) satisfying

d
(

x(i)
)

≤ min
x∈XM

‖r̃−Rx‖ = rmin. (10)

Thanks to radius reduction, the final (with respect to the
repeated tree-traversals as described above) search radius
of SESD corresponds to rmin. We can therefore conclude
that the genie-aided choice r = rmin for the search radius
initialization, indeed, yields a lower bound on the number of
nodes visited by SESD. Denoting the transmitted data vector
as x′ ∈ XM , we obtain a lower bound on rmin as follows:

rmin
a)
= min

x∈XM

∥

∥ñ + R(x′ − x)
∥

∥ ≥
b)

≥ min
x∈XM

(

‖ñ‖ −
∥

∥R(x− x′)
∥

∥

)

=

= ‖ñ‖ − max
x∈XM

∥

∥R(x− x′)
∥

∥ ≥
c)

≥ ‖ñ‖ − σmax(R)K (11)

where a) results from r̃ = Rx′ + ñ, b) follows from
the inverse triangle inequality, and c) is a consequence
of the Rayleigh-Ritz theorem [10] (σmax(R) denotes the
largest singular value of R) and the fact that the con-
stant K = maxx,x′∈XM ‖x− x′‖ is finite in the finite-lattice
case. From (11) we can infer that SESD visits at least all
nodes x(i) satisfying

d
(

x(i)
)

≤ ‖ñ‖ − σmax(R)K. (12)

5We expect this complexity measure to be equally relevant for the infinite-
lattice case.

Note that setting the search radius equal to the right-hand side
(RHS) of (12) will no longer guarantee that the correspond-
ing hypersphere contains at least one lattice point. This is,
however, irrelevant for the point we want to make next.

Defining v = ñ/
√

No, we can rewrite (12) as
∥

∥

∥

∥

∥

v(i) +
Ri

(

x′(i) − x(i)
)

√
No

∥

∥

∥

∥

∥

≤ ‖v‖ − σmax(R)K√
No

. (13)

We can now see that for No →∞ and hence for SNR→ 0, the
condition in (13) reduces to

∥

∥v(i)
∥

∥ ≤ ‖v‖, which is trivially
satisfied for i > 1 for every realization of ñ and for given R. In
this case, SESD visits at least all nodes down to and including
the level just above the leaf level. An intuitive explanation
for this effect is that the noise can shift the transmit vector
arbitrarily far away from the finite lattice and hence, the RHS
of (11) and consequently rmin can become arbitrarily large,
which inhibits efficient tree pruning.

Infinite-lattice case: The fundamental difference between
the complexity of SESD and of relaxed SESD is due to the
fact that in the infinite-lattice case, the maximum distance
between the received vector r and the nearest lattice point
is bounded for a given (full rank) R. The complexity of
relaxed SESD can therefore be lower than that of SESD.
The downside is that relaxed SESD is not guaranteed to find
the ML solution, which necessarily has to be a point in the
finite lattice L(G). Specifically, if relaxed SESD delivers a
lattice point outside L(G), this point needs to be remapped
onto the finite lattice. Corresponding remapping approaches
are described in Section IV. In the following, we derive an
analytic upper bound on the complexity of relaxed SESD.

The number of nodes x(i) on tree level i that satisfy
the SC with radius r is denoted by C i(r) and corresponds
to the number of lattice points in L(Ri) that are within
a 2(M − i + 1)-dimensional (real-valued) hypersphere of
radius r centered at r(i). This number can be upper-bounded
by dividing the volume of a 2(M − i + 1)-dimensional
hypersphere of radius r + µi by the volume of a Voronoi cell
in L(Ri) [11], where µi corresponds to the covering radius
of the lattice L(Ri) [12]. More specifically, we have [13]

C i(r) ≤
V(M−i+1)(r + µi)

Vol
(

L(Ri)
) (14)

where Vk(r) = πk

k! r2k denotes the volume of a 2k-dimensional
hypersphere with radius r and the volume of a Voronoi cell
of L(Ri) is Vol

(

L(Ri)
)

= det(RH
i Ri).

In order to derive an upper bound on the total complexity
C =

∑M

i=1 Ci(r) of relaxed SESD, we consider the case
where only the first radius update is performed. The first
leaf node found by relaxed SESD corresponds to the Babai
point x̂

B [14] and hence the radius after the first update from
the initial value r = ∞ is given by d

(

x̂
B), which can be

upper-bounded as [9], [14]

d
(

x̂
B) =

∥

∥r̃−Rx̂
B
∥

∥ ≤

√

√

√

√

1

2

M
∑

j=1

R2
j,j = β. (15)

Since the covering radius µ1 is also upper-bounded by β
[11], [15] and, more generally, µi can be upper-bounded
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as µi ≤
√

1
2

∑M

j=i R2
j,j = γi, we have r +µi ≤ β +γi, which

yields an upper bound on the total complexity of relaxed SESD
according to

C ≤
M
∑

i=1

V(M−i+1)(β + γi)

det(RH
i Ri)

. (16)

B. High-SNR Regime
In the high-SNR regime, relaxed SESD is likely to return

the ML solution. Moreover, if ‖ñ‖ is sufficiently small, relaxed
SESD and SESD find the same leaf nodes, which will belong
to the finite lattice L(G). Consequently, relaxed SESD and
SESD will operate with the same search radii and hence the
same SCs. However, the two detectors will, in general, not
exhibit the same complexity, as the SESD additionally (to the
SC) takes into account the finite alphabet nature of X ⊂ CZ,
whereas relaxed SESD visits all points in CZ satisfying the
SC. Therefore, in the high-SNR regime, SESD tends to result
in smaller complexity than relaxed SESD.

C. Numerical Complexity Assessment
A simple numerical result serves to demonstrate the poten-

tial complexity savings of relaxed SESD over SESD in the
low-SNR regime. We assume a MIMO channel with R = IM

and M = 4. Counting all the nodes down to and including the
level just above the leaf level and noting that only one leaf
node is visited by SESD if R is a diagonal matrix, leads to
the corresponding complexity

C =
|X |M − 1

|X | − 1

of SESD for SNR → 0 (see the discussion in the last
paragraph of Section III-A). For a 16-QAM alphabet, this
leads to C = 4369 nodes. The total complexity of relaxed
SESD is upper-bounded by (16), which can be refined by
noting that relaxed SESD visits only one leaf node in the case
of R = IM . Consequently, we have

C ≤ 1 +

M
∑

i=2

V(M−i+1)

(

√

M

2
+

√

M − i + 1

2

)

which shows that at most 1928 nodes will be visited, irrespec-
tively of the SNR. We can therefore conclude that relaxation
can result in a significant complexity reduction at low SNR
values.

Fig. 1 shows the complexity6 corresponding to SESD
(which yields ML performance) and to relaxed SESD (de-
noted by R-SESD). Consistent with the observations made in
Sections III-A and III-B, we see that relaxation leads to com-
plexity savings in the low-SNR regime, but results in higher
complexity in the high-SNR regime. We can furthermore see

6All simulation results are for an uncoded M = 4 MIMO system with
16-QAM symbol constellation using Gray labeling. The entries of H are
i.i.d. circularly symmetric complex Gaussian distributed with unit variance.
For (relaxed) SESD, we use sorted QR-decomposition (SQRD) according
to [16], for LR, a complex-valued variant of the LLL algorithm with δ = 3/4
and SQRD preprocessing as described in [17], [18]. All complexity and
performance simulations are averaged over 640,000 channel realizations and
for each channel realization a single noise realization has been generated.

that relaxation followed by LR (denoted by LR-SESD) leads
to lower complexity than SESD for all SNR values.

The complexity reductions of R-SESD and LR-SESD over
SESD come, however, at a significant performance loss in
terms of error-rate and in the case of LR-SESD also at
increased computational complexity in the preprocessing stage
caused by the need for LR (realized through the LLL al-
gorithm [5], for example). For naive lattice decoding, i.e.,
estimates û

ML /∈ L(G) are simply discarded and an error
is declared, Fig. 2 shows a 3 dB SNR loss of LR-SESD com-
pared to SESD (MLD). We emphasize that the performance of
R-SESD, not shown in Fig. 2, is identical to that of LR-SESD;
the associated complexities are, however, different (cf. Fig. 1).
Note that naive lattice decoding was shown to achieve full
diversity, while leading to an unbounded SNR gap (growing
logarithmically in SNR) for MIMO systems with an equal
number of transmit and receive antennas [19]. In the next
section, we discuss several approaches to the mitigation of this
performance loss, i.e., we consider algorithms for remapping
estimates û

ML /∈ L(G) onto L(G).

IV. REMAPPING METHODS

If the estimate delivered by relaxed SESD satisfies
û

ML ∈ L(G), the lattice point û
ML corresponds to the ML

solution (6), i.e., û
ML = ûML. If û

ML /∈ L(G) and the
performance of naive lattice decoding is not sufficient, the
solution delivered by relaxed SESD needs to be remapped onto
the finite lattice L(G). Since all constellation points x ∈ XM

(corresponding to elements u ∈ L(G) through the relation7

u = Gx) satisfy (2), determining whether û
ML is in the finite

lattice L(G) can be performed efficiently through element-
wise boundary checks of the real and imaginary parts of x̂

ML.
In the following, we briefly review an existing remapping
method known as quantization and describe novel remap-
ping approaches that realize different performance/complexity
trade-offs.

A. Quantization
The standard remapping approach known in the literature

is quantization and amounts to remapping x̂
ML /∈ XM to the

closest (in Euclidean distance) symbol vector x̂q ∈ XM

according to [4], [18]

x̂q = arg min
x∈XM

∥

∥x̂
ML − x

∥

∥. (17)

As quantization corresponds to element-wise slicing of the
entries of x̂

ML to the nearest candidates in X , it requires
low computational complexity. The resulting estimate x̂q does,
however, not necessarily correspond to the ML solution (6) and
hence leads to a (potentially significant) performance loss.

Fig. 2 shows the performance obtained by LR-aided SESD
followed by remapping through quantization (denoted by
LR-SESD, quant.). The numerical results indicate a slight
improvement over naive lattice decoding, but still show a

7In the remainder of the paper, we treat vectors x ∈ (CZ)M and u ∈ L(G)
as well as x ∈ XM and u ∈ L(G) as interchangeable as they are related
through the one-to-one mappings u = Gx and u = Gx, respectively. Of
course, this assumes that G has full rank.
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2.5 dB SNR loss compared to ML performance. Finally,
Fig. 2 shows the performance obtained by LR-aided successive
interference cancellation (SIC) on the infinite lattice with
remapping through naive lattice decoding (denoted by LR-SIC,
naive). The resulting performance loss, compared to relaxed
SESD with remapping through naive lattice decoding, is low
(approximately 0.25 dB SNR), whereas the complexity of LR-
SIC is significantly lower than that of LR-SESD.

B. Optimal Lattice Remapping
The discussion above brings out the importance of remap-

ping. It is therefore natural to ask for the optimum lattice
remapping strategy in the sense of maximizing the probability
of the result of remapping to correspond to the transmitted
symbol vector given the result of the relaxed detector û.
Let u′ ∈ L(G) be the transmitted vector and assume that
the relaxed detector yields

D(r) = D(u′ + n) = û, û ∈ L(G)\L(G).

Optimal lattice remapping according to the criterion described
above now amounts to identifying the lattice point u ∈ L(G)
which maximizes P[u′ = u|D(r) = û], i.e.,

ûopt = arg max
u∈L(G)

P[u′ = u|D(r) = û].

We emphasize that the optimum remapping rule depends
on D(r) and hence, on the relaxed MIMO detector employed.
Using Bayes’s theorem and assuming that all transmit vectors
are equally likely, we get

ûopt = arg max
u∈L(G)

P[D(r) = û|u′ = u] (18)

which amounts to solving a finite-lattice MLD problem (6)
based on the relaxed estimate û instead of the received vec-
tor r. We stress that relaxed MLD followed by optimum lattice
remapping according to (18) will, in general, not achieve ML
performance as remapping is conducted based on û rather than
on r. For the sake of simplicity of exposition, in the following,
we write P[D(r) = û|u] instead of P[D(r) = û|u′ = u].

Closest-vector remapping: The optimal remapping rule
in (18) can, in general, not be expressed in closed form, as it
depends on the decision region of the relaxed MIMO detector.
We can, however, obtain a simple remapping strategy that
achieves near-optimal performance by computing an approxi-
mation of (18) as follows. We start by noting that

P[D(r) = û|u] =

∫

D(û)

fG(w − u) dw (19)

where

fG(w) = (πNo)
−M exp

(

−N−1
o ‖w‖2

)

is the joint probability density function of a multi-variate
complex Gaussian with i.i.d. circularly symmetric components
each of which has variance No and

D(û) =
{

w ∈ C
M | D(w) = û

}

denotes the decision region of the relaxed MIMO detector
employed. Next, we consider optimal remapping for relaxed
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Fig. 1. Complexity of SESD (MLD), relaxed SESD (R-SESD), and LR-aided
SESD (LR-SESD).

MLD, i.e., D(r) = DML(r) as defined in (8) and û = û
ML,

and note that in this case (19) formally corresponds to the
probability of mistakenly decoding the transmitted point u

for û
ML. This probability can be upper-bounded as

P
[

DML(r) = û
ML
∣

∣u
]

≤ Q

(

∥

∥û
ML − u

∥

∥

√
2No

)

(20)

where Q(a) = (2π)−
1

2

∫∞

a
exp(−x2

2 ) dx. Replacing the func-
tion to be maximized over in (18) by the upper bound in (20)
leads to a novel remapping rule, which we refer to as closest-
vector remapping (CVR) and which is given by

ûcv = arg min
u∈L(G)

∥

∥û
ML − u

∥

∥. (21)

The solution of (21) corresponds to the point ûcv ∈ L(G) that
is closest (in Euclidean distance) to the lattice point û

ML ∈
L(G)\L(G). We emphasize that CVR amounts to solving
a finite-lattice CVP and can, hence, be carried out by (non-
relaxed) SESD with the relaxed ML-estimate û

ML taking the
role of the received point. Note that CVR according to (21) ex-
hibits structural similarities to quantization according to (17).
Formally, quantization can be seen as CVR with G = IM ,
which amounts to ignoring the structure of the lattice generated
by G.

Numerical performance and complexity results: Fig. 2 com-
pares the performance of relaxed SESD followed by CVR to
that obtained by relaxed SESD followed by quantization. We
observe that CVR significantly outperforms quantization (and
naive lattice decoding) and yields close-to-ML performance.
This improvement comes, however, at the cost of having to
solve a finite-lattice CVP, namely (21), in contrast to simple
element-wise slicing in the case of quantization and to simply
discarding estimates that do not belong to L(G) in the case
of naive lattice decoding, both of which exhibit significantly
smaller complexity.

We next compare the overall complexity (i.e., the total
complexity of both SESD runs) of LR-aided SESD followed
by CVR (denoted by LR-SESD, CVR) to that of SESD op-
erating directly on the finite lattice, i.e., SESD (MLD). Fig. 1
shows that LR-SESD with CVR outperforms SESD (MLD)
only in the very-high-SNR regime with the corresponding
complexity savings being minor. In addition, this comparison
favors LR-SESD with CVR as the additional complexity
associated with LR has been neglected.
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Fig. 2. Bit error rate (BER) performance comparison of SESD (MLD),
LR-SESD, and LR-SIC.

C. Two-Stage Detection
The discussion above leads us to the question of whether

using D(r) = û for remapping instead of r is sensible.
After all, by mapping r onto û we are potentially discarding
useful information. In the following, we show that, indeed,
performing remapping based on r rather than on û leads to a
performance improvement (compared to, e.g., CVR) without
requiring additional complexity.

To this end, we propose a new detector structure, which
consists of two stages. The first stage corresponds to relaxation
from L(G) to L(G) (possibly followed by LR) and using
a relaxed MIMO detector. The second stage is invoked only
if the first stage yields a result that does not belong to the
finite lattice L(G) and corresponds to a MIMO detector
operating on the finite lattice. This second-stage detector uses
the received vector r instead of û. We emphasize that if
both stages employ MLD, the two-stage detector achieves ML
performance, since in the case of û

ML /∈ L(G), the second
stage performs non-relaxed MLD on the basis of r.

Numerical performance and complexity results: Fig. 1
shows the overall complexity of two-stage detection (i.e., the
total complexity across the two stages) using LR-aided SESD
in the first stage and SESD in the second stage (denoted by
LR-SESD, MLD). Again, the complexity associated with LR
is ignored. Consulting the corresponding performance results
in Fig. 2, we can conclude that two-stage detection employing
SESD in both stages and LR in the first stage outperforms
LR-SESD with CVR both in terms of complexity and per-
formance and, hence, the performance loss associated with
LR-SESD followed by CVR (compared to ML performance)
must result from the fact that û

ML rather than r is used for
remapping. We can furthermore conclude that in the high-
SNR regime the two-stage approach exhibits slightly lower
complexity than SESD, while realizing the same (i.e., ML)
performance. We finally note that the computational complex-
ity of LR and the complexity of checking whether û ∈ L(G)
has been neglected in this comparison.

V. CONCLUSIONS

We demonstrated that relaxation from finite to infinite
lattices combined with lattice reduction (LR) can reduce the
(tree-search) complexity of Schnorr-Euchner sphere decoding
(SESD), but generally leads to a significant performance loss.
This performance loss is caused by the fact that the relaxed

detector does not necessarily deliver estimates that belong to
the finite lattice and hence does not realize ML performance.
Remapping methods that yield (close-to) ML performance ne-
cessitate solving finite-lattice closest vector problems (CVPs).
Hence, if ML performance is required, using SESD directly
on the finite lattice seems to require smaller complexity, as
remapping is avoided and only one (finite-lattice) CVP needs
to be solved. We proposed an ML-optimal two-stage detector
which was shown to require lower complexity than SESD on
the finite lattice provided i) the SNR is high enough and ii)
the complexity corresponding to LR and to checking whether
estimates correspond to the finite lattice is neglected. Generally
speaking, we conclude that relaxation and LR are better suited
for use in conjunction with low-complexity detectors (such as
linear detection or SIC) with overall sub-optimal performance.
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